Skip to main content

Small Noncoding RNAs in Agrobacterium tumefaciens

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

During the last decade, small noncoding RNAs (ncRNAs) have emerged as essential post-transcriptional regulators in bacteria. Nearly all important physiological and stress responses are modulated by ncRNA regulators, such as riboswitches, trans-acting small RNAs (sRNAs), and cis-antisense RNAs. Recently, three RNA-seq studies identified a total of 1534 candidate ncRNAs from Agrobacterium tumefaciens, a pathogen and biotechnology tool for plants. Only a few ncRNAs have been functionally characterized in A. tumefaciens, and some of them appear to be involved in virulence. AbcR1 regulates multiple ABC transporters and modulates uptake of a quorum-sensing inhibitor produced by plants. RNA1111, a Ti plasmid-encoded sRNA, might regulate the dispersal of the Ti plasmid and virulence. In addition, a chromosomally encoded sRNA Atr35C is induced by the vir gene regulator VirG and its expression is affected by iron, manganese, and hydrogen peroxide, suggesting a possible role in oxidative stress responses and Agrobacterium–plant interactions. Progress in ncRNA functional analysis is slow, likely resulting from innate challenges, such as poor sequence conservation and imperfect base-pairing between sRNAs and mRNAs, which make computational target predictions inefficient. Advances in single-cell-based RNA-seq and proteomics approaches would provide valuable tools to reveal regulatory networks involving ncRNA regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiba H, Adhya S, de Crombrugghe B (1981) Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910

    CAS  PubMed  Google Scholar 

  • Barrick JE, Sudarsan N, Weinberg Z et al (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11:774–784

    Article  CAS  Google Scholar 

  • Becker A, Overlöper A, Schlüter JP et al (2014) Riboregulation in plant-associated-proteobacteria. RNA Biol 11:550–562

    Article  CAS  Google Scholar 

  • Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10:102–109

    Article  CAS  Google Scholar 

  • Brantl S, Wagner E, Gerhard H (2002) An antisense RNA-mediated transcriptional attenuation mechanism functions in Escherichia coli. J Bacteriol 184:2740–2747

    Article  CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 30:1185–1190

    Article  Google Scholar 

  • Caswell CC, Gaines JM, Ciborowski P et al (2012) Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol 85:345–360

    Article  CAS  Google Scholar 

  • Cevallos MA, Cervantes-Rivera R, Gutiérrez-Ríos RM (2008) The repABC plasmid family. Plasmid 60:19–37

    Article  CAS  Google Scholar 

  • Chai Y, Winans SC (2005) A small antisense RNA downregulates expression of an essential replicase protein of an Agrobacterium tumefaciens Ti plasmid. Mol Microbiol 56:1574–1585

    Article  CAS  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E et al (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103:7460–7464

    Article  CAS  Google Scholar 

  • Clemente T (2006) Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana) In: Wang K (ed) Agrobacterium protocols, 2nd edn. Humana Press Inc., New Jersey, pp 143–154

    Google Scholar 

  • Dan Y, Zhang S, Zhong H et al (2015) Novel compounds that enhance Agrobacterium-mediated plant transformation by mitigating oxidative stress. Plant Cell Rep 34:291–309

    Article  CAS  Google Scholar 

  • De Lay N, Schu D, Gottesman S (2013) Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Bio Chem 288:7996–8003

    Google Scholar 

  • del Val C, Rivas E, Torres-Quesada O et al (2007) Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol 66:1080–1091

    Article  Google Scholar 

  • del Val C, Romero-Zaliz R, Torres-Quesada O et al (2012) A survey of sRNA families in α-proteobacteria. RNA Biol 9:119–129

    Article  Google Scholar 

  • Dequivre M, Diel B, Villard C et al (2015) Small RNA deep-sequencing analyses reveal a new regulator of virulence in Agrobacterium fabrum C58. Mol Plant-Microbe Interact 28:580–589

    Article  CAS  Google Scholar 

  • Gelvin SB (2006) Agrobacterium virulence gene induction. In: Wang K (ed) Agrobacterium protocols, 2nd edn. Humana Press Inc, New Jersey, pp 77–84

    Chapter  Google Scholar 

  • Georg J, Hess WR (2011) cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75:286–300

    Article  CAS  Google Scholar 

  • Gerhart E, Wagner H, Vogel J (2014) Approaches to identify novel non-messenger RNAs in bacteria to investigate their biological functions: functional analysis of identified non-mRNAs. In: Hartmann RK, Bindereif A, Schön A, Westhof E (eds) Handbook of RNA biochemistry, 2nd edn. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 719–786

    Google Scholar 

  • Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Bio 3:1–16

    Google Scholar 

  • Harfouche L, Haichar F, Achouak W (2015) Small regulatory RNAs and fine-tuning of plant-bacteria interactions. New Phytol 206:98–106

    Google Scholar 

  • He F, Nair GR, Soto CS et al (2009) Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol 191:5802–5813

    Article  CAS  Google Scholar 

  • He S, Wurtzel O, Singh K et al (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 7:807–812

    Article  CAS  Google Scholar 

  • Hu X, Zhao J, DeGrado WF et al (2013) Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. Proc Natl Acad Sci USA 110:678–683

    Article  CAS  Google Scholar 

  • Kitphati W, Ngok-Ngam P, Suwanmaneerat S et al (2007) Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Appl Environ Microbiol 73:4760–4768

    Article  CAS  Google Scholar 

  • Landt SG, Abeliuk E, McGrath PT et al (2008) Small non-coding RNAs in Caulobacter crescentus. Mol Microbiol 68:600–614

    Article  CAS  Google Scholar 

  • Lee K, Huang X, Yang C et al (2013) A genome-wide survey of highly expressed non-coding RNAs and biological validation of selected candidates in Agrobacterium tumefaciens. PloS One 8:e70720

    Article  CAS  Google Scholar 

  • Levine E, Zhang Z, Kuhlman T et al (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5(9):e229

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Livny J, Waldor MK (2007) Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 10:96–101

    Article  CAS  Google Scholar 

  • Livny J, Teonadi H, Livny M et al (2008) High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS ONE 3:e3197

    Article  Google Scholar 

  • Lloréns-Rico V, Cano J, Kamminga T et al (2016) Bacterial antisense RNAs are mainly the product of transcriptional noise. Sci Adv 2(3):e1501363

    Article  Google Scholar 

  • Loh E, Dussurget O, Gripenland J et al (2009) A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139:770–779

    Article  CAS  Google Scholar 

  • Maes M, Messens E (1992) Phenol as grinding material in RNA preparations. Nucleic Acids Res 20:4374

    Article  CAS  Google Scholar 

  • Martins BMC, Locke JCW (2015) Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr Opin Microbiol 24:104–112

    Article  CAS  Google Scholar 

  • Matthysse AG, Yarnall HA, Young N (1996) Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. J Bacteriol 178:5302–5308

    Article  CAS  Google Scholar 

  • Mellin JR, Cossart P (2015) Unexpected versatility in bacterial riboswitches. Trends Genet 31:150–156

    Article  CAS  Google Scholar 

  • Miranda-Ríos J, Navarro M, Soberón M (2001) A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci USA 98:9736–9741

    Article  Google Scholar 

  • Mironov AS, Gusarov I, Rafikov R et al (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756

    Article  CAS  Google Scholar 

  • MÓ§ller P, Overlöper A, Förstner KU et al (2014) Profound impact of Hfq on nutrient acquisition, metabolism and motility in the plant pathogen Agrobacterium tumefaciens. PLoS ONE 9:e110427

    Article  Google Scholar 

  • Nahvi A, Sudarsan N, Ebert M et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049

    Article  CAS  Google Scholar 

  • Overlöper A, Kraus A, Gurski R et al (2014) Two separate modules of the conserved regulatory RNA AbcR1 and address multiple target mRNAs in and outside of the translation initiation region. RNA Biol 11:624–640

    Article  Google Scholar 

  • Pain A, Ott A, Amine H et al (2015) An assessment of bacterial small RNA target prediction programs. RNA Biol 12:509–513

    Article  Google Scholar 

  • Palmer KM, Turner SL, Young JPW (2000) Sequence diversity of the plasmid replication gene repC in the Rhizobiaceae. Plasmid 44:209–219

    Article  CAS  Google Scholar 

  • Romeo T (1998) Global regulation by the small RNA-binding proteins CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330

    Article  CAS  Google Scholar 

  • Saenkham P, Utamapongchai S, Vattanaviboon P et al (2008) Agrobacterium tumefaciens iron superoxide dismutases have protective roles against singlet oxygen toxicity generated from illuminated Rose Bengal. FEMS Microbiol Lett 289:97–103

    Article  CAS  Google Scholar 

  • Saliba AE, Santos SC, Vogel J (2017) New RNA-seq approaches for the study of bacterial pathogens. Curr Opin in Microbiol 35:78–87

    Article  CAS  Google Scholar 

  • Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  CAS  Google Scholar 

  • Sesto N, Wurtzel O, Archambaud C et al (2013) The excludon: A new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol 11:75–82

    Article  CAS  Google Scholar 

  • Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630

    Article  CAS  Google Scholar 

  • Sharma CM, Vogel J (2009) Experimental approaches for the discovery and characterization of regulatory small RNAs. Curr Opin Microbiol 12:536–546

    Article  CAS  Google Scholar 

  • Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34:683–691

    Article  CAS  Google Scholar 

  • Smirnov A, Förstner KU, Holmqvist E et al (2016) Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci USA 113:11591–11596

    Article  CAS  Google Scholar 

  • Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891

    Article  CAS  Google Scholar 

  • Stougaard P, Molin S, Nordström K (1981) RNAs involved in copy number control and incompatibility of plasmid R1. Proc Natl Acad Sci USA 78:6008–6012

    Article  CAS  Google Scholar 

  • Thomason MK, Bischler T, Eisenbart SK et al (2015) Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J Bacteriol 197:18–28

    Article  Google Scholar 

  • Tinsley RA, Furchak JRW, Walter NG (2007) Trans-acting glmS catalytic riboswitch: locked and loaded. RNA 13:468–477

    Article  CAS  Google Scholar 

  • Toledo-Arana A, Dussurget O, Nikitas G et al (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956

    Article  CAS  Google Scholar 

  • Tomizawa J, Itoh T, Selzer G et al (1981) Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci USA 78:1421–1425

    Article  CAS  Google Scholar 

  • Torres-Quesada O, Reinkensmeier J, Schlűter JP et al (2014) Genome-wide profiling of HFq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti. RNA Biol 11:563–579

    Article  CAS  Google Scholar 

  • Vercruysse M, Fauvart M, Cloots L et al (2010) Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high resolution tiling array. BMC Genom 11:53

    Article  Google Scholar 

  • Wade JT, Grainger DC (2014) Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev Microbiol 12:647–653

    Article  CAS  Google Scholar 

  • Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48:713–742

    Article  CAS  Google Scholar 

  • Wassarman KM, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–623

    Article  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 13:615–628

    Article  Google Scholar 

  • Wilms I, Voss B, Hess WR et al (2011) Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein. Mol Microbiol 80:492–506

    Article  CAS  Google Scholar 

  • Wilms I, Overlöper A, Nowrousian M et al (2012a) Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biol 9(4):446–457

    Article  CAS  Google Scholar 

  • Wilms I, Möller P, Stock AM et al (2012b) Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens. J Bacteriol 194:5209–5217

    Article  CAS  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Article  CAS  Google Scholar 

  • Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956

    Article  CAS  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    Article  CAS  Google Scholar 

  • Wright PR, Richter AS, Papenfort K et al (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci USA 110:E3487–E3496

    Article  CAS  Google Scholar 

  • Wu HY, Liu KH, Wang YC et al (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:19

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Abbagail Johnson, Juan Carlos Martinez-Nicolas, Alan Eggenberger, and Jonah Miller for their assistances. This work was partially supported by the USDA National Institute of Food and Agriculture, Hatch project number #IOW05162, by State of Iowa funds, and by Charoen Pokphand Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, K., Wang, K. (2018). Small Noncoding RNAs in Agrobacterium tumefaciens. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_84

Download citation

Publish with us

Policies and ethics