Skip to main content

Understanding Hypoxic Environments: Biomaterials Approaches to Neural Stabilization and Regeneration after Ischemia

  • Chapter
  • First Online:
Book cover Biomaterials as Stem Cell Niche

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 2))

  • 1312 Accesses

Abstract

Hypoxic/ischemic brain damage results in permanent neurological dysfunction. Though currently there are no effective treatments for this condition, exciting advances in neural stem/progenitor cell (NSPC) biology promise cellular based therapeutics. Major strategies seek to transplant exogenous NSPCs or recruit endogenous NSPCs in order to protect injured neurons or replace the function of lost neurons, but current methods are hindered by poor regulation of NSPC survival, proliferation, migration and integration into the existing environment. This chapter provides a review of the biology including response to hypoxia and current methods to manipulate NSPCs in vitro. We highlight recent applications of utilizing biomaterials to control NSPC response. Despite advanced technologies to synthesize and probe biomaterial systems, many efforts provide incremental improvement compared to transplants of simply NSPCs alone. We challenge the biomaterials community to view the NSPC as a component of the biomaterial and define the biological response of the NSPC within the environment, whether natural, man-made, or a hybrid of each. Accordingly, interactive collaboration among engineers, neurobiologists and clinical neurologists will lead to breakthroughs in basic science and advance biomaterials technology to achieve commercial and therapeutic solutions for human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjorklund, A., Lindvall, O.: Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537–544 (2000)

    Google Scholar 

  2. Volpe, J.J.: Neurology of the Newborn. Saunders, Philadelphia (2001)

    Google Scholar 

  3. Bang, O.Y., Lee, J.S., Lee, P.H., Lee, G.: Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 57, 874–882 (2005)

    Google Scholar 

  4. Kondziolka, D., Steinberg, G.K., Wechsler, L., Meltzer, C.C., Elder, E., Gebel, J., Decesare, S., Jovin, T., Zafonte, R., Lebowitz, J., Flickinger, J.C., Tong D., Marks, M.P., Jamieson, C., Luu, D., Bell-Stephens, T., Teraoka, J.: Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J. Neurosurg. 103, 38–45 (2005)

    Google Scholar 

  5. Kondziolka, D., Wechsler, L., Goldstein, S., Meltzer, C., Thulborn, K.R., Gebel, J., Jannetta, P., DeCesare, S., Elder, E.M., McGrogan, M., Reitman, M.A., Bynum, L.: Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565–569 (2000)

    Google Scholar 

  6. Nelson, P.T., Kondziolka, D., Wechsler, L., Goldstein, S., Gebel, J., DeCesare, S., Elder, E.M., Zhang, P.J., Jacobs, A., McGrogan, M., Lee, V.M., Trojanowski, J.Q.: Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am. J. Pathol. 160, 1201–1206 (2002)

    Google Scholar 

  7. Jin, K., Wang, X., Xie, L., Mao, X.O., Zhu, W., Wang, Y., Shen, J., Mao, Y., Banwait, S., Greenberg, D.A.: Evidence for stroke-induced neurogenesis in the human brain. Proc. Natl. Acad. Sci. USA 103, 13198–13202 (2006)

    Google Scholar 

  8. Macas, J., Nern, C., Plate, K.H., Momma, S.: Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J. Neurosci. 26, 13114–13119 (2006)

    Google Scholar 

  9. Minger, S.L., Ekonomou, A., Carta, E,M., Chinoy, A., Perry, R.H., Ballard, C.G.: Endogenous neurogenesis in the human brain following cerebral infarction. Regen. Med. 2, 69–74 (2007)

    Google Scholar 

  10. Pistollato, F., Chen, H.L., Schwartz, P.H., Basso, G., Panchision, D.M.: Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol. Cell. Neurosci. 35, 424–435 (2007)

    Google Scholar 

  11. Kornack, D.R., Rakic, P.: The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc. Natl. Acad. Sci. USA 98, 4752–4757 (2001)

    Google Scholar 

  12. Lledo, P.M., Merkle, F.T., Alvarez-Buylla, A.: Origin and function of olfactory bulb interneuron diversity. Trends Neurosci. 31, 392–400 (2008)

    Google Scholar 

  13. Luskin, M.B.: Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993)

    Google Scholar 

  14. Gould, E., Beylin, A., Tanapat, P., Reeves, A., Shors, T.J.: Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 2, 260–265 (1999)

    Google Scholar 

  15. Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., Hen, R.: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003)

    Google Scholar 

  16. van Praag, H., Kempermann, G., Gage, F.H.: Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270 (1999)

    Google Scholar 

  17. Will, B., Galani, R., Kelche, C., Rosenzweig, M.R.: Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990–2002). Prog. Neurobiol. 72, 167–182 (2004)

    Google Scholar 

  18. Wolf, S.A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., Kempermann, G.: Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol. Psychiatry 60, 1314–1323 (2006)

    Google Scholar 

  19. Kalluri, H.S., Dempsey, R.J.: Growth factors, stem cells, and stroke. Neurosurg. Focus 24, E14 (2008)

    Google Scholar 

  20. Fagel, D.M., Ganat, Y., Silbereis, J., Ebbitt, T., Stewart, W., Zhang, H., Ment, L.R., Vaccarino, F.M.: Cortical neurogenesis enhanced by chronic perinatal hypoxia. Exp. Neurol. 199, 77–91 (2006)

    Google Scholar 

  21. Hayashi, T., Iwai, M., Ikeda, T., Jin, G., Deguchi, K., Nagotani, S., Zhang, H., Sehara, Y., Nagano, I., Shoji, M., Ikenoue, T., Abe, K.: Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res. 1038, 41–49 (2005)

    Google Scholar 

  22. Sharp, F.R., Liu, J., Bernabeu, R.: Neurogenesis following brain ischemia. Brain Res. Dev. Brain Res. 134, 23–30 (2002)

    Google Scholar 

  23. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., Lindvall, O.: Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002)

    Google Scholar 

  24. Kee, N.J., Preston, E., Wojtowicz, J.M.: Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp. Brain Res. 136, 313–320 (2001)

    Google Scholar 

  25. Jin, K., Minami, M., Lan, J.Q., Mao, X.O., Batteur, S., Simon, R.P., Greenberg, D.A.: Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl. Acad. Sci. USA 98, 4710–4715 (2001)

    Google Scholar 

  26. Yagita, Y., Kitagawa, K., Ohtsuki, T., Takasawa, K., Miyata, T., Okano, H., Hori, M., Matsumoto, M.: Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32, 1890–1896 (2001)

    Google Scholar 

  27. Takagi, Y., Nozaki, K., Takahashi, J., Yodoi, J., Ishikawa, M., Hashimoto, N.: Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice. Brain Res. 831, 283–287 (1999)

    Google Scholar 

  28. Liu, J., Solway, K., Messing, R.O., Sharp, F.R.: Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J. Neurosci. 18, 7768–7778 (1998)

    Google Scholar 

  29. Romanko, M.J., Rothstein, R.P., Levison, S.W.: Neural stem cells in the subventricular zone are resilient to hypoxia/ischemia whereas progenitors are vulnerable. J. Cereb. Blood Flow Metab. 24, 814–825 (2004)

    Google Scholar 

  30. Panchision, D.M.: The role of oxygen in regulating neural stem cells in development and disease. J. Cell Physiol. 220, 562–568 (2009)

    Google Scholar 

  31. Burgers, H.F., Schelshorn, D.W., Wagner, W., Kuschinsky, W., Maurer, M.H.: Acute anoxia stimulates proliferation in adult neural stem cells from the rat brain. Exp. Brain Res. 188, 33–43 (2008)

    Google Scholar 

  32. Horie, N., So, K., Moriya, T., Kitagawa, N., Tsutsumi, K., Nagata, I., Shinohara, K.: Effects of oxygen concentration on the proliferation and differentiation of mouse neural stem cells in vitro. Cell. Mol. Neurobiol. 28, 833–845 (2008)

    Google Scholar 

  33. Parent, J.M., Vexler, Z.S., Gong, C., Derugin, N., Ferriero, D.M.: Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813 (2002)

    Google Scholar 

  34. Zhang, C.P., Zhu, L.L., Zhao, T., Zhao, H., Huang, X., Ma, X., Wang, H., Fan, M.: Characteristics of neural stem cells expanded in lowered oxygen and the potential role of hypoxia-inducible factor-1alpha. Neurosignals 15, 259–265 (2006)

    Google Scholar 

  35. Zhang, R.L., Zhang, Z.G., Zhang, L., Chopp, M.: Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105, 33–41 (2001)

    Google Scholar 

  36. Zhao, T., Zhang, C.P., Liu, Z.H., Wu, L.Y., Huang, X., Wu, H.T., Xiong, L., Wang, X., Wang, X.M., Zhu, L.L., Fan, M.: Hypoxia-driven proliferation of embryonic neural stem/progenitor cells—role of hypoxia-inducible transcription factor-1alpha. FEBS J. 275, 1824–1834 (2008)

    Google Scholar 

  37. Belmadani, A., Tran, P.B., Ren, D., Miller, R.J.: Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J. Neurosci. 26, 3182–3191 (2006)

    Google Scholar 

  38. Xu, Q., Wang, S., Jiang, X., Zhao, Y., Gao, M., Zhang, Y., Wang, X., Tano, K., Kanehara, M., Zhang, W., Ishida, T.: Hypoxia-induced astrocytes promote the migration of neural progenitor cells via vascular endothelial factor, stem cell factor, stromal-derived factor-1alpha and monocyte chemoattractant protein-1 upregulation in vitro. Clin. Exp. Pharmacol. Physiol. 34, 624–631 (2007)

    Google Scholar 

  39. Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., Greenberg, D.A.: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950 (2002)

    Google Scholar 

  40. Thored, P., Wood, J., Arvidsson, A., Cammenga, J., Kokaia, Z., Lindvall, O.: Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 38, 3032–3039 (2007)

    Google Scholar 

  41. Zhang, Z.G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., Bruggen, N., Chopp, M.: VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest. 106, 829–838 (2000)

    Google Scholar 

  42. Zhang, Z.G., Zhang, L., Tsang, W., Soltanian-Zadeh, H., Morris, D., Zhang, R., Goussev, A., Powers, C., Yeich, T., Chopp, M.: Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 22, 379–392 (2002)

    Google Scholar 

  43. Teng, H., Zhang, Z.G., Wang, L., Zhang, R.L., Zhang, L., Morris, D., Gregg, S.R., Wu, Z., Jiang, A., Lu, M., Zlokovic, B.V., Chopp, M.: Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J. Cereb. Blood Flow Metab. 28, 764–771 (2008)

    Google Scholar 

  44. Ohab, J.J., Carmichael, S.T.: Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist 14, 369–380 (2008)

    Google Scholar 

  45. Hayashi, T., Noshita, N., Sugawara, T., Chan, P.H.: Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 23, 166–180 (2003)

    Google Scholar 

  46. Craig, C.G., Tropepe, V., Morshead, C.M., Reynolds, B.A., Weiss, S., van der Kooy, D.: In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996)

    Google Scholar 

  47. Kuhn, H.G., Winkler, J., Kempermann, G., Thal, L.J., Gage, F.H.: Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997)

    Google Scholar 

  48. Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S.M., Goderie, S.K., Roysam, B., Temple, S.: Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008)

    Google Scholar 

  49. Zheng, W., Nowakowski, R.S., Vaccarino, F.M.: Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci. 26, 181–196 (2004)

    Google Scholar 

  50. Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., Garcia-Verdugo, J.M., Alvarez-Buylla, A.: Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278 (2008)

    Google Scholar 

  51. Tavazoie, M., Van der Veken, L., Silva-Vargas, V., Louissaint, M., Colonna, L., Zaidi, B., Garcia-Verdugo, J.M., Doetsch, F.: A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008)

    Google Scholar 

  52. Bovetti, S., Hsieh, Y.C., Bovolin, P., Perroteau, I., Kazunori, T., Puche, A.C.: Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J. Neurosci. 27, 5976–5980 (2007)

    Google Scholar 

  53. Burns, T.C., Verfaillie, C.M., Low, W.C.: Stem cells for ischemic brain injury: a critical review. J. Comp. Neurol. 515, 125–144 (2009)

    Google Scholar 

  54. Kelly, S., Bliss, T.M., Shah, A.K., Sun, G.H., Ma, M., Foo, W.C., Masel, J., Yenari, M.A., Weissman, I.L., Uchida, N., Palmer, T., Steinberg, G.K.: Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl. Acad. Sci. USA 101, 11839–11844 (2004)

    Google Scholar 

  55. Song, H., Stevens, C.F., Gage, F.H.: Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002)

    Google Scholar 

  56. Song, H.J., Stevens, C.F., Gage, F.H.: Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat. Neurosci. 5, 438–445 (2002)

    Google Scholar 

  57. Eriksson, C., Bjorklund, A., Wictorin, K.: Neuronal differentiation following transplantation of expanded mouse neurosphere cultures derived from different embryonic forebrain regions. Exp. Neurol. 184, 615–635 (2003)

    Google Scholar 

  58. Herrera, D.G., Garcia-Verdugo, J.M., Alvarez-Buylla, A.: Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann. Neurol. 46, 867–877 (1999)

    Google Scholar 

  59. Winkler, C., Fricker, R.A., Gates, M.A., Olsson, M., Hammang, J.P., Carpenter, M.K., Bjorklund, A.: Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol. Cell Neurosci. 11, 99–116 (1998)

    Google Scholar 

  60. Pluchino, S., Zanotti, L., Rossi, B., Brambilla, E., Ottoboni, L., Salani, G., Martinello, M., Cattalini, A., Bergami, A., Furlan, R., Comi, G., Constantin, G., Martino, G.: Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436, 266–271 (2005)

    Google Scholar 

  61. Yandava, B.D., Billinghurst, L.L., Snyder, E.Y.: “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034 (1999)

    Google Scholar 

  62. Wurmser, A.E., Nakashima, K., Summers, R.G., Toni, N., D’Amour, K.A., Lie, D.C., Gage, F.H.: Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356 (2004)

    Google Scholar 

  63. Locatelli, F., Bersano, A., Ballabio, E., Lanfranconi, S., Papadimitriou, D., Strazzer, S., Bresolin, N., Comi, G.P., Corti, S.: Stem cell therapy in stroke. Cell Mol. Life Sci. 66, 757–772 (2009)

    Google Scholar 

  64. Englund, U., Bjorklund, A., Wictorin, K., Lindvall, O., Kokaia, M.: Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc. Natl. Acad Sci. USA 99, 17089–17094 (2002)

    Google Scholar 

  65. Park, K.I., Teng, Y.D., Snyder, E.Y.: The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol. 20, 1111–1117 (2002)

    Google Scholar 

  66. Conti, L., Reitano, E., Cattaneo, E.: Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol. 16, 143–154 (2006)

    Google Scholar 

  67. Ourednik, J., Ourednik, V., Lynch, W.P., Schachner, M., Snyder, E.Y.: Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol. 20, 1103–1110 (2002)

    Google Scholar 

  68. Lee, J.P., Jeyakumar, M., Gonzalez, R., Takahashi, H., Lee, P.J., Baek, R.C., Clark, D., Rose, H., Fu, G., Clarke, J., McKercher, S., Meerloo, J., Muller, F.J., Park, K.I., Butters, T.D., Dwek, R.A., Schwartz, P., Tong, G., Wenger, D., Lipton, S.A., Seyfried, T.N., Platt, F.M., Snyder, E.Y.: Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat. Med. 13, 439–447 (2007)

    Google Scholar 

  69. Brundin, P., Karlsson, J., Emgard, M., Schierle, G.S., Hansson, O., Petersen, A., Castilho, R.F.: Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant. 9, 179–195 (2000)

    Google Scholar 

  70. Sortwell, C.E., Pitzer, M.R., Collier, T.J.: Time course of apoptotic cell death within mesencephalic cell suspension grafts: implications for improving grafted dopamine neuron survival. Exp. Neurol. 165, 268–277 (2000)

    Google Scholar 

  71. Zawada, W.M., Zastrow, D.J., Clarkson, E.D., Adams, F.S., Bell, K.P., Freed, C.R.: Growth factors improve immediate survival of embryonic dopamine neurons after transplantation into rats. Brain Res. 786, 96–103 (1998)

    Google Scholar 

  72. Takahashi, K., Yasuhara, T., Shingo, T., Muraoka, K., Kameda, M., Takeuchi, A., Yano, A., Kurozumi, K., Agari, T., Miyoshi, Y., Kinugasa, K., Date, I.: Embryonic neural stem cells transplanted in middle cerebral artery occlusion model of rats demonstrated potent therapeutic effects, compared to adult neural stem cells. Brain Res. 1234, 172–182 (2008)

    Google Scholar 

  73. Dihne, M., Bernreuther, C., Hagel, C., Wesche, K.O., Schachner, M.: Embryonic stem cell-derived neuronally committed precursor cells with reduced teratoma formation after transplantation into the lesioned adult mouse brain. Stem Cells 24, 1458–1466 (2006)

    Google Scholar 

  74. Kim, J.B., Sebastiano, V., Wu, G., Arauzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., Meyer, J., Hubner, K., Bernemann, C., Ortmeier, C., Zenke, M., Fleischmann, B.K., Zaehres, H., Scholer, H.R.: Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–419 (2009)

    Google Scholar 

  75. Wianny, F., Bernat, A., Huissoud, C., Marcy, G., Markossian, S., Cortay, V., Giroud, P., Leviel, V., Kennedy, H., Savatier, P., Dehay, C.: Derivation and cloning of a novel rhesus embryonic stem cell line stably expressing tau-green fluorescent protein. Stem Cells 26, 1444–1453 (2008)

    Google Scholar 

  76. Johe, K.K., Hazel, T.G., Muller, T., Dugich-Djordjevic, M.M., McKay, R.D.: Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140 (1996)

    Google Scholar 

  77. Reynolds, B.A., Weiss, S.: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992)

    Google Scholar 

  78. Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A.C., Reynolds, B.A.: Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996)

    Google Scholar 

  79. Richards, L.J., Kilpatrick, T.J., Bartlett, P.F.: De novo generation of neuronal cells from the adult mouse brain. Proc. Natl. Acad. Sci. USA 89, 8591–8595 (1992)

    Google Scholar 

  80. Palmer, T.D., Ray, J., Gage, F.H.: FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci. 6, 474–486 (1995)

    Google Scholar 

  81. Kelly, C.M., Zietlow, R., Dunnett, S.B., Rosser, A.E.: The effects of various concentrations of FGF-2 on the proliferation and neuronal yield of murine embryonic neural precursor cells in vitro. Cell Transplant. 12, 215–223 (2003)

    Google Scholar 

  82. Zhou, F.C., Kelley, M.R., Chiang, Y.H., Young, P.: Three to four-year-old nonpassaged EGF-responsive neural progenitor cells: proliferation, apoptosis, and DNA repair. Exp. Neurol. 164, 200–208 (2000)

    Google Scholar 

  83. Ray, J., Peterson, D.A., Schinstine, M., Gage, F.H.: Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc. Natl. Acad. Sci. USA 90, 3602–3606 (1993)

    Google Scholar 

  84. Robertson, M.J., Gip, P., Schaffer, D.V.: Neural stem cell engineering: directed differentiation of adult and embryonic stem cells into neurons. Front. Biosci. 13, 21–50 (2008)

    Google Scholar 

  85. Gomes, W.A., Mehler, M.F., Kessler, J.A.: Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev. Biol. 255, 164–177 (2003)

    Google Scholar 

  86. Gritti, A., Bonfanti, L., Doetsch, F., Caille, I., Alvarez-Buylla, A., Lim, D.A., Galli, R., Verdugo, J.M., Herrera, D.G., Vescovi, A.L.: Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J. Neurosci. 22, 437–445 (2002)

    Google Scholar 

  87. Gritti, A., Frolichsthal-Schoeller, P., Galli, R., Parati, E.A., Cova, L., Pagano, S.F., Bjornson, C.R., Vescovi, A.L.: Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J. Neurosci. 19, 3287–3297 (1999)

    Google Scholar 

  88. Whittemore, S.R., Morassutti, D.J., Walters, W.M., Liu, R.H., Magnuson, D.S.: Mitogen and substrate differentially affect the lineage restriction of adult rat subventricular zone neural precursor cell populations. Exp. Cell Res. 252, 75–95 (1999)

    Google Scholar 

  89. Goetz, A.K., Scheffler, B., Chen, H.X., Wang, S., Suslov, O., Xiang, H., Brustle, O., Roper, S.N., Steindler, D.A.: Temporally restricted substrate interactions direct fate and specification of neural precursors derived from embryonic stem cells. Proc. Natl. Acad. Sci. USA 103, 11063–11068 (2006)

    Google Scholar 

  90. Ma, W., Tavakoli, T., Derby, E., Serebryakova, Y., Rao, M.S., Mattson, M.P.: Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev. Biol. 8, 90 (2008)

    Google Scholar 

  91. Flanagan, L.A., Rebaza, L.M., Derzic, S., Schwartz, P.H., Monuki, E.S.: Regulation of human neural precursor cells by laminin and integrins. J. Neurosci. Res. 83, 845–856 (2006)

    Google Scholar 

  92. Tate, M.C., Garcia, A.J., Keselowsky, B.G., Schumm, M.A., Archer, D.R., LaPlaca, M.C.: Specific beta1 integrins mediate adhesion, migration, and differentiation of neural progenitors derived from the embryonic striatum. Mol. Cell Neurosci. 27, 22–31 (2004)

    Google Scholar 

  93. Shetty, A.K., Turner, D.A.: In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J. Neurobiol. 35, 395–425 (1998)

    Google Scholar 

  94. Benoit, B.O., Savarese, T., Joly, M., Engstrom, C.M., Pang, L., Reilly, J., Recht, L.D., Ross, A.H., Quesenberry, P.J.: Neurotrophin channeling of neural progenitor cell differentiation. J. Neurobiol. 46, 265–280 (2001)

    Google Scholar 

  95. Deng, J., Petersen, B.E., Steindler, D.A., Jorgensen, M.L., Laywell, E.D.: Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24, 1054–1064 (2006)

    Google Scholar 

  96. Lee, J., Kuroda, S., Shichinohe, H., Ikeda, J., Seki, T., Hida, K., Tada, M., Sawada, K., Iwasaki, Y.: Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology 23, 169–180 (2003)

    Google Scholar 

  97. Mezey, E., Chandross, K.J.: Bone marrow: a possible alternative source of cells in the adult nervous system. Eur. J. Pharmacol. 405, 297–302 (2000)

    Google Scholar 

  98. Mezey, E., Nagy, A., Szalayova, I., Key, S., Bratincsak, A., Baffi, J., Shahar, T.: Comment on “Failure of bone marrow cells to transdifferentiate into neural cells in vivo”. Science 299, 1184; author reply 1184 (2003)

    Google Scholar 

  99. Garbuzova-Davis, S., Willing, A.E., Zigova, T., Saporta, S., Justen, E.B., Lane, J.C., Hudson, J.E., Chen, N., Davis, C.D., Sanberg, P.R.: Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem Cell Res. 12, 255–270 (2003)

    Google Scholar 

  100. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, II, Thomson, J.A.: Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    Google Scholar 

  101. Kim, J.B., Greber, B., Arauzo-Bravo, M.J., Meyer, J., Park, K.I., Zaehres, H., Scholer, H.R.: Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649–653 (2009)

    Google Scholar 

  102. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., Jaenisch, R.: Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009)

    Google Scholar 

  103. Singec, I., Knoth, R., Meyer, R.P., Maciaczyk, J., Volk, B., Nikkhah, G., Frotscher, M., Snyder, E.Y.: Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat. Methods 3, 801–806 (2006)

    Google Scholar 

  104. Richardson, R.M., Fillmore, H.L., Holloway, K.L., Broaddus, W.C.: Progress in cerebral transplantation of expanded neuronal stem cells. J. Neurosurg. 100, 659–671 (2004)

    Google Scholar 

  105. Suslov, O.N., Kukekov, V.G., Ignatova, T.N., Steindler, D.A.: Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc. Natl. Acad. Sci. USA 99, 14506–14511 (2002)

    Google Scholar 

  106. Jensen, J.B., Parmar, M.: Strengths and limitations of the neurosphere culture system. Mol. Neurobiol. 34, 153–161 (2006)

    Google Scholar 

  107. Svendsen, C.N., Caldwell, M.A., Shen, J., ter Borg, M.G., Rosser, A.E., Tyers, P., Karmiol, S., Dunnett, S.B.: Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol. 148, 135–146 (1997)

    Google Scholar 

  108. Sun, Y.E., Martinowich, K., Ge, W.: Making and repairing the mammalian brain—signaling toward neurogenesis and gliogenesis. Semin. Cell Dev. Biol. 14, 161–168 (2003)

    Google Scholar 

  109. Cukierman, E., Pankov, R., Stevens, D.R., Yamada, K.M.: Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001)

    Google Scholar 

  110. Cukierman, E., Pankov, R., Yamada, K.M.: Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–639 (2002)

    Google Scholar 

  111. Pedersen, J.A., Swartz, M.A.: Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005)

    Google Scholar 

  112. Reilly, G.C., Engler, A.J.: Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43, 55–62 (2010)

    Google Scholar 

  113. Nat, R., Nilbratt, M., Narkilahti, S., Winblad, B., Hovatta, O., Nordberg, A.: Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. Glia 55, 385–399 (2007)

    Google Scholar 

  114. Potter, W., Kalil. R.E., Kao, W.J.: Biomimetic material systems for neural progenitor cell-based therapy. Front. Biosci. 13, 806–821 (2008)

    Google Scholar 

  115. Freudenberg, U., Hermann, A., Welzel, P.B., Stirl, K., Schwarz, S.C., Grimmer, M., Zieris, A., Panyanuwat, W., Zschoche, S., Meinhold, D., Storch, A., Werner, C.: A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30, 5049–5060 (2009)

    Google Scholar 

  116. Hynes, S.R., Rauch, M.F., Bertram, J.P., Lavik, E.B.: A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J. Biomed. Mater. Res. A 89, 499–509 (2009)

    Google Scholar 

  117. Mahoney, M.J., Anseth, K.S.: Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27, 2265–2274 (2006)

    Google Scholar 

  118. Teixeira, A.I., Ilkhanizadeh, S., Wigenius, J.A., Duckworth, J.K., Inganas, O., Hermanson, O.: The promotion of neuronal maturation on soft substrates. Biomaterials 30, 4567–4572 (2009)

    Google Scholar 

  119. Li, N., Folch, A.: Integration of topographical and biochemical cues by axons during growth on microfabricated 3-D substrates. Exp. Cell Res. 311, 307–316 (2005)

    Google Scholar 

  120. Ahmed, I., Liu, H.Y., Mamiya, P.C., Ponery, A.S., Babu, A.N., Weik, T., Schindler, M., Meiners, S.: Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro. J. Biomed. Mater. Res. A 76, 851–860 (2006)

    Google Scholar 

  121. Biran, R., Noble, M.D., Tresco, P.A.: Directed nerve outgrowth is enhanced by engineered glial substrates. Exp. Neurol. 184, 141–152 (2003)

    Google Scholar 

  122. Bruder, J.M., Lee, A.P., Hoffman-Kim, D.: Biomimetic materials replicating Schwann cell topography enhance neuronal adhesion and neurite alignment in vitro. J. Biomater. Sci. Polym. Ed. 18, 967–982 (2007)

    Google Scholar 

  123. Oh, J., Recknor, J.B., Recknor, J.C., Mallapragada, S.K., Sakaguchi, D.S.: Soluble factors from neocortical astrocytes enhance neuronal differentiation of neural progenitor cells from adult rat hippocampus on micropatterned polymer substrates. J. Biomed. Mater. Res. A 91, 575–585 (2009)

    Google Scholar 

  124. Takeuchi, S., Ziegler, D., Yoshida, Y., Mabuchi, K., Suzuki, T.: Parylene flexible neural probes integrated with microfluidic channels. Lab on a Chip 5, 519–523 (2005)

    Google Scholar 

  125. Ilkhanizadeh, S., Teixeira, A.I., Hermanson, O.: Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28, 3936–3943 (2007)

    Google Scholar 

  126. Klaver, C.L., Caplan, M.R.: Bioactive surface for neural electrodes: decreasing astrocyte proliferation via transforming growth factor-beta1. J. Biomed. Mater. Res. A 81, 1011–1016 (2007)

    Google Scholar 

  127. Winter, J.O., Cogan, S.F., Rizzo, J.F., 3rd: Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes. J. Biomed. Mater. Res. B Appl. Biomater. 81, 551–563 (2007)

    Google Scholar 

  128. Chen, D., Du, W.B., Liu, Y., Liu, W.S., Kuznetsov, A., Mendez, F.E., Philipson, L.H., Ismagilov, R.F.: The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc. Natl. Acad. Sci. USA 105, 16843–16848 (2008)

    Google Scholar 

  129. Willerth, S.M., Rader, A., Sakiyama-Elbert, S.E.: The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Res. 1, 205–218 (2008)

    Google Scholar 

  130. Jhaveri, S.J., Hynd, M.R., Dowell-Mesfin, N., Turner, J.N., Shain, W., Ober, C.K.: Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. Biomacromolecules 10, 174–183 (2009)

    Google Scholar 

  131. Li, X., Yang, Z., Zhang, A.: The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 30, 4978–4985 (2009)

    Google Scholar 

  132. Nojehdehian, H., Moztarzadeh, F., Baharvand, H., Nazarian, H., Tahriri, M.: Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study. Colloids Surf. B Biointerfaces 73, 23–29 (2009)

    Google Scholar 

  133. Moore, K., Macsween, M., Shoichet, M.: Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng. 12, 267–278 (2006)

    Google Scholar 

  134. Choi, N.W., Cabodi, M., Held, B., Gleghorn, J.P., Bonassar, L.J., Stroock, A.D.: Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908–915 (2007)

    Google Scholar 

  135. Nakaji-Hirabayashi, T., Kato, K., Arima, Y., Iwata, H.: Oriented immobilization of epidermal growth factor onto culture substrates for the selective expansion of neural stem cells. Biomaterials 28, 3517–3529 (2007)

    Google Scholar 

  136. Aizawa, Y., Leipzig, N., Zahir, T., Shoichet, M.: The effect of immobilized platelet derived growth factor AA on neural stem/progenitor cell differentiation on cell-adhesive hydrogels. Biomaterials 29, 4676–4683 (2008)

    Google Scholar 

  137. Ashton, R.S., Banerjee, A., Punyani, S., Schaffer, D.V., Kane, R.S.: Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28, 5518–5525 (2007)

    Google Scholar 

  138. Banerjee, A., Arha, M., Choudhary, S., Ashton, R.S., Bhatia, S.R., Schaffer, D.V., Kane, R.S.: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009)

    Google Scholar 

  139. Brannvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., Forsberg-Nilsson, K.: Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J. Neurosci. Res. 85, 2138–2146 (2007)

    Google Scholar 

  140. Haile, Y., Berski, S., Drager, G., Nobre, A., Stummeyer, K., Gerardy-Schahn, R., Grothe, C.: The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Biomaterials 29, 1880–1891 (2008)

    Google Scholar 

  141. Ma, W., Fitzgerald, W., Liu, Q.Y., O’Shaughnessy, T.J., Maric, D., Lin, H.J., Alkon, D.L., Barker, J.L.: CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp. Neurol. 190, 276–288 (2004)

    Google Scholar 

  142. Ma, W., Tavakoli, T., Chen, S., Maric, D., Liu, J.L., O’Shaughnessy, T.J., Barker, J.L.: Reconstruction of functional cortical-like tissues from neural stem and progenitor cells. Tissue Eng. Part A 14, 1673–1686 (2008)

    Google Scholar 

  143. O’Connor, S.M., Stenger, D.A., Shaffer, K.M., Ma, W.: Survival and neurite outgrowth of rat cortical neurons in three-dimensional agarose and collagen gel matrices. Neurosci. Lett. 304, 189–193 (2001)

    Google Scholar 

  144. O’Connor, S.M., Stenger, D.A., Shaffer, K.M., Maric, D., Barker, J.L., Ma, W.: Primary neural precursor cell expansion, differentiation and cytosolic Ca(2+) response in three-dimensional collagen gel. J. Neurosci. Methods 102, 187–195 (2000)

    Google Scholar 

  145. Ren, Y.J., Zhang, H., Huang, H., Wang, X.M., Zhou, Z.Y., Cui, F.Z., An, Y.H.: In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials 30, 1036–1044 (2009)

    Google Scholar 

  146. Wang, T.W., Spector, M.: Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater. 5, 2371–2384 (2009)

    Google Scholar 

  147. Watanabe, K., Nakamura, M., Okano, H., Toyama, Y.: Establishment of three-dimensional culture of neural stem/progenitor cells in collagen Type-1 gel. Restor. Neurol. Neurosci. 25, 109–117 (2007)

    Google Scholar 

  148. Willerth, S.M., Arendas, K.J., Gottlieb, D.I., Sakiyama-Elbert, S.E.: Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27, 5990–6003 (2006)

    Google Scholar 

  149. Fischer, S.E., Liu, X., Mao, H.Q., Harden, J.L.: Controlling cell adhesion to surfaces via associating bioactive triblock proteins. Biomaterials 28, 3325–3337 (2007)

    Google Scholar 

  150. Silva, G.A., Czeisler, C., Niece, K.L., Beniash, E., Harrington, D.A., Kessler, J.A., Stupp, S.I.: Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004)

    Google Scholar 

  151. Thonhoff, J.R., Lou, D.I., Jordan, P.M., Zhao, X., Wu, P.: Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res. 1187, 42–51 (2008)

    Google Scholar 

  152. Bhang, S.H., Lim, J.S., Choi, C.Y., Kwon, Y.K., Kim, B.S.: The behavior of neural stem cells on biodegradable synthetic polymers. J. Biomater. Sci. Polym. Ed. 18, 223–239 (2007)

    Google Scholar 

  153. Jan, E., Kotov, N.A.: Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett. 7, 1123–1128 (2007)

    Google Scholar 

  154. Levenberg, S., Burdick, J.A., Kraehenbuehl, T., Langer, R.: Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng. 11, 506–512 (2005)

    Google Scholar 

  155. Levenberg, S., Huang, N.F., Lavik, E., Rogers, A.B., Itskovitz-Eldor, J., Langer, R.: Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl. Acad. Sci. USA 100, 12741–12746 (2003)

    Google Scholar 

  156. Mahoney, M.J., Anseth, K.S.: Contrasting effects of collagen and bFGF-2 on neural cell function in degradable synthetic PEG hydrogels. J. Biomed. Mater. Res. A 81, 269–278 (2007)

    Google Scholar 

  157. Namba, R.M., Cole, A.A., Bjugstad, K.B., Mahoney, M.J.: Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension. Acta Biomater. 5, 1884–1897 (2009)

    Google Scholar 

  158. Saha, K., Irwin, E.F., Kozhukh, J., Schaffer, D.V., Healy, K.E.: Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior. J. Biomed. Mater. Res. A 81, 240–249 (2007)

    Google Scholar 

  159. Bible, E., Chau, D.Y., Alexander, M.R., Price, J., Shakesheff, K.M., Modo, M.: The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials 30, 2985–2994 (2009)

    Google Scholar 

  160. Nakajima, M., Ishimuro, T., Kato, K., Ko, I.K., Hirata, I., Arima, Y., Iwata, H.: Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials 28, 1048–1060 (2007)

    Google Scholar 

  161. Gelain, F., Lomander, A., Vescovi, A.L., Zhang, S.: Systematic studies of a self-assembling peptide nanofiber scaffold with other scaffolds. J. Nanosci. Nanotechnol. 7, 424–434 (2007)

    Google Scholar 

  162. Kearns, S.M., Laywell, E.D., Kukekov, V.K., Steindler, D.A.: Extracellular matrix effects on neurosphere cell motility. Exp. Neurol. 182, 240–244 (2003)

    Google Scholar 

  163. Singec, I., Quiñones-Hinojosa, A.: Neurospheres. In: Gage FH, Kempermann G, Song H (eds.) Adult Neurogenesis. Cold Spring Harbor Press, Cold Spring Harbor, NY (2008)

    Google Scholar 

  164. Takezawa, T., Mori, Y., Yoshizato, K.: Cell culture on a thermo-responsive polymer surface. Biotechnology (N Y) 8, 854–856 (1990)

    Google Scholar 

  165. Bohanon, T., Elender, G., Knoll, W., Koberle, P., Lee, J.S., Offenhausser, A., Ringsdorf, H., Sackmann, E., Simon, J., Tovar, G., Winnik, F.M.: Neural cell pattern formation on glass and oxidized silicon surfaces modified with poly(N-isopropylacrylamide). J. Biomater. Sci. Polym. Ed. 8, 19–39 (1996)

    Google Scholar 

  166. Chen, R.R., Silva, E.A., Yuen, W.W., Mooney, D.J.: Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res. 24, 258–264 (2007)

    Google Scholar 

  167. Oppegard, S.C., Nam, K.H., Carr, J.R., Skaalure, S.C., Eddington, D.T.: Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS One 4, e6891 (2009)

    Google Scholar 

  168. Riquelme, P.A., Drapeau, E., Doetsch, F.: Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 123–137 (2008)

    Google Scholar 

  169. Scheffler, B., Edenhofer, F., Brustle, O.: Merging fields: stem cells in neurogenesis, transplantation, and disease modeling. Brain Pathol. 16, 155–168 (2006)

    Google Scholar 

  170. Alvarez-Buylla. A., Lim, D.A.: For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004)

    Google Scholar 

  171. Spradling, A., Drummond-Barbosa, D., Kai, T.: Stem cells find their niche. Nature 414, 98–104 (2001)

    Google Scholar 

  172. Lathia, J.D., Patton, B., Eckley, D.M., Magnus, T., Mughal, M.R., Sasaki, T., Caldwell, M.A., Rao, M.S., Mattson, M.P., ffrench-Constant, C.: Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. J. Comp. Neurol. 505, 630–643 (2007)

    Google Scholar 

  173. Hagg, T.: Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci. 28, 589–595 (2005)

    Google Scholar 

  174. Lathia, J.D., Rao, M.S., Mattson, M.P., Ffrench-Constant, C.: The microenvironment of the embryonic neural stem cell: lessons from adult niches? Dev. Dyn. 236, 3267–3282 (2007)

    Google Scholar 

  175. Parent, J.M., Yu, T.W., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S., Lowenstein, D.H.: Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738 (1997)

    Google Scholar 

  176. Gould, E., Tanapat, P.: Stress and hippocampal neurogenesis. Biol. Psychiatry 46, 1472–1479 (1999)

    Google Scholar 

  177. Little, L., Healy, K.E., Schaffer, D.: Engineering biomaterials for synthetic neural stem cell microenvironments. Chem. Rev. 108, 1787–1796 (2008)

    Google Scholar 

  178. Hoge, R.D., Pike, G.B.: Oxidative metabolism and the detection of neuronal activation via imaging. J. Chem. Neuroanat. 22, 43–52 (2001)

    Google Scholar 

  179. Silver, I., Erecinska, M.: Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv. Exp. Med. Biol. 454, 7–16 (1998)

    Google Scholar 

  180. Morrison, S.J., Csete, M., Groves, A.K., Melega, W., Wold, B., Anderson, D.J.: Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 20, 7370–7376 (2000)

    Google Scholar 

  181. Storch, A., Paul, G., Csete, M., Boehm, B.O., Carvey, P.M., Kupsch, A., Schwarz, J.: Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp. Neurol. 170, 317–325 (2001)

    Google Scholar 

  182. Studer, L., Csete, M., Lee, S.H., Kabbani, N., Walikonis, J., Wold, B., McKay, R.: Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20, 7377–7383 (2000)

    Google Scholar 

  183. Zhou, L., Del Villar, K., Dong, Z., Miller, C.A.: Neurogenesis response to hypoxia-induced cell death: MAP kinase signal transduction mechanisms. Brain Res. 1021, 8–19 (2004)

    Google Scholar 

  184. Ljungkvist, A.S., Bussink, J., Kaanders, J.H., van der Kogel, A.J.: Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat. Res. 167, 127–145 (2007)

    Google Scholar 

  185. Gustafsson, M.V., Zheng, X., Pereira, T., Gradin, K., Jin, S., Lundkvist, J., Ruas, J.L., Poellinger, L., Lendahl, U., Bondesson, M.: Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005)

    Google Scholar 

  186. Chen, H.L., Pistollato, F., Hoeppner, D.J., Ni, H.T., McKay, R.D., Panchision, D.M.: Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 25, 2291–2301 (2007)

    Google Scholar 

  187. Zhu, L.L., Wu, L.Y., Yew, D.T., Fan, M.: Effects of hypoxia on the proliferation and differentiation of NSCs. Mol. Neurobiol. 31, 231–242 (2005)

    Google Scholar 

  188. Milosevic, J., Maisel, M., Wegner, F., Leuchtenberger, J., Wenger, R.H., Gerlach, M., Storch, A., Schwarz, J.: Lack of hypoxia-inducible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J. Neurosci. 27, 412–421 (2007)

    Google Scholar 

  189. Bergeron, M., Yu, A.Y., Solway, K.E., Semenza, G.L., Sharp, F.R.: Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur. J. Neurosci. 11, 4159–4170 (1999)

    Google Scholar 

  190. Bernaudin, M., Tang, Y., Reilly, M., Petit, E., Sharp, F.R.: Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J. Biol. Chem. 277, 39728–39738 (2002)

    Google Scholar 

  191. Sakanaka, M., Wen, T.C., Matsuda, S., Masuda, S., Morishita, E., Nagao, M., Sasaki, R.: In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. USA 95, 4635–4640 (1998)

    Google Scholar 

  192. Junk, A.K., Mammis, A., Savitz, S.I., Singh, M., Roth, S., Malhotra, S., Rosenbaum, P.S., Cerami, A., Brines, M., Rosenbaum, D.M.: Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 99, 10659–10664 (2002)

    Google Scholar 

  193. Greenberg, D.A., Jin, K.: From angiogenesis to neuropathology. Nature 438, 954–959 (2005)

    Google Scholar 

  194. Chavez, J.C., LaManna, J.C.: Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J. Neurosci. 22, 8922–8931 (2002)

    Google Scholar 

  195. Jacques, T.S., Relvas, J.B., Nishimura, S., Pytela, R., Edwards, G.M., Streuli, C.H., ffrench-Constant, C.: Neural precursor cell chain migration and division are regulated through different beta1 integrins. Development 125, 3167–3177 (1998)

    Google Scholar 

  196. Lee, S.R., Kim, H.Y., Rogowska, J., Zhao, B.Q., Bhide, P., Parent, J.M., Lo, E.H.: Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J. Neurosci. 26, 3491–3495 (2006)

    Google Scholar 

  197. Wang, L., Zhang, Z.G., Zhang, R.L., Gregg, S.R., Hozeska-Solgot, A., LeTourneau, Y., Wang, Y., Chopp, M.: Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J. Neurosci. 26, 5996–6003 (2006)

    Google Scholar 

  198. Belvindrah, R., Hankel, S., Walker, J., Patton, B.L., Muller, U.: Beta1 integrins control the formation of cell chains in the adult rostral migratory stream. J. Neurosci. 27, 2704–2717 (2007)

    Google Scholar 

  199. Conover, J.C., Doetsch, F., Garcia-Verdugo, J.M., Gale, N.W., Yancopoulos, G.D., Alvarez-Buylla, A.: Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci. 3, 1091–1097 (2000)

    Google Scholar 

  200. Andsberg, G., Kokaia, Z., Klein, R.L., Muzyczka, N., Lindvall, O., Mandel, R.J.: Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats. Neurobiol. Dis. 9, 187–204 (2002)

    Google Scholar 

  201. Lippoldt, A., Reichel, A., Moenning, U.: Progress in the identification of stroke-related genes: emerging new possibilities to develop concepts in stroke therapy. CNS Drugs 19, 821–832 (2005)

    Google Scholar 

  202. Naylor, M., Bowen, K.K., Sailor, K.A., Dempsey, R.J., Vemuganti, R.: Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem. Int. 47, 565–572 (2005)

    Google Scholar 

  203. Yan, Y.P., Sailor, K.A., Lang, B.T., Park, S.W., Vemuganti, R., Dempsey, R.J.: Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 27, 1213–1224 (2007)

    Google Scholar 

  204. Iihara, K., Sasahara, M., Hashimoto, N., Hazama, F.: Induction of platelet-derived growth factor beta-receptor in focal ischemia of rat brain. J. Cereb. Blood Flow Metab. 16, 941–949 (1996)

    Google Scholar 

  205. Renner, O., Tsimpas, A., Kostin, S., Valable, S., Petit, E., Schaper, W., Marti, H.H.: Time- and cell type-specific induction of platelet-derived growth factor receptor-beta during cerebral ischemia. Brain Res. Mol. Brain Res. 113, 44–51 (2003)

    Google Scholar 

  206. Acosta, M.A., Ymele-Leki, P., Kostov, Y.V., Leach, J.B.: Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds. Biomaterials 30, 3068–3074 (2009)

    Google Scholar 

  207. Alexandrova, M.L., Bochev, P.G.: Oxidative stress during the chronic phase after stroke. Free Radic. Biol. Med. 39, 297–316 (2005)

    Google Scholar 

  208. Tsatmali, M., Walcott, E.C., Makarenkova, H., Crossin, K.L.: Reactive oxygen species modulate the differentiation of neurons in clonal cortical cultures. Mol. Cell Neurosci. 33, 345–357 (2006)

    Google Scholar 

  209. Smith, J., Ladi, E., Mayer-Proschel, M., Noble, M.: Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc. Natl. Acad. Sci. USA 97, 10032–10037 (2000)

    Google Scholar 

  210. Lampe, K.J., Namba, R.M., Silverman, T.R., Bjugstad, K.B., Mahoney, M.J.: Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells. Biotechnol. Bioeng. 103, 1214–1223 (2009)

    Google Scholar 

  211. Nakaji-Hirabayashi, T., Kato, K., Iwata, H.: Self-assembling chimeric protein for the construction of biodegradable hydrogels capable of interaction with integrins expressed on neural stem/progenitor cells. Biomacromolecules 9, 1411–1416 (2008)

    Google Scholar 

  212. Leipzig, N.D., Shoichet, M.S.: The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30, 6867–6878 (2009)

    Google Scholar 

  213. Recknor, J.B., Sakaguchi, D.S., Mallapragada, S.K.: Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27, 4098–4108 (2006)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from NIH-NINDS (R01 NS065205; JBL), the Henry Luce Foundation (JBL), the Maryland Stem Cell Research Fund (EMP), March of Dimes Basil O’Connor Starter Scholar Award (EMP) and NIH-NIDA (R01 MH018826; EMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennie B. Leach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leach, J.B., Powell, E.M. (2010). Understanding Hypoxic Environments: Biomaterials Approaches to Neural Stabilization and Regeneration after Ischemia. In: Roy, K. (eds) Biomaterials as Stem Cell Niche. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_11

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13892-8

  • Online ISBN: 978-3-642-13893-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics