Advertisement

pp 1-21 | Cite as

Activity-Based Protein Profiling—Enabling Multimodal Functional Studies of Microbial Communities

  • Christopher WhidbeyEmail author
  • Aaron T. WrightEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

Microorganisms living in community are critical to life on Earth, playing numerous and profound roles in the environment and human and animal health. Though their essentiality to life is clear, the mechanistic underpinnings of community structure, interactions, and functions are largely unexplored and in need of function-dependent technologies to unravel the mysteries. Activity-based protein profiling offers unprecedented molecular-level characterization of functions within microbial communities and provides an avenue to determine how external exposures result in functional alterations to microbiomes. Herein, we illuminate the current state and prospective contributions of ABPP as it relates to microbial communities. We provide details on the design, development, and validation of probes, challenges associated with probing in complex microbial communities, provide some specific examples of the biological applications of ABPP in microbes and microbial communities, and highlight potential areas for development. The future of ABPP holds real promise for understanding and considerable impact in microbiome studies associated with personalized medicine, precision agriculture, veterinary health, environmental studies, and beyond.

Keywords

Activity-based protein profiling Microbiomes Microbial communities Activity-based probes 

References

  1. Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1(10):644–648Google Scholar
  2. Anderson LN, Koech PK, Plymale AE, Landorf EV, Konopka A, Collart FR, Lipton MS, Romine MF, Wright AT (2016) Live cell discovery of microbial vitamin transport and enzyme-cofactor interactions. ACS Chem Biol 11(2):345–354.  https://doi.org/10.1021/acschembio.5b00918CrossRefGoogle Scholar
  3. Ansong C, Sadler NC, Hill EA, Lewis MP, Zink EM, Smith RD, Beliaev AS, Konopka AE, Wright AT (2014) Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria. Front Microbiol 5:325.  https://doi.org/10.3389/fmicb.2014.00325CrossRefGoogle Scholar
  4. Arnold JW, Roach J, Azcarate-Peril MA (2016) Emerging technologies for gut microbiome research. Trends Microbiol 24(11):887–901.  https://doi.org/10.1016/j.tim.2016.06.008CrossRefGoogle Scholar
  5. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6(40):959–978.  https://doi.org/10.1098/rsif.2009.0203CrossRefGoogle Scholar
  6. Baker YR, Hodgkinson JT, Florea BI, Alza E, Galloway W, Grimm L, Geddis SM, Overkleeft HS, Welch M, Spring DR (2017) Identification of new quorum sensing autoinducer binding partners in Pseudomonas aeruginosa using photoaffinity probes. Chem Sci 8(11):7403–7411.  https://doi.org/10.1039/c7sc01270eCrossRefGoogle Scholar
  7. Beilharz K, Novakova L, Fadda D, Branny P, Massidda O, Veening JW (2012) Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci U S A 109(15):E905–E913.  https://doi.org/10.1073/pnas.1119172109Google Scholar
  8. Beller HR, Rodrigues AV, Zargar K, Wu YW, Saini AK, Saville RM, Pereira JH, Adams PD, Tringe SG, Petzold CJ, Keasling JD (2018) Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat Chem Biol.  https://doi.org/10.1038/s41589-018-0017-4Google Scholar
  9. Bennett K, Sadler NC, Wright AT, Yeager C, Hyman MR (2016) Activity-based protein profiling of ammonia monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol 82(8):2270–2279.  https://doi.org/10.1128/AEM.03556-15CrossRefGoogle Scholar
  10. Biteen JS, Blainey PC, Cardon ZG, Chun M, Church GM, Dorrestein PC, Fraser SE, Gilbert JA, Jansson JK, Knight R, Miller JF, Ozcan A, Prather KA, Quake SR, Ruby EG, Silver PA, Taha S, van den Engh G, Weiss PS, Wong GC, Wright AT, Young TD (2016) Tools for the microbiome: nano and beyond. ACS Nano 10(1):6–37.  https://doi.org/10.1021/acsnano.5b07826CrossRefGoogle Scholar
  11. Chatterjee S, Stupp GS, Park SK, Ducom JC, Yates JR 3rd, Su AI, Wolan DW (2016) A comprehensive and scalable database search system for metaproteomics. BMC Genom 17(1):642.  https://doi.org/10.1186/s12864-016-2855-3CrossRefGoogle Scholar
  12. Chauvigne-Hines LM, Anderson LN, Weaver HM, Brown JN, Koech PK, Nicora CD, Hofstad BA, Smith RD, Wilkins MJ, Callister SJ, Wright AT (2012) Suite of activity-based probes for cellulose-degrading enzymes. J Am Chem Soc 134(50):20521–20532.  https://doi.org/10.1021/ja309790wCrossRefGoogle Scholar
  13. Cheng K, Ning Z, Zhang X, Li L, Liao B, Mayne J, Stintzi A, Figeys D (2017) MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome 5(1):157.  https://doi.org/10.1186/s40168-017-0375-2CrossRefGoogle Scholar
  14. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414.  https://doi.org/10.1146/annurev.biochem.75.101304.124125CrossRefGoogle Scholar
  15. Degnan PH, Taga ME, Goodman AL (2014) Vitamin B12 as a modulator of gut microbial ecology. Cell Metab 20(5):769–778.  https://doi.org/10.1016/j.cmet.2014.10.002CrossRefGoogle Scholar
  16. Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Herve V, Labbe J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42(3):335–352.  https://doi.org/10.1093/femsre/fuy008CrossRefGoogle Scholar
  17. Dubinsky L, Jarosz LM, Amara N, Krief P, Kravchenko VV, Krom BP, Meijler MM (2009) Synthesis and validation of a probe to identify quorum sensing receptors. Chem Commun (Camb) 47:7378–7380.  https://doi.org/10.1039/b917507eCrossRefGoogle Scholar
  18. Dubinsky L, Krom BP, Meijler MM (2012) Diazirine based photoaffinity labeling. Bioorg Med Chem 20(2):554–570.  https://doi.org/10.1016/j.bmc.2011.06.066CrossRefGoogle Scholar
  19. Dworkin J (2014) The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu Rev Microbiol 68:137–154.  https://doi.org/10.1146/annurev-micro-091213-112844CrossRefGoogle Scholar
  20. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10):579–590.  https://doi.org/10.1038/nrmicro.2017.87CrossRefGoogle Scholar
  21. Francis MB, Allen CA, Shrestha R, Sorg JA (2013) Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 9(5):e1003356.  https://doi.org/10.1371/journal.ppat.1003356CrossRefGoogle Scholar
  22. Garner AL, Yu J, Struss AK, Lowery CA, Zhu J, Kim SK, Park J, Mayorov AV, Kaufmann GF, Kravchenko VV, Janda KD (2011) Synthesis of ‘clickable’ acylhomoserine lactone quorum sensing probes: unanticipated effects on mammalian cell activation. Bioorg Med Chem Lett 21(9):2702–2705.  https://doi.org/10.1016/j.bmcl.2010.11.122CrossRefGoogle Scholar
  23. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400.  https://doi.org/10.1038/nm.4517CrossRefGoogle Scholar
  24. Gilbert JA, Jansson JK, Knight R (2014) The Earth Microbiome project: successes and aspirations. BMC Biol 12:69.  https://doi.org/10.1186/s12915-014-0069-1CrossRefGoogle Scholar
  25. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R (2016) Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535(7610):94–103.  https://doi.org/10.1038/nature18850CrossRefGoogle Scholar
  26. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341(6143):295–298.  https://doi.org/10.1126/science.1235872CrossRefGoogle Scholar
  27. Haiser HJ, Seim KL, Balskus EP, Turnbaugh PJ (2014) Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5(2):233–238.  https://doi.org/10.4161/gmic.27915CrossRefGoogle Scholar
  28. Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ (2016) Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc Natl Acad Sci U S A 113(28):E4069–4078.  https://doi.org/10.1073/pnas.1603757113Google Scholar
  29. Hettich RL, Sharma R, Chourey K, Giannone RJ (2012) Microbial metaproteomics: identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities. Curr Opin Microbiol 15(3):373–380.  https://doi.org/10.1016/j.mib.2012.04.008CrossRefGoogle Scholar
  30. Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D (2017) Challenges and perspectives of metaproteomic data analysis. J Biotechnol 261:24–36.  https://doi.org/10.1016/j.jbiotec.2017.06.1201CrossRefGoogle Scholar
  31. Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR (2010) N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog 6(3):e1000806.  https://doi.org/10.1371/journal.ppat.1000806CrossRefGoogle Scholar
  32. Jansson JK, Baker ES (2016) A multi-omic future for microbiome studies. Nat Microbiol 1:16049.  https://doi.org/10.1038/nmicrobiol.2016.49CrossRefGoogle Scholar
  33. Jansson JK, Hofmockel KS (2018) The soil microbiome-from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168.  https://doi.org/10.1016/j.mib.2018.01.013CrossRefGoogle Scholar
  34. Joyce SA, Gahan CG (2016) Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu Rev Food Sci Technol 7:313–333.  https://doi.org/10.1146/annurev-food-041715-033159CrossRefGoogle Scholar
  35. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858.  https://doi.org/10.1038/nprot.2015.053CrossRefGoogle Scholar
  36. Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, Lauder A, Sherrill-Mix S, Chehoud C, Kelsen J, Conrad M, Collman RG, Baldassano R, Bushman FD, Bittinger K (2017) Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5(1):52.  https://doi.org/10.1186/s40168-017-0267-5CrossRefGoogle Scholar
  37. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723.  https://doi.org/10.1038/nature11605CrossRefGoogle Scholar
  38. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021Google Scholar
  39. Konopka A, Lindemann S, Fredrickson J (2015) Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J 9(7):1488–1495.  https://doi.org/10.1038/ismej.2014.251CrossRefGoogle Scholar
  40. Koppel N, Balskus EP (2016) Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem Biol 23(1):18–30.  https://doi.org/10.1016/j.chembiol.2015.12.008CrossRefGoogle Scholar
  41. Koppel N, Maini Rekdal V, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356(6344).  https://doi.org/10.1126/science.aag2770Google Scholar
  42. Krysiak JM, Kreuzer J, Macheroux P, Hermetter A, Sieber SA, Breinbauer R (2012) Activity-based probes for studying the activity of flavin-dependent oxidases and for the protein target profiling of monoamine oxidase inhibitors. Angew Chem Int Ed Engl 51(28):7035–7040.  https://doi.org/10.1002/anie.201201955CrossRefGoogle Scholar
  43. Lee PY, Chin SF, Neoh HM, Jamal R (2017) Metaproteomic analysis of human gut microbiota: where are we heading? J Biomed Sci 24(1):36.  https://doi.org/10.1186/s12929-017-0342-zCrossRefGoogle Scholar
  44. Leizeaga A, Estrany M, Forn I, Sebastian M (2017) Using click-chemistry for visualizing in situ changes of translational activity in planktonic marine bacteria. Front Microbiol 8:2360.  https://doi.org/10.3389/fmicb.2017.02360CrossRefGoogle Scholar
  45. Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66(4):948–983.  https://doi.org/10.1124/pr.113.008201CrossRefGoogle Scholar
  46. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285.  https://doi.org/10.1007/s00253-001-0902-7CrossRefGoogle Scholar
  47. Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152(1–2):39–50.  https://doi.org/10.1016/j.cell.2012.10.052CrossRefGoogle Scholar
  48. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125(3):926–938.  https://doi.org/10.1172/JCI76304CrossRefGoogle Scholar
  49. Mayers MD, Moon C, Stupp GS, Su AI, Wolan DW (2017) Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease. J Proteome Res 16(2):1014–1026.  https://doi.org/10.1021/acs.jproteome.6b00938CrossRefGoogle Scholar
  50. Mir M, Asong J, Li X, Cardot J, Boons GJ, Husson RN (2011) The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog 7(7):e1002182.  https://doi.org/10.1371/journal.ppat.1002182CrossRefGoogle Scholar
  51. Moon C, Stupp GS, Su AI, Wolan DW (2018) Metaproteomics of colonic microbiota unveils discrete protein functions among colitic mice and control groups. Proteomics 18(3–4).  https://doi.org/10.1002/pmic.201700391Google Scholar
  52. Mou X, Sun S, Edwards RA, Hodson RE, Moran MA (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451(7179):708–711.  https://doi.org/10.1038/nature06513CrossRefGoogle Scholar
  53. Nair RN, Rosnow JJ, Murphree TA, Bowden ME, Lindemann SR, Wright AT (2017) De novo synthesis of alkyne substituted tryptophans as chemical probes for protein profiling studies. Org Chem Front 4(4):495–499.  https://doi.org/10.1039/C6QO00819DCrossRefGoogle Scholar
  54. Ortega C, Anderson LN, Frando A, Sadler NC, Brown RW, Smith RD, Wright AT, Grundner C (2016) Systematic survey of serine hydrolase activity in mycobacterium tuberculosis defines changes associated with persistence. Cell Chem Biol 23(2):290–298.  https://doi.org/10.1016/j.chembiol.2016.01.003CrossRefGoogle Scholar
  55. van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, Almeida FF, Ibiza S, Barbosa I, Goverse G, Labao-Almeida C, Godinho-Silva C, Konijn T, Schooneman D, O’Toole T, Mizee MR, Habani Y, Haak E, Santori FR, Littman DR, Schulte-Merker S, Dzierzak E, Simas JP, Mebius RE, Veiga-Fernandes H (2014) Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508(7494):123–127.  https://doi.org/10.1038/nature13158CrossRefGoogle Scholar
  56. Pollock J, Glendinning L, Wisedchanwet T, Watson M (2018) The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol 84(7).  https://doi.org/10.1128/aem.02627-17
  57. Romine MF, Rodionov DA, Maezato Y, Anderson LN, Nandhikonda P, Rodionova IA, Carre A, Li X, Xu C, Clauss TR, Kim YM, Metz TO, Wright AT (2017) Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism. Proc Natl Acad Sci U S A 114(7):E1205–E1214.  https://doi.org/10.1073/pnas.1612360114Google Scholar
  58. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352.  https://doi.org/10.1038/nri.2016.42CrossRefGoogle Scholar
  59. Rosnow JJ, Hwang S, Killinger BJ, Kim YM, Moore RJ, Lindemann SR, Maupin-Furlow JA, Wright AT (2018) Cobalamin activity-based probe enables microbial cell growth and finds new cobalamin-protein interactions across domains. Appl Environ Microbiol.  https://doi.org/10.1128/aem.00955-18
  60. Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM (1993) Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175(11):3303–3316Google Scholar
  61. Sadaghiani AM, Verhelst SH, Bogyo M (2007) Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 11(1):20–28.  https://doi.org/10.1016/j.cbpa.2006.11.030CrossRefGoogle Scholar
  62. Sadler NC, Melnicki MR, Serres MH, Merkley ED, Chrisler WB, Hill EA, Romine MF, Kim S, Zink EM, Datta S, Smith RD, Beliaev AS, Konopka A, Wright AT (2014) Live cell chemical profiling of temporal redox dynamics in a photoautotrophic cyanobacterium. ACS Chem Biol 9(1):291–300.  https://doi.org/10.1021/cb400769vCrossRefGoogle Scholar
  63. Sadler NC, Wright AT (2015) Activity-based protein profiling of microbes. Curr Opin Chem Biol 24:139–144.  https://doi.org/10.1016/j.cbpa.2014.10.022CrossRefGoogle Scholar
  64. Savage DC (2001) Microbial biota of the human intestine: a tribute to some pioneering scientists. Curr Issues Intest Microbiol 2(1):1–15Google Scholar
  65. Scheline RR (1968) The metabolism of drugs and other organic compounds by the intestinal microflora. Acta Pharmacol Toxicol (Copenh) 26(4):332–342Google Scholar
  66. Schiering C, Wincent E, Metidji A, Iseppon A, Li Y, Potocnik AJ, Omenetti S, Henderson CJ, Wolf CR, Nebert DW, Stockinger B (2017) Feedback control of AHR signalling regulates intestinal immunity. Nature 542(7640):242–245.  https://doi.org/10.1038/nature21080CrossRefGoogle Scholar
  67. Shah IM, Laaberki MH, Popham DL, Dworkin J (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135(3):486–496.  https://doi.org/10.1016/j.cell.2008.08.039CrossRefGoogle Scholar
  68. Snelling TJ, Wallace RJ (2017) The rumen microbial metaproteome as revealed by SDS-PAGE. BMC Microbiol 17(1):9.  https://doi.org/10.1186/s12866-016-0917-yCrossRefGoogle Scholar
  69. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW (2008) The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 363(1–2):1–25.  https://doi.org/10.1016/j.ijpharm.2008.07.009CrossRefGoogle Scholar
  70. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 14(5):273–287.  https://doi.org/10.1038/nrmicro.2016.17CrossRefGoogle Scholar
  71. Speers AE, Adam GC, Cravatt BF (2003) Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 125(16):4686–4687.  https://doi.org/10.1021/ja034490hCrossRefGoogle Scholar
  72. Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, Venkatesh MK, Guthrie L, O’Neal SK, Robinson SJ, Dollinger M, Figueroa E, McShane SR, Cohen RD, Jin J, Frye SV, Zamboni WC, Pepe-Ranney C, Mani S, Kelly L, Redinbo MR (2015) Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol 22(9):1238–1249.  https://doi.org/10.1016/j.chembiol.2015.08.005CrossRefGoogle Scholar
  73. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S, Redinbo MR (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330(6005):831–835.  https://doi.org/10.1126/science.1191175CrossRefGoogle Scholar
  74. Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R (2014) Tracking down the sources of experimental contamination in microbiome studies. Genome Biol 15(12):564.  https://doi.org/10.1186/s13059-014-0564-2CrossRefGoogle Scholar
  75. Wright AT, Song JD, Cravatt BF (2009) A suite of activity-based probes for human cytochrome P450 enzymes. J Am Chem Soc 131(30):10692–10700.  https://doi.org/10.1021/ja9037609CrossRefGoogle Scholar
  76. Wu L, Jiang J, Jin Y, Kallemeijn WW, Kuo CL, Artola M, Dai W, van Elk C, van Eijk M, van der Marel GA, Codee JDC, Florea BI, Aerts J, Overkleeft HS, Davies GJ (2017) Activity-based probes for functional interrogation of retaining beta-glucuronidases. Nat Chem Biol 13(8):867–873.  https://doi.org/10.1038/nchembio.2395CrossRefGoogle Scholar
  77. Xiao M, Yang J, Feng Y, Zhu Y, Chai X, Wang Y (2017) Metaproteomic strategies and applications for gut microbial research. Appl Microbiol Biotechnol 101(8):3077–3088.  https://doi.org/10.1007/s00253-017-8215-7CrossRefGoogle Scholar
  78. Zarraonaindia I, Smith DP, Gilbert JA (2013) Beyond the genome: community-level analysis of the microbial world. Biol Philos 28(2):261–282.  https://doi.org/10.1007/s10539-012-9357-8CrossRefGoogle Scholar
  79. Zhang X, Ning Z, Mayne J, Moore JI, Li J, Butcher J, Deeke SA, Chen R, Chiang CK, Wen M, Mack D, Stintzi A, Figeys D (2016) MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Microbiome 4(1):31.  https://doi.org/10.1186/s40168-016-0176-zCrossRefGoogle Scholar
  80. Zhuang S, Li Q, Cai L, Wang C, Lei X (2017) Chemoproteomic profiling of bile acid interacting proteins. ACS Cent Sci 3(5):501–509.  https://doi.org/10.1021/acscentsci.7b00134CrossRefGoogle Scholar
  81. Zweerink S, Kallnik V, Ninck S, Nickel S, Verheyen J, Blum M, Wagner A, Feldmann I, Sickmann A, Albers SV, Brasen C, Kaschani F, Siebers B, Kaiser M (2017) Activity-based protein profiling as a robust method for enzyme identification and screening in extremophilic Archaea. Nat Commun 8:15352.  https://doi.org/10.1038/ncomms15352CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Chemical Biology and Exposure Sciences GroupPacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of ChemistrySeattle UniversitySeattleUSA
  3. 3.The Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA

Personalised recommendations