Skip to main content

Activity-Based Protein Profiling Methods to Study Bacteria: The Power of Small-Molecule Electrophiles

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 420))

Abstract

ABPP methods have been utilized for the last two decades as a means to investigate complex proteomes in all three domains of life. Extensive use in eukaryotes has provided a more fundamental understanding of the biological processes involved in numerous diseases and has driven drug discovery and treatment campaigns. However, the use of ABPP in prokaryotes has been less common, although it has gained more attention over the last decade. The urgent need for understanding bacteriophysiology and bacterial pathogenicity at a foundational level has never been more apparent, as the rise in antibiotic resistance has resulted in the inadequate and ineffective treatment of infections. This is not only a result of resistance to clinically used antibiotics, but also a lack of new drugs and equally as important, new drug targets. ABPP provides a means for which new, clinically relevant drug targets may be identified through gaining insight into biological processes. In this chapter, we place particular focus on the discussion of ABPP strategies that have been applied to study different classes of bacterial enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047

    Article  CAS  Google Scholar 

  • Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1:644–648

    Article  CAS  Google Scholar 

  • Battenberg OA, Yang Y, Verhelst SH, Sieber SA (2013) Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification. Mol BioSyst 9:343–351

    Article  CAS  Google Scholar 

  • Beatty KE, Fisk JD, Smart BP, Lu YY, Szychowski J, Hangauer MJ, Baskin JM, Bertozzi CR, Tirrell DA (2010) Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. ChemBioChem 11:2092–2095

    Article  CAS  Google Scholar 

  • Bender KO, Ofori L, Van Der Linden WA, Mock ED, Datta GK, Chowdhury S, Li H, Segal E, Lopez MS, Ellman JA, Figdor CG, Bogyo M, Verdoes M (2015) Design of a highly selective quenched activity-based probe and its application in dual color imaging studies of cathepsin S activity localization. J Am Chem Soc 137:4771–4777

    Article  Google Scholar 

  • Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, Sloane BF, Bogyo M (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1:203–209

    Article  CAS  Google Scholar 

  • Bogyo M, Verhelst S, Bellingard-Dubouchaud V, Toba S, Greenbaum D (2000) Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem Biol 7:27–38

    Article  CAS  Google Scholar 

  • Bottcher T, Sieber SA (2008a) Beta-lactones as privileged structures for the active-site labeling of versatile bacterial enzyme classes. Angew Chem Int Ed Engl 47:4600–4603

    Article  Google Scholar 

  • Bottcher T, Sieber SA (2008b) Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 130:14400–14401

    Article  Google Scholar 

  • Bottcher T, Sieber SA (2010) Showdomycin as a versatile chemical tool for the detection of pathogenesis-associated enzymes in bacteria. J Am Chem Soc 132:6964–6972

    Article  Google Scholar 

  • Cardoza JD, Parikh JR, Ficarro SB, Marto JA (2012) Mass spectrometry-based proteomics: qualitative identification to activity-based protein profiling. Wiley Interdiscip Rev Syst Biol Med 4:141–162

    Article  CAS  Google Scholar 

  • Carlson EE (2010) Natural products as chemical probes. ACS Chem Biol 5:639–653

    Article  CAS  Google Scholar 

  • Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA, Agard NJ, Lo A, Bertozzi CR (2010) Copper-free click chemistry in living animals. Proc Natl Acad Sci U S A 107:1821–1826

    Article  CAS  Google Scholar 

  • Chauvigne-Hines LM, Anderson LN, Weaver HM, Brown JN, Koech PK, Nicora CD, Hofstad BA, Smith RD, Wilkins MJ, Callister SJ, Wright AT (2012) Suite of activity-based probes for cellulose-degrading enzymes. J Am Chem Soc 134:20521–20532

    Article  CAS  Google Scholar 

  • Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, Lin Q, Hua ZC (2017) Target identification with quantitative activity based protein profiling (ABPP). Proteomics 17

    Google Scholar 

  • Drahl C, Cravatt BF, Sorensen EJ (2005) Protein-reactive natural products. Angew Chem Int Ed Engl 44:5788–5809

    Article  CAS  Google Scholar 

  • Edgington LE, Verdoes M, Bogyo M (2011) Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 15:798–805

    Article  CAS  Google Scholar 

  • Eirich J, Orth R, Sieber SA (2011) Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells. J Am Chem Soc 133:12144–12153

    Article  CAS  Google Scholar 

  • Ekkebus R, Van Kasteren SI, Kulathu Y, Scholten A, Berlin I, Geurink PP, De Jong A, Goerdayal S, Neefjes J, Heck AJ, Komander D, Ovaa H (2013) On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J Am Chem Soc 135:2867–2870

    Article  CAS  Google Scholar 

  • Gandy MN, Debowski AW, Stubbs KA (2011) A general method for affinity-based proteomic profiling of exo-alpha-glycosidases. Chem Commun (Camb) 47:5037–5039

    Article  CAS  Google Scholar 

  • Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 7:569–581

    Article  CAS  Google Scholar 

  • Hang HC, Yu C, Kato DL, Bertozzi CR (2003) A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci U S A 100:14846–14851

    Article  CAS  Google Scholar 

  • Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J, Munera D, Clark L, Bachovchin DA, Qadri F, Ryan ET, Davis BM, Weerapana E, Waldor MK (2016) Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 12:268–274

    Article  CAS  Google Scholar 

  • Heal WP, Tate EW (2012) Application of activity-based protein profiling to the study of microbial pathogenesis. Top Curr Chem 324:115–135

    Article  CAS  Google Scholar 

  • Jessani N, Niessen S, Wei BQ, Nicolau M, Humphrey M, Ji Y, Han W, Noh DY, Yates JR 3rd, Jeffrey SS, Cravatt BF (2005) A streamlined platform for high-content functional proteomics of primary human specimens. Nat Methods 2:691–697

    Article  CAS  Google Scholar 

  • Kato D, Boatright KM, Berger AB, Nazif T, Blum G, Ryan C, Chehade KA, Salvesen GS, Bogyo M (2005) Activity-based probes that target diverse cysteine protease families. Nat Chem Biol 1:33–38

    Article  CAS  Google Scholar 

  • Kim HY, Tallman KA, Liebler DC, Porter NA (2009) An azido-biotin reagent for use in the isolation of protein adducts of lipid-derived electrophiles by streptavidin catch and photorelease. Mol Cell Proteomics 8:2080–2089

    Article  CAS  Google Scholar 

  • Kocaoglu O, Calvo RA, Sham LT, Cozy LM, Lanning BR, Francis S, Winkler ME, Kearns DB, Carlson EE (2012) Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division. ACS Chem Biol 7:1746–1753

    Article  CAS  Google Scholar 

  • Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    Article  CAS  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021

    Article  CAS  Google Scholar 

  • Krysiak J, Breinbauer R (2012) Activity-based protein profiling for natural product target discovery. Top Curr Chem 324:43–84

    Article  CAS  Google Scholar 

  • Lang K, Chin JW (2014) Bioorthogonal reactions for labeling proteins. ACS Chem Biol 9:16–20

    Article  CAS  Google Scholar 

  • Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41

    Article  CAS  Google Scholar 

  • Lentz CS, Ordonez AA, Kasperkiewicz P, La Greca F, O’donoghue AJ, Schulze CJ, Powers JC, Craik CS, Drag M, Jain SK, Bogyo M (2016) Design of selective substrates and activity-based probes for Hydrolase Important for Pathogenesis 1 (HIP1) from Mycobacterium tuberculosis. ACS Infect Dis 2:807–815

    Article  CAS  Google Scholar 

  • Leriche G, Chisholm L, Wagner A (2012) Cleavable linkers in chemical biology. Bioorg Med Chem 20:571–582

    Article  CAS  Google Scholar 

  • Liu Y, Fredrickson JK, Sadler NC, Nandhikonda P, Smith RD, Wright AT (2015) Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling. Biotechnol Biofuels 8:156

    Article  Google Scholar 

  • Matthews ML, He L, Horning BD, Olson EJ, Correia BE, Yates JR 3rd, Dawson PE, Cravatt BF (2017) Chemoproteomic profiling and discovery of protein electrophiles in human cells. Nat Chem 9:234–243

    Article  CAS  Google Scholar 

  • Mckay CS, Finn MG (2014) Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol 21:1075–1101

    Article  CAS  Google Scholar 

  • Narayanan A, Jones LH (2015) Sulfonyl fluorides as privileged warheads in chemical biology. Chem Sci 6:2650–2659

    Article  CAS  Google Scholar 

  • Nomura DK, Dix MM, Cravatt BF (2010) Activity-based protein profiling for biochemical pathway discovery in cancer. Nat Rev Cancer 10:630–638

    Article  CAS  Google Scholar 

  • Ortega C, Anderson LN, Frando A, Sadler NC, Brown RW, Smith RD, Wright AT, Grundner C (2016) Systematic survey of serine hydrolase activity in Mycobacterium tuberculosis defines changes associated with persistence. Cell Chem Biol 23:290–298

    Article  CAS  Google Scholar 

  • Orth R, Sieber SA (2009) A photolabile linker for the mild and selective cleavage of enriched biomolecules from solid support. J Org Chem 74:8476–8479

    Article  CAS  Google Scholar 

  • Pan Z, Jeffery DA, Chehade K, Beltman J, Clark JM, Grothaus P, Bogyo M, Baruch A (2006) Development of activity-based probes for trypsin-family serine proteases. Bioorg Med Chem Lett 16:2882–2885

    Article  CAS  Google Scholar 

  • Patricelli MP, Giang DK, Stamp LM, Burbaum JJ (2001) Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1:1067–1071

    Article  CAS  Google Scholar 

  • Pearson RG (1990) Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev 100:403–425

    Article  CAS  Google Scholar 

  • Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750

    Article  CAS  Google Scholar 

  • Prothiwa M, Szamosvari D, Glasmacher S, Bottcher T (2016) Chemical probes for competitive profiling of the quorum sensing signal synthase PqsD of Pseudomonas aeruginosa. Beilstein J Org Chem 12:2784–2792

    Article  CAS  Google Scholar 

  • Roncase EJ, Moon C, Chatterjee S, Gonzalez-Paez GE, Craik CS, O’donoghue AJ, Wolan DW (2017) Substrate profiling and high resolution co-complex crystal structure of a secreted C11 protease conserved across commensal bacteria. ACS Chem Biol 12:1556–1565

    Article  CAS  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41:2596–2599

    Article  CAS  Google Scholar 

  • Rudolf GC, Heydenreuter W, Sieber SA (2013) Chemical proteomics: ligation and cleavage of protein modifications. Curr Opin Chem Biol 17:110–117

    Article  CAS  Google Scholar 

  • Sadaghiani AM, Verhelst SH, Bogyo M (2007) Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 11:20–28

    Article  CAS  Google Scholar 

  • Sadler NC, Wright AT (2015) Activity-based protein profiling of microbes. Curr Opin Chem Biol 24:139–144

    Article  CAS  Google Scholar 

  • Shannon DA, Weerapana E (2015) Covalent protein modification: the current landscape of residue-specific electrophiles. Curr Opin Chem Biol 24:18–26

    Article  CAS  Google Scholar 

  • Sharifzadeh S, Boersma MJ, Kocaoglu O, Shokri A, Brown CL, Shirley JD, Winkler ME, Carlson EE (2017) Novel electrophilic scaffold for imaging of essential penicillin-binding proteins in Streptococcus pneumoniae. ACS Chem Biol 12:2849–2857

    Article  CAS  Google Scholar 

  • Siklos M, Benaissa M, Thatcher GR (2015) Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 5:506–519

    Article  Google Scholar 

  • Sletten EM, Bertozzi CR (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44:666–676

    Article  CAS  Google Scholar 

  • Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 11:535–546

    Article  CAS  Google Scholar 

  • Speers AE, Cravatt BF (2009) Activity-Based Protein Profiling (ABPP) and Click Chemistry (CC)-ABPP by MudPIT mass spectrometry. Curr Protoc Chem Biol 1:29–41

    PubMed  PubMed Central  Google Scholar 

  • Staub I, Sieber SA (2008) Beta-lactams as selective chemical probes for the in vivo labeling of bacterial enzymes involved in cell wall biosynthesis, antibiotic resistance, and virulence. J Am Chem Soc 130:13400–13409

    Article  CAS  Google Scholar 

  • Stubbs KA, Scaffidi A, Debowski AW, Mark BL, Stick RV, Vocadlo DJ (2008) Synthesis and use of mechanism-based protein-profiling probes for retaining beta-d-glucosaminidases facilitate identification of Pseudomonas aeruginosa NagZ. J Am Chem Soc 130:327–335

    Article  CAS  Google Scholar 

  • Tallman KR, Levine SR, Beatty KE (2016) Small-molecule probes reveal esterases with persistent activity in dormant and reactivating Mycobacterium tuberculosis. ACS Infect Dis 2:936–944

    Article  CAS  Google Scholar 

  • Verheggen K, Raeder H, Berven FS, Martens L, Barsnes H, Vaudel M (2017) Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows. Mass Spectrom Rev

    Google Scholar 

  • Vocadlo DJ, Bertozzi CR (2004) A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew Chem Int Ed Engl 43:5338–5342

    Article  CAS  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    Article  CAS  Google Scholar 

  • Vosyka O, Vinothkumar KR, Wolf EV, Brouwer AJ, Liskamp RM, Verhelst SH (2013) Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay. Proc Natl Acad Sci U S A 110:2472–2477

    Article  CAS  Google Scholar 

  • Wang S, Tian Y, Wang M, Wang M, Sun GB, Sun XB (2018) Advanced activity-based protein profiling application strategies for drug development. Front Pharmacol 9:353

    Article  Google Scholar 

  • Weerapana E, Speers AE, Cravatt BF (2007) Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat Protoc 2:1414–1425

    Article  CAS  Google Scholar 

  • Weerapana E, Simon GM, Cravatt BF (2008) Disparate proteome reactivity profiles of carbon electrophiles. Nat Chem Biol 4:405–407

    Article  CAS  Google Scholar 

  • Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–795

    Article  CAS  Google Scholar 

  • Weinandy F, Lorenz-Baath K, Korotkov VS, Bottcher T, Sethi S, Chakraborty T, Sieber SA (2014) A beta-lactone-based antivirulence drug ameliorates Staphylococcus aureus skin infections in mice. ChemMedChem 9:710–713

    Article  CAS  Google Scholar 

  • Wicki J, Rose DR, Withers SG (2002) Trapping covalent intermediates on beta-glycosidases. Methods Enzymol 354:84–105

    Article  CAS  Google Scholar 

  • Willems LI, Overkleeft HS, Van Kasteren SI (2014) Current developments in activity-based protein profiling. Bioconjug Chem 25:1181–1191

    Article  CAS  Google Scholar 

  • Withana NP, Garland M, Verdoes M, Ofori LO, Segal E, Bogyo M (2016) Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes. Nat Protoc 11:184–191

    Article  CAS  Google Scholar 

  • Withers SG, Street IP, Bird P, Dolphin DH (1987) 2-Deoxy-2-Fluoroglucosides—a novel class of mechanism-based glucosidase inhibitors. J Am Chem Soc 109:7530–7531

    Article  CAS  Google Scholar 

  • Wright MH, Sieber SA (2016) Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep 33:681–708

    Article  CAS  Google Scholar 

  • Wu H, Devaraj NK (2018) Advances in tetrazine bioorthogonal chemistry driven by the synthesis of novel tetrazines and dienophiles. Acc Chem Res 51:1249–1259

    Article  CAS  Google Scholar 

  • Yang Y, Hahne H, Kuster B, Verhelst SH (2013) A simple and effective cleavable linker for chemical proteomics applications. Mol Cell Proteomics 12:237–244

    Article  Google Scholar 

  • Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin E. Carlson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharifzadeh, S., Shirley, J.D., Carlson, E.E. (2018). Activity-Based Protein Profiling Methods to Study Bacteria: The Power of Small-Molecule Electrophiles. In: Cravatt, B., Hsu, KL., Weerapana, E. (eds) Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology, vol 420. Springer, Cham. https://doi.org/10.1007/82_2018_135

Download citation

Publish with us

Policies and ethics