Skip to main content

Cell–Material Communication: Mechanosensing Modelling for Design in Tissue Engineering

  • Chapter
  • First Online:
Cellular and Biomolecular Mechanics and Mechanobiology

Abstract

We present an active mechanosensing theory based on an extension of the classical Hill′s model for skeletal muscle behavior where cells actively generate contractile forces and use this information to sense mechanical environment through interaction with material. In this sense, we consider that the cytoskeleton (CSK) of cells is mechanically prestressed. This prestress is generated by molecular motors that generate forces transmitted by the actin network and through adhesion plaques to the material that counterbalances these forces. This model has been numerically implemented to investigate possible mechanosensing mechanisms of how cells interact with materials, such as, durotaxis, tensotaxis and contact guidance. All these effects should be considered for controlling the behaviour of multiple cells working together and interacting with the material in an orchestrated way with a structural mission as the regeneration of a tissue, fundamental aspect in the design of scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buxboim, A., Ivanovska, I.L., Discher. D.E.: Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J. Cell Sci. 123(Pt 3), 297–308 (2010)

    Article  Google Scholar 

  2. Discher, D.E., Mooney, D.J., Zandstra, P.W.: Growth factors, matrices, and forces combine and control stem cells. Science 324 (5935), 1673–1677 (2009)

    Article  Google Scholar 

  3. Schwarz. U.S., Bischofs. I.B.: Physical determinants of cell organization in soft media. Med. Eng. Phys. 27, 763–772 (2005)

    Article  Google Scholar 

  4. Janmey, P.A., McCulloch, C.A.: Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9, 1–34 (2007)

    Article  Google Scholar 

  5. Wong, J.Y., Velasco, A., Rajagopalan, P., Pham, Q.: Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19, 1908–1913 (2003)

    Article  Google Scholar 

  6. Lo, C., Wang, H., Dembo, M., Wang, Y.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)

    Article  Google Scholar 

  7. Beloussov, L.V., Louchinskaia, N.N., Stein, A.A.: Tension-dependent collective cell movements in the early gastrula ectoderm of xenopus laevis embryos. Dev. Genes Evol. 210, 92–104 (2000)

    Article  Google Scholar 

  8. Ghosh, K., Pan, Z., Guan, E, et al.: Cell adaptation to a physiologically relevant ecm mimic with different viscoelastic properties. Biomaterials 28, 671–679 (2007)

    Article  Google Scholar 

  9. Smeal, R.M., Rabbitt, R., Biran, R., Tresco, P.A.: Substrate curvature influences the direction of nerve outgrowth. Ann. Biomed. Eng. 33, 376–382 (2005)

    Article  Google Scholar 

  10. James, J., Goluch, E.D., Hu, H., Liu, C., Mrksich, M.: Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell. Mot. Cytos. 65, 841–852 (2008)

    Article  Google Scholar 

  11. Bischofs, I.B., Schwarz, U.S.: Cell organization in soft media due to active mechanosensing. Proc. Natl. Acad. Sci. U.S.A. 100, 9274–9279 (2003)

    Article  Google Scholar 

  12. Nicolas, A., Geiger, B., Safran, S.A.: Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc. Natl. Acad. Sci. U.S.A. 101, 12520–12525 (2004)

    Article  Google Scholar 

  13. Schwarz, U.S., Erdmann, T., Bischofs, I.B.: Focal adhesions as mechanosensors: the two-spring model. Biosystems 83, 225–232 (2006)

    Article  Google Scholar 

  14. Moreo, P., Garcia-Aznar, J.M., Doblare, M. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomater. 4, 613–621 (2008)

    Article  Google Scholar 

  15. Sanz-Herrera, J.A., Moreo, P., Garcia-Aznar, J.M., Doblare, M.: On the effect of substrate curvature on cell mechanics. Biomaterials 30(34), 6674–6686 (2009)

    Article  Google Scholar 

  16. Ingber, D.E.: Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003)

    Article  Google Scholar 

  17. Hibbit, D., Karlsson, B., Sorensen, P.: Abaqus User’s Manual v.6.2. HKS Inc., Pawtucket, RI (2001)

    Google Scholar 

  18. Biton, Y.Y., Safran, S.A.: The cellular response to curvature-induced stress. Phys. Biol. 6(4) 046010 (2009)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministerio de Ciencia e Innovación of Spain (DPI2009-14115-C03-01) and the Instituto de Salud Carlos III (CIBER initiative).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. García-Aznar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García-Aznar, J.M., Sanz-Herrera, J.A., Moreo, P. (2010). Cell–Material Communication: Mechanosensing Modelling for Design in Tissue Engineering. In: Gefen, A. (eds) Cellular and Biomolecular Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_13

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14217-8

  • Online ISBN: 978-3-642-14218-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics