Skip to main content

The Mechanism of T-DNA Integration: Some Major Unresolved Questions

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

The mechanism of T-DNA integration into plant genomes during Agrobacterium-mediated genetic transformation is still not understood. As genetic transformation of plants via Agrobacterium has become a routine practice among plant biologists, understanding T-DNA integration remains important for several reasons. First, T-DNA is the final step in one of the unique cases of inter-kingdom horizontal gene transfer in nature. Second, understanding T-DNA integration is important for biotechnological applications. For example, better knowledge of this process may help develop methods to transform species that are currently not susceptible to Agrobacterium-mediated transformation. In addition, regulatory agencies usually require “clean” and “precise” transgenic insertion events, whereas transgenic insertions are commonly complex unpredictable structures. Furthermore, whereas T-DNA integration under natural conditions occurs randomly, technology to direct T-DNA to specific sites in the genome is highly desired. A better understanding of T-DNA integration may help develop methods to achieve more desirable results. Finally, gene targeting methods that require a foreign DNA template for precise DNA modifications in plants often utilize Agrobacterium to deliver the DNA template. Better understanding of the fate of T-DNA in the plant nucleus may help utilize T-DNA for more efficient gene targeting. For introducing gene targeting reagents, efficient delivery of T-DNA without ectopic integration would be useful. The following review summarizes current knowledge related to T-DNA integration. Five major open questions related to T-DNA integration are being presented. Finally, different models for T-DNA integration are being discussed, and a revised model is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Arish A, Frenkiel-Krispin D, Fricke T et al (2004) Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J Biol Chem 279:25359–25363

    CAS  PubMed  Google Scholar 

  • Albright LM, Yanofsky MF, Leroux B et al (1987) Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol 16:1046–1055

    Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    PubMed  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE et al (2016) Advancing crop transformation in the era of genome editing. Plant Cell 2:1510–1520

    Google Scholar 

  • An S, Park S, Jeong DH et al (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anand A, Krichevsky A, Schornack S et al (2007a) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19:1695–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anand A, Vaghchhipawala Z, Ryu CM et al (2007b) Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol Plant Microbe Interact 20:41–52

    CAS  PubMed  Google Scholar 

  • Bako L, Umeda M, Tiburcio AF et al (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci U S A 100:10108–10113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci U S A 94:10723–10728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker RF, Idler KB, Thompson DV et al (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2:335–350

    CAS  PubMed  Google Scholar 

  • Barton KA, Binns AN, Matzke AJ et al (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043

    CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Lee LY, Oltmanns H et al (2008) IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20:2661–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binns AN, Beaupre CE, Dale EM (1995) Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. J Bacteriol 177:4890–4899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bleuyard JY, Gallego ME, White CI (2006) Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA Repair 5:1–12

    CAS  PubMed  Google Scholar 

  • Bravo-Angel AM, Hohn B, Tinland B (1998) The omega sequence of VirD2 is important but not essential for efficient transfer of T-DNA by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 11:57–63

    CAS  PubMed  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B et al (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A et al (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bundock P, Hooykaas PJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci U S A 93:15272–15275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castle LA, Errampalli D, Atherton TL et al (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241:504–514

    CAS  PubMed  Google Scholar 

  • Chen S, Jin W, Wang M et al (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105–113

    CAS  PubMed  Google Scholar 

  • Chilton MD, Drummond M, Merlo D et al (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    CAS  PubMed  Google Scholar 

  • Chilton MD, Que Q (2003) Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133:956–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V et al (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    CAS  PubMed  Google Scholar 

  • Chyi YS, Jorgensen RA, Goldstein D et al (1986) Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol Gen Genet 204:64–69

    CAS  Google Scholar 

  • Citovsky V, DE Vos G, Zambryski P (1988) Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240:501–504

    CAS  PubMed  Google Scholar 

  • Citovsky V, Warnick D, Zambryski P (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci U S A 91:3210–3214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Citovsky V, Zupan J, Warnick D et al (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–1805

    CAS  PubMed  Google Scholar 

  • Clark KA, Krysan PJ (2010) Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J 64:990–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cluster PD, O’Dell M, Metzlaff M et al (1996) Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol Biol 32:1197–1203

    CAS  PubMed  Google Scholar 

  • Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23:394–398

    CAS  PubMed  Google Scholar 

  • Dafny-Yelin M, Levy A, Dafny R et al (2015) Blocking single-stranded transferred DNA conversion to double-stranded intermediates by overexpression of yeast DNA REPLICATION FACTOR A. Plant Physiol 167:153–163

    CAS  PubMed  Google Scholar 

  • Das A (1988) Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein. Proc Natl Acad Sci U S A 85:2909–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Buck S, De Wilde C, Van Montagu M et al (2000) Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol Plant-Microbe Interact 13:658–665

    PubMed  Google Scholar 

  • De Buck S, Podevin N, Nolf J et al (2009) The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J 60:134–145

    PubMed  Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    PubMed  Google Scholar 

  • De Neve M, De Buck S, Jacobs A et al (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29

    PubMed  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H et al (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    CAS  PubMed  Google Scholar 

  • Durrenberger F, Crameri A, Hohn B et al (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci U S A 86:9154–9158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B et al (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52:161–176

    CAS  PubMed  Google Scholar 

  • Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41:464–477

    CAS  PubMed  Google Scholar 

  • Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34:427–440

    CAS  PubMed  Google Scholar 

  • Furner IJ, Higgins ES, Berrington AW (1989) Single-stranded DNA transforms plant protoplasts. Mol Gen Genet 220:65–68

    CAS  Google Scholar 

  • Gallego ME, Bleuyard JY, Daoudal-Cotterell S et al (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35:557–565

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    CAS  PubMed  Google Scholar 

  • Gelvin SB (2017) Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet 51:195–217

    CAS  PubMed  Google Scholar 

  • Ghedira R, De Buck S, Van Ex F et al (2013) T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation. Planta 238:1025–1037

    CAS  PubMed  Google Scholar 

  • Gheysen G, Montagu MV, Zambryski P (1987) Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences. Proc Natl Acad Sci U S A 84:6169–6173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–297

    CAS  PubMed  Google Scholar 

  • Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25:4650–4657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grange W, Duckely M, Husale S et al (2008) VirE2: a unique ssDNA-compacting molecular machine. PLoS Biol 6(2):e44

    PubMed  PubMed Central  Google Scholar 

  • Grevelding C, Fantes V, Kemper E et al (1993) Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs. Plant Mol Biol 23:847–860

    CAS  PubMed  Google Scholar 

  • Hamilton CM, Frary A, Lewis C et al (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 93:9975–9979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Estrella A, Chen ZM, Van Montagu M et al (1988) VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5’ terminus of T-strand molecules. EMBO J 7:4055–4062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Estrella A, Van Montagu M, Wang K (1990) A bacterial peptide acting as a plant nuclear targeting signal: the amino-terminal portion of Agrobacterium VirD2 protein directs a beta-galactosidase fusion protein into tobacco nuclei. Proc Natl Acad Sci U S A 87:9534–9537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ et al (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    CAS  Google Scholar 

  • Howard EA, Zupan JR, Citovsky V et al (1992) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68:109–118

    CAS  PubMed  Google Scholar 

  • Hu T, Metz S, Chay C et al (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019

    CAS  PubMed  Google Scholar 

  • Hwang HH, Mysore KS, Gelvin SB (2006) Transgenic Arabidopsis plants expressing Agrobacterium tumefaciens VirD2 protein are less susceptible to Agrobacterium transformation. Mol Plant Pathol 7:473–484

    CAS  PubMed  Google Scholar 

  • Iwakawa H, Carter BC, Bishop BC, Ogas J, Gelvin SB (2017) Perturbation of H3K27me3-associated epigenetic processes increases Agrobacterium-mediated transformation. Mol Plant Microbe Interact 30:35–44

    CAS  PubMed  Google Scholar 

  • Janssen BJ, Gardner RC (1990) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol 14:61–72

    CAS  PubMed  Google Scholar 

  • Jia Q, Bundock P, Hooykaas PJJ et al (2012) Agrobacterium tumefaciens T-DNA integration and gene targeting in Arabidopsis thaliana non-homologous end-joining mutants. J Bot 2012:1–13

    Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen R, Snyder C, Jones JDG (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207:471–477

    CAS  Google Scholar 

  • Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    CAS  PubMed  Google Scholar 

  • Kim SR, Lee J, Jun SH et al (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773

    CAS  PubMed  Google Scholar 

  • Kleinboelting N, Huep G, Appelhagen I et al (2015) The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair-based insertion mechanism. Mol Plant 8:1651–1664

    CAS  PubMed  Google Scholar 

  • Ko K, Brodzik R, Steplewski Z (2009) Production of antibodies in plants: approaches and perspectives. Curr Top Microbiol Immunol 332:55–78

    CAS  PubMed  Google Scholar 

  • Köhler F, Cardon G, Pöhlman M et al (1989) Enhancement of transformation rates in higher plants by low-dose irradiation: Are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? Plant Mol Biol 12:189–199

    PubMed  Google Scholar 

  • Komarova TV, Baschieri S, Donini M et al (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9:859–876

    CAS  PubMed  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    CAS  PubMed  Google Scholar 

  • Korn M, Schmidpeter J, Dahl M et al (2015) A genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton ump Pma2 required for host penetration. PLoS ONE 10:e0125960

    PubMed  PubMed Central  Google Scholar 

  • Krizkova L, Hrouda M (1998) Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J 16:673–680

    CAS  PubMed  Google Scholar 

  • Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J 31:543–551

    CAS  PubMed  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    CAS  PubMed  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y et al (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98:1871–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok WW, Nester EW, Gordon MP (1985) Unusual plasmid DNA organization in an octopine crown gall tumor. Nucleic Acids Res 13:459–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Li J, Tzfira T et al (2006) Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell. Can J Physiol Pharmacol 84:333–345

    CAS  PubMed  Google Scholar 

  • Lacroix B, Vaidya M, Tzfira T et al (2005) The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24:428–437

    CAS  PubMed  Google Scholar 

  • Lee L-Y, Fang MJ, Kuang LY et al (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4:24–4811-4-24

    PubMed  PubMed Central  Google Scholar 

  • Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77:321–324

    CAS  PubMed  Google Scholar 

  • Li J, Krichevsky A, Vaidya M et al (2005a) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci U S A 102:5733–5738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Vaidya M, White C et al (2005b) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci U S A 102:19231–19236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Pan SQ (2017) Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Sci Adv 3:e1601528

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Rosso MG, Ülker B et al (2006) Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions. Genomics 87:645–652

    CAS  PubMed  Google Scholar 

  • Liang Z, Tzfira T (2013) In vivo formation of double-stranded T-DNA molecules by T-strand priming. Nat Commun 4:2253

    PubMed  Google Scholar 

  • Magori S, Citovsky V (2011) Epigenetic control of Agrobacterium T-DNA integration. Biochim Biophys Acta 1809:388–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    CAS  PubMed  Google Scholar 

  • Martineau B, Voelker TA, Sanders RA (1994) On defining T-DNA. Plant Cell 6:1032–1033

    PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Ito Y, Hosoi T et al (1990) Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet 224:309–316

    CAS  PubMed  Google Scholar 

  • Maximova SN, Dandekar AM, Guiltinan MJ (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol Biol 37:549–559

    CAS  PubMed  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C et al (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mestiri I, Norre F, Gallego ME et al (2014) Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells. Plant J 77:511–520

    CAS  PubMed  Google Scholar 

  • Meza TJ, Stangeland B, Mercy IS et al (2002) Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 30:4556–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller AE, Atkinson RG, Sandoval RB et al (2007) Microhomologies between T-DNA ends and target sites often occur in inverted orientation and may be responsible for the high frequency of T-DNA-associated inversions. Plant Cell Rep 26:617–630

    PubMed  Google Scholar 

  • Muller AE, Kamisugi Y, Gruneberg R et al (1999) Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J Mol Biol 291:29–46

    CAS  PubMed  Google Scholar 

  • Mysore KS, Bassuner B, Deng X et al (1998) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant-Microbe Interact 11:668–683

    CAS  PubMed  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci U S A 97:948–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nacry P, Camilleri C, Courtial B et al (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149:641–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narasimhulu SB, Deng XB, Sarria R et al (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson AD, Lamb JC, Kobrossly PS et al (2011) Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 23:2263–2272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolia A, Ferradini N, Veronesi F et al (2017) An insight into T-DNA integration events in Medicago sativa. Int J Mol Sci 18. https://doi.org/10.3390/ijms18091951

    PubMed Central  Google Scholar 

  • Nishizawa-Yokoi A, Nonaka S, Saika H et al (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Offringa R, de Groot MJ, Haagsman HJ et al (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9:3077–3084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohba T, Yoshioka Y, Machida C et al (1995) DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J 7:157–164

    CAS  PubMed  Google Scholar 

  • Ohmine Y, Satoh Y, Kiyokawa K et al (2016) DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA. BMC Microbiol 16:58-016-0672-0

    Google Scholar 

  • O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928–940

    PubMed  Google Scholar 

  • Ooms G, Bakker A, Molendijk L et al (1982) T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues of Nicotiana tabacum. Cell 30:589–597

    CAS  PubMed  Google Scholar 

  • Otten L, De Greve H, Leemans J, Hain R, Hooykaas P, Schell J (1984) Restoration of virulence of Vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol Gen Genet 195:159–163

    CAS  Google Scholar 

  • Pansegrau W, Schoumacher F, Hohn B et al (1993) Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci U S A 90:11538–11542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Vaghchhipawala Z, Vasudevan B et al (2015) Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Plant J 81:934–946

    CAS  PubMed  Google Scholar 

  • Pitzschke A, Djamei A, Teige M et al (2009) VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci U S A 106(43):18414–18419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ream LW, Gordon MP, Nester EW (1983) Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid. Proc Natl Acad Sci U S A 80:1660–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Relic B, Andjelkovic M, Rossi L et al (1998) Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci U S A 95:9105–9110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rios G, Lossow A, Hertel B et al (2002) Rapid identification of Arabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J 32:243–253

    CAS  PubMed  Google Scholar 

  • Rodenburg KW, de Groot MJ, Schilperoort RA et al (1989) Single-stranded DNA used as an efficient new vehicle for transformation of plant protoplasts. Plant Mol Biol 13:711–719

    CAS  PubMed  Google Scholar 

  • Rolloos M, Dohmen MH, Hooykaas PJ et al (2014) Involvement of Rad52 in T-DNA circle formation during Agrobacterium tumefaciens-mediated transformation of Saccharomyces cerevisiae. Mol Microbiol 91:1240–1251

    CAS  PubMed  Google Scholar 

  • Rolloos M, Hooykaas PJ, van der Zaal BJ (2015) Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast. Sci Rep 5:8345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1993) The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239:345–353

    CAS  PubMed  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 93:126–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosso MG, Li Y, Strizhov N et al (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    CAS  PubMed  Google Scholar 

  • Saika H, Nishizawa-Yokoi A, Toki S (2014) The non-homologous end-joining pathway is involved in stable transformation in rice. Front Plant Sci 5:560

    PubMed  PubMed Central  Google Scholar 

  • Sakalis PA, van Heusden GP, Hooykaas PJ (2014) Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells. Microbiologyopen 3(1):104–117

    CAS  PubMed  Google Scholar 

  • Sallaud C, Gay C, Larmande P et al (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    CAS  PubMed  Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheiffele P, Pansegrau W, Lanka E (1995) Initiation of Agrobacterium tumefaciens T-DNA processing. Purified proteins VirD1 and VirD2 catalyze site- and strand-specific cleavage of superhelical T-border DNA in vitro. J Biol Chem 270:1269–1276

    CAS  PubMed  Google Scholar 

  • Schrammeijer B, den Dulk-Ras A, Vergunst AC et al (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31:860–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrammeijer B, Risseeuw E, Pansegrau W et al (2001) Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11:258–262

    CAS  PubMed  Google Scholar 

  • Sessions A, Burke E, Presting G et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Lee LY, Gelvin SB (2014) Is VIP1 important for Agrobacterium-mediated transformation? Plant J 79:848–860

    CAS  PubMed  Google Scholar 

  • Shiboleth Y, Tzfira T (2012) Agrobacterium-mediated plant genetic transformation. In: Hasegawa PM (ed) Altman A. Plant Biotechnology and Agriculture Academic Press, San Diego, pp 99–116

    Google Scholar 

  • Shilo S, Tripathi P, Melamed-Bessudo C et al (2017) T-DNA-genome junctions form early after infection and are influenced by the chromatin state of the host genome. PLoS Genet 13:e1006875

    PubMed  PubMed Central  Google Scholar 

  • Shurvinton CE, Hodges L, Ream W (1992) A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci U S A 89:11837–11841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer K (2013) T-DNA integration during Agrobacterium-mediated transformation of plants (doctoral dissertation). Retrieved from: https://deepbluelibumichedu/handle/202742/99891?show=full University of Michigan, Horace H. Rackham School of Graduate Studies

  • Singer K, Shiboleth YM, Li J et al (2012) Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. Plant Physiol 160:511–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science 25:671–673

    CAS  PubMed  Google Scholar 

  • Soltani J, van Heusden GPH, Hooykaas PJJ (2010) Agrobacterium-mediated transformation of non-plant organisms. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 650–675

    Google Scholar 

  • Somers DA, Makarevitch I (2004) Transgene integration in plants: poking or patching holes in promiscuous genomes? Curr Opin Biotechnol 15:126–131

    CAS  PubMed  Google Scholar 

  • Song J, Bent AF (2014) Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathog 10(4):e1004030

    PubMed  PubMed Central  Google Scholar 

  • Sparkes IA, Runions J, Kearns A et al (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    CAS  PubMed  Google Scholar 

  • Spielmann A, Simpson R (1986) T-DNA structure in transgenic tobacco plants with multiple independent integration sites. Mol Gen Genet 205:34–41

    CAS  Google Scholar 

  • Suzuki K, Hattori Y, Uraji M et al (2000) Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242:331–336

    CAS  PubMed  Google Scholar 

  • Szabados L, Kovacs I, Oberschall A et al (2002) Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32:233–242

    CAS  PubMed  Google Scholar 

  • Takano M, Egawa H, Ikeda JE et al (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361

    CAS  PubMed  Google Scholar 

  • Tax FE, Vernon DM (2001) T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol 126:1527–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teo CH, Ma L, Kapusi E et al (2011) Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J 68:28–39

    CAS  PubMed  Google Scholar 

  • Thomas CM, Jones JD (2007) Molecular analysis of Agrobacterium T-DNA integration in tomato reveals a role for left border sequence homology in most integration events. Mol Genet Genom 278:411–420

    CAS  Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184

    Google Scholar 

  • Tinland B, Hohn B, Puchta H (1994) Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci U S A 91:8000–8004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tinland B, Koukolikova-Nicola Z, Hall MN et al (1992) The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A 89:7442–7446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tinland B, Schoumacher F, Gloeckler V et al (1995) The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 14:3585–3595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Travella S, Ross SM, Harden J et al (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    CAS  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    CAS  PubMed  Google Scholar 

  • Tzfira T, Frankman LR, Vaidya M et al (2003) Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133:1011–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Li J, Lacroix B et al (2004a) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    CAS  PubMed  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–3607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2004b) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    CAS  PubMed  Google Scholar 

  • Ulker B, Li Y, Rosso MG et al (2008) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol 26:1015–1017

    PubMed  Google Scholar 

  • Vaghchhipawala ZE, Vasudevan B, Lee S et al (2012) Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration. Plant Cell 24:4110–4123

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Attikum H, Bundock P, Overmeer RM et al (2003) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31:4247–4255

    PubMed  PubMed Central  Google Scholar 

  • van Kregten M, de Pater S, Romeijn R et al (2016) T-DNA integration in plants results from polymerase-theta-mediated DNA repair. Nat Plants 2:16164

    PubMed  Google Scholar 

  • van Kregten M, Lindhout BI, Hooykaas PJ et al (2009) Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 consisting of the relaxase domain and a type IV secretion system translocation signal. Mol Plant-Microbe Interact 22:1356–1365

    PubMed  Google Scholar 

  • Van Lijsebettens M, Inze D, Schell J et al (1986) Transformed cell clones as a tool to study T-DNA integration mediated by Agrobacterium tumefaciens. J Mol Biol 188:129–145

    PubMed  Google Scholar 

  • Vergunst AC, Schrammeijer B, den Dulk-Ras A et al (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    CAS  PubMed  Google Scholar 

  • Vergunst AC, van Lier MC, den Dulk-Ras A et al (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102:832–837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Virts EL, Gelvin SB (1985) Analysis of transfer of tumor-inducing plasmids from Agrobacterium tumefaciens to Petunia protoplasts. J Bacteriol 162:1030–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel AM, Das A (1992) Mutational analysis of Agrobacterium tumefaciens VirD2: tyrosine 29 is essential for endonuclease activity. J Bacteriol 174:303–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xu X (2017) Microhomology-mediated end joining: new players join the team. Cell Biosci 7:6-017-0136-8. eCollection 2017

    Google Scholar 

  • Wang K, Herrera-Estrella L, Van Montagu M et al (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455–462

    CAS  PubMed  Google Scholar 

  • Wang K, Stachel SE, Timmerman B et al (1987) Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235:587–591

    CAS  PubMed  Google Scholar 

  • Wang L, Lacroix B, Guo J et al (2017) The Agrobacterium VirE2 effector interacts with multiple members of the Arabidopsis VIP1 protein family. Mol Plant Pathol 19:1172–1183

    PubMed  PubMed Central  Google Scholar 

  • Ward ER, Barnes WM (1988) VirD2 protein of Agrobacterium tumefaciens is very tightly linked to the 5′ end of T-strand DNA. Science 242:927–930

    CAS  Google Scholar 

  • Wenck A, Czako M, Kanevski I et al (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34:913–922

    CAS  PubMed  Google Scholar 

  • Windels P, De Buck S, Depicker A (2010) Patterns of T-DNA integration into the host genome. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, NY, pp 441–481

    Google Scholar 

  • Windels P, De Buck S, Van Bockstaele E et al (2003) T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 133:2061–2068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav NS, Vanderleyden J, Bennett DR et al (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci U S A 79:6322–6326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanofsky MF, Porter SG, Young C et al (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471–477

    CAS  PubMed  Google Scholar 

  • Yi H, Mysore KS, Gelvin SB (2002) Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32:285–298

    CAS  PubMed  Google Scholar 

  • Yi H, Sardesai N, Fujinuma T et al (2006) Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant Cell 18:1575–1589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107

    CAS  PubMed  Google Scholar 

  • Young C, Nester EW (1988) Association of the VirD2 protein with the 5′ end of T strands in Agrobacterium tumefaciens. J Bacteriol 170:3367–3374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yusibov VM, Steck TR, Gupta V et al (1994) Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci U S A 91(8):2994–2998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaenen I, van Larebeke H, Teuchy H et al (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–127

    CAS  PubMed  Google Scholar 

  • Zaltsman A, Lacroix B, Gafni Y et al (2013) Disassembly of synthetic Agrobacterium T-DNA-protein complexes via the host SCF(VBF) ubiquitin-ligase complex pathway. Proc Natl Acad Sci U S A 110:169–174

    CAS  PubMed  Google Scholar 

  • Zambryski P, Joos H, Genetello C et al (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Cai L, Cheng J et al (2008) Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Res 17:293–306. https://doi.org/10.1007/s11248-007-9101-3

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Guo D, Chang Y et al (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959

    CAS  PubMed  Google Scholar 

  • Zhang Q, Xing HL, Wang ZP et al (2018) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96(4–5):445–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, van Heusden GPH, Hooykaas PJJ (2017) Virulence protein VirD5 of Agrobacterium tumefaciens binds to kinetochores in host cells via an interaction with Spt4. Proc Natl Acad Sci U S A 114:10238–10243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu QH, Ramm K, Eamens AL et al (2006) Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants. Plant Sci 171:308–322

    CAS  PubMed  Google Scholar 

  • Zhu Y, Nam J, Humara JM et al (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemienowicz A, Merkle T, Schoumacher F et al (2001) Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13:369–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemienowicz A, Tinland B, Bryant J et al (2000) Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol Cell Biol 20:6317–6322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemienowicz A, Tzfira T, Hohn B (2010) Mechanisms of T-DNA Integration. In: Tzfira T, Citovsky V (eds) Agrobacterium: From Biology to Biotechnology Springer, New York, NY, p 395–440

    Google Scholar 

  • Zupan JR, Citovsky V, Zambryski P (1996) Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci U S A 93:2392–2397

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamy Singer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singer, K. (2018). The Mechanism of T-DNA Integration: Some Major Unresolved Questions. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_98

Download citation

Publish with us

Policies and ethics