Skip to main content

Role of Lymphoid Structure in Skin Immunity

  • Chapter
  • First Online:
Inducible Lymphoid Organs

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 426))

Abstract

The skin is the outermost organ of the body and is exposed to many kinds of external pathogens. To manage this, the skin contains multiple types of immune cells. To achieve sufficient induction of cutaneous adaptive immune responses, the antigen presentation/recognition in the skin is an essential process. Recent studies have expanded our knowledge of how T cells survey their cognate antigens in the skin. In addition, the formation of a lymphoid cluster, named inducible skin-associated lymphoid tissue (iSALT), has been reported during skin inflammation. Although iSALT may not be classified as a typical tertiary lymphoid organ, it provides specific antigen presentation sites in the skin. In this article, we provide an overview of the antigen presentation mechanism in the skin, with a focus on the development of iSALT and its function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCs:

Antigen-presenting cells

cDCs:

Conventional dendritic cells

CHS:

Contact hypersensitivity

DCs:

Dendritic cells

FRC:

Follicular reticular cell

iSALT:

Inducible skin-associated lymphoid tissue

LCs:

Langerhans cells

LNs:

Lymph nodes

MALT:

Mucosa-associated lymphoid tissue

PCVs:

Post-capillary venules

pDCs:

Plasmacytoid DCs

PVMs:

Perivascular macrophages

SALT:

Skin-associated lymphoid tissue

SLO:

Secondary lymphoid organs

TLO:

Tertiary lymphoid organ

Tregs:

Regulatory T cells

TRM:

Resident memory T cells

References

  • Abtin A et al (2014) Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol 15(1):45

    CAS  PubMed  Google Scholar 

  • Ansel J et al (1990) Cytokine modulation of keratinocyte cytokines. J Invest Dermatol 94(6):s101–s107

    Google Scholar 

  • Ariotti S et al (2014) T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissue-wide pathogen alert. Science 346(6205):101–105

    CAS  PubMed  Google Scholar 

  • Arps DP, Patel RM (2013) Lupus profundus (panniculitis): a potential mimic of subcutaneous panniculitis-like T-cell lymphoma. Arch Pathol Lab Med 137(9):1211–1215

    PubMed  Google Scholar 

  • Bennett CL et al (2011) Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin. Blood 117(26):7063–7069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett CL et al (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169(4):569–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boissonnas A et al (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandtzaeg P et al (1999) Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol Today 20(3):141–151

    CAS  PubMed  Google Scholar 

  • Brinkman CC et al (2013) Peripheral tissue homing receptor control of naive, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues. Front Immunol 4:241

    PubMed  PubMed Central  Google Scholar 

  • Bromley SK et al (2005) Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 6(9):895–901

    CAS  PubMed  Google Scholar 

  • Bursch LS et al (2007) Identification of a novel population of Langerin + dendritic cells. J Exp Med 204(13):3147–3156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RA et al (2006) The vast majority of CLA + T cells are resident in normal skin. J Immunol 176(7):4431–4439

    CAS  PubMed  Google Scholar 

  • Colbeck EJ et al (2017) Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front Immunol 8:1830

    PubMed  PubMed Central  Google Scholar 

  • Debes GF et al (2005) Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 6(9):889–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dieu-Nosjean MC et al (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580

    CAS  PubMed  Google Scholar 

  • Dress RJ et al (2018) Homeostatic control of dendritic cell numbers and differentiation. Immunol Cell Biol

    Google Scholar 

  • Dudeck J et al (2017) Mast cells acquire MHCII from dendritic cells during skin inflammation. J Exp Med 214(12):3791–3811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edelson BT et al (2010) Peripheral CD103 + dendritic cells form a unified subset developmentally related to CD8alpha + conventional dendritic cells. J Exp Med 207(4):823–836

    Google Scholar 

  • Egawa G et al (2011) In vivo imaging of T-cell motility in the elicitation phase of contact hypersensitivity using two-photon microscopy. J Invest Dermatol 131(4):977–979

    CAS  PubMed  Google Scholar 

  • Egawa G, Kabashima K (2011) Skin as a peripheral lymphoid organ: revisiting the concept of skin-associated lymphoid tissues. J Invest Dermatol 131(11):2178–2185

    CAS  PubMed  Google Scholar 

  • Egawa G, Kabashima K (2016) Multifactorial skin barrier deficiency and atopic dermatitis: essential topics to prevent the atopic march. J Allergy Clin Immunol 138(2):350–358. e351

    Google Scholar 

  • Egawa G et al (2013) Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3:1932

    PubMed  PubMed Central  Google Scholar 

  • Gaspari AA, Katz SI (1988) Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes. J Immunol 140(9):2956–2963

    CAS  PubMed  Google Scholar 

  • Gebhardt T et al (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10(5):524–530

    CAS  PubMed  Google Scholar 

  • Gebhardt T et al (2011) Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477(7363):216–219

    CAS  PubMed  Google Scholar 

  • Grabbe S, Schwarz T (1998) Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 19(1):37–44

    CAS  PubMed  Google Scholar 

  • Guilliams M et al (2016) Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45(3):669–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata T et al (2002) P-, E-, and L-selectin mediate migration of activated CD8+ T lymphocytes into inflamed skin. J Immunol 169(8):4307–4313

    CAS  PubMed  Google Scholar 

  • Homey B et al (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8(2):157–165

    CAS  PubMed  Google Scholar 

  • Honda T et al (2010) Compensatory role of Langerhans cells and langerin-positive dermal dendritic cells in the sensitization phase of murine contact hypersensitivity. J Allergy Clin Immunol 125(5):1154–1156 e1152

    Google Scholar 

  • Honda T et al (2014) Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40(2):235–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honda T, Kabashima K (2016) Novel concept of iSALT (inducible skin-associated lymphoid tissue) in the elicitation of allergic contact dermatitis. Proc Jpn Acad Ser B Phys Biol Sci 92(1):20–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima N, Iwasaki A (2014) T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346(6205):93–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X et al (2012) Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483(7388):227–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabashima K et al (2019) The immunological anatomy of the skin. Nat Rev Immunol 19(1):19–30

    CAS  PubMed  Google Scholar 

  • Kashem SW et al (2017) Antigen-presenting cells in the skin. Annu Rev Immunol 35:469–499

    CAS  PubMed  Google Scholar 

  • Kawakami N et al (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med 201(11):1805–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BS et al (2009) Keratinocytes function as accessory cells for presentation of endogenous antigen expressed in the epidermis. J Invest Dermatol 129(12):2805–2817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TG et al (2014) Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis. J Invest Dermatol 134(5):1462–1465

    CAS  PubMed  Google Scholar 

  • Kish DD et al (2011) Hapten application to the skin induces an inflammatory program directing hapten-primed effector CD8 T cell interaction with hapten-presenting endothelial cells. J Immunol 186(4):2117–2126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kissenpfennig A et al (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22(5):643–654

    CAS  PubMed  Google Scholar 

  • Kogame T et al (2017) Possible inducible skin-associated lymphoid tissue (iSALT)-like structures with CXCL13(+) fibroblast-like cells in secondary syphilis. Br J Dermatol 177(6):1737–1739

    CAS  PubMed  Google Scholar 

  • Krummel MF et al (1999) Differential coupling of second signals for cytotoxicity and proliferation in CD8+ T cell effectors: amplification of the lytic potential by B7. J Immunol 163(6):2999–3006

    CAS  PubMed  Google Scholar 

  • Kung IT et al (1984) Kimura’s disease: a clinico-pathological study of 21 cases and its distinction from angiolymphoid hyperplasia with eosinophilia. Pathology 16(1):39–44

    CAS  PubMed  Google Scholar 

  • Ladanyi A et al (2007) Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 56(9):1459–1469

    PubMed  Google Scholar 

  • Leyva-Castillo JM et al (2013) TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers atopic march in mice. J Invest Dermatol 133(1):154–163

    CAS  PubMed  Google Scholar 

  • Lowe PM et al (1995) The endothelium in psoriasis. Br J Dermatol 132(4):497–505

    CAS  PubMed  Google Scholar 

  • Mackay CR et al (1988) Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J Exp Med 167(6):1755–1765

    CAS  PubMed  Google Scholar 

  • Mackay CR et al (1990) Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 171(3):801–817

    CAS  PubMed  Google Scholar 

  • Mackay LK et al (2012) Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci USA 109(18):7037–7042

    CAS  PubMed  Google Scholar 

  • Martinet L et al (2012) High endothelial venules (HEVs) in human melanoma lesions: Major gateways for tumor-infiltrating lymphocytes. Oncoimmunology 1(6):829–839

    PubMed  PubMed Central  Google Scholar 

  • Masopust D et al (2010) Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207(3):553–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masopust D, Schenkel JM (2013) The integration of T cell migration, differentiation and function. Nat Rev Immunol 13(5):309–320

    CAS  PubMed  Google Scholar 

  • Matheu MP et al (2008) Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 29(4):602–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meephansan J et al (2013) Expression of IL-33 in the epidermis: the mechanism of induction by IL-17. J Dermatol Sci 71(2):107–114

    CAS  PubMed  Google Scholar 

  • Miller MJ et al (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574):1869–1873

    CAS  PubMed  Google Scholar 

  • Mitsui H et al (2012) Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J Invest Dermatol 132(6):1615–1626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake K et al (2017) Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc Natl Acad Sci U S A 114(5):1111–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mora JR et al (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8(9):685–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyron-Quiroz JE et al (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10(9):927–934

    CAS  PubMed  Google Scholar 

  • Mrass P et al (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203(12):2749–2761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller SN et al (2014) Tissue-resident T cells: dynamic players in skin immunity. Front Immunol 5:332

    PubMed  PubMed Central  Google Scholar 

  • Muller AJ et al (2012) CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37(1):147–157

    CAS  PubMed  Google Scholar 

  • Munoz MA et al (2014) T cell migration in intact lymph nodes in vivo. Curr Opin Cell Biol 30:17–24

    CAS  PubMed  Google Scholar 

  • Nakajima S et al (2012) Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol 129(4):1048–1055. e1046

    Google Scholar 

  • Natsuaki Y et al (2014) Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat Immunol 15(11):1064–1069

    CAS  PubMed  Google Scholar 

  • Neyt K et al (2012) Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 33(6):297–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng LG et al (2011) Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. J Invest Dermatol 131(10):2058–2068

    CAS  PubMed  Google Scholar 

  • Okada T et al (2016) In vivo multiphoton imaging of immune cell dynamics. Pflugers Arch 468(11–12):1793–1801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ono S et al (2018) Requirement of MHC class I on radioresistant cells for granzyme B expression from CD8(+) T cells in murine contact hypersensitivity. J Dermatol Sci

    Google Scholar 

  • Pitzalis C et al (2014) Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 14(7):447–462

    CAS  PubMed  Google Scholar 

  • Randolph GJ (2001) Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Seminars in immunology. Elsevier

    Google Scholar 

  • Reiss Y et al (2001) CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 194(10):1541–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenfeld MR et al (1981) Induction of lymphocyte differentiation by epidermal cultures. J Invest Dermatol 77(2):221–224

    CAS  PubMed  Google Scholar 

  • Sawada YH, T, Hanakawa S, Nakamizo S, Murata T, Ueharaguchi-Tanada Y, Ono S, Amano W, Nakajima S, Egawa G, Tanizaki H, Otsuka A, Kitoh A, Dainichi T, Ogawa N, Kobayashi Y, Yokomizo T, Arita M, Nakamura M, Miyachi Y, Kabashima K (2015) Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses. J Exp Med (in press)

    Google Scholar 

  • Schenkel JM et al (2014) T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346(6205):98–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlitzer A et al (2015) Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Seminars in Cell and Developmental Biology. Elsevier

    Google Scholar 

  • Shin H, Iwasaki A (2013) Tissue-resident memory T cells. Immunol Rev 255(1):165–181

    PubMed  PubMed Central  Google Scholar 

  • Sigmundsdottir H et al (2007) DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol 8(3):285–293

    CAS  PubMed  Google Scholar 

  • Soler D et al (2003) CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking. Blood 101(5):1677–1682

    CAS  PubMed  Google Scholar 

  • Stingl G et al (1978) Immunologic functions of Ia-bearing epidermal Langerhans cells. J Immunol 121(5):2005–2013

    CAS  PubMed  Google Scholar 

  • Streilein JW (1978) Lymphocyte traffic, T-cell malignancies and the skin. J Invest Dermatol 71(3):167–171

    CAS  PubMed  Google Scholar 

  • Streilein JW (1983) Skin-associated lymphoid tissues (SALT): origins and functions. J Invest Dermatol 80(Suppl):12s–16s

    PubMed  Google Scholar 

  • Streilein JW (1985) Circuits and signals of the skin-associated lymphoid tissues (SALT). J Invest Dermatol 85(1 Suppl):10s–13s

    CAS  PubMed  Google Scholar 

  • Tietz W et al (1998) CD4+ T cells migrate into inflamed skin only if they express ligands for E- and P-selectin. J Immunol 161(2):963–970

    CAS  PubMed  Google Scholar 

  • Toews GB et al (1980) Langerhans cells: sentinels of skin associated lymphoid tissue. J Invest Dermatol 75(1):78–82

    CAS  PubMed  Google Scholar 

  • Tomura M et al (2010) Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J Clin Investig 120(3):883–893

    CAS  PubMed  Google Scholar 

  • Wakim LM et al (2010) Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci USA 107(42):17872–17879

    CAS  PubMed  Google Scholar 

  • Wang L et al (2008) Langerin expressing cells promote skin immune responses under defined conditions. J Immunol 180(7):4722–4727

    CAS  PubMed  Google Scholar 

  • Weninger W et al (2014) Leukocyte migration in the interstitial space of non-lymphoid organs. Nat Rev Immunol 14(4):232–246

    CAS  PubMed  Google Scholar 

  • Wu T et al (2014) Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 95(2):215–224

    PubMed  PubMed Central  Google Scholar 

  • Zaba LC et al (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204(13):3183–3194

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyohei Egawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egawa, G., Kabashima, K. (2020). Role of Lymphoid Structure in Skin Immunity. In: Kabashima, K., Egawa, G. (eds) Inducible Lymphoid Organs. Current Topics in Microbiology and Immunology, vol 426. Springer, Cham. https://doi.org/10.1007/82_2020_206

Download citation

Publish with us

Policies and ethics