Skip to main content

Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence

  • Chapter
  • First Online:
Biology of Chlamydia

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 412))

Abstract

Obligate intracellular pathogens in the family Chlamydiaceae infect taxonomically diverse eukaryotes ranging from amoebae to mammals. However, many fundamental aspects of chlamydial cell biology and pathogenesis remain poorly understood. Genetic dissection of chlamydial biology has historically been hampered by a lack of genetic tools. Exploitation of the ability of chlamydia to recombine genomic material by lateral gene transfer (LGT) ushered in a new era in chlamydia research. With methods to map mutations in place, genetic screens were able to assign functions and phenotypes to specific chlamydial genes. Development of an approach for stable transformation of chlamydia also provided a mechanism for gene delivery and platforms for disrupting chromosomal genes. Here, we explore how these and other tools have been used to test hypotheses concerning the functions of known chlamydial virulence factors and discover the functions of completely uncharacterized genes. Refinement and extension of the existing genetic tools to additional Chlamydia spp. will substantially advance understanding of the biology and pathogenesis of this important group of pathogens.

Julie A. Brothwell and Matthew K. Muramatsu—Equal contributions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agaisse H, Derre I (2013) A C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter. PLoS ONE 8(2):e57090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albrecht M, Sharma CM, Reinhardt R, Vogel J, Rudel T (2010) Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res 38(3):868–877

    Article  PubMed  CAS  Google Scholar 

  • Azuma Y, Hirakawa H, Yamashita A, Cai Y, Rahman MA, Suzuki H, Mitaku S, Toh H, Goto S, Murakami T, Sugi K, Hayashi H, Fukushi H, Hattori M, Kuhara S, Shirai M (2006) Genome sequence of the cat pathogen, Chlamydophila felis. DNA Res 13(1):15–23

    Article  PubMed  CAS  Google Scholar 

  • Barron AL, White HJ, Rank RG, Soloff BL, Moses EB (1981) A new animal model for the study of Chlamydia trachomatis genital infections: infection of mice with the agent of mouse pneumonitis. J Infect Dis 143(1):63–66

    Article  PubMed  CAS  Google Scholar 

  • Bastidas RJ, Valdivia RH (2016) Emancipating Chlamydia: advances in the genetic manipulation of a recalcitrant intracellular pathogen. Microbiol Mol Biol Rev 80(2):411–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauler LD, Hackstadt T (2014) Expression and targeting of secreted proteins from Chlamydia trachomatis. J Bacteriol 196(7):1325–1334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binet R, Maurelli AT (2005) Fitness cost due to mutations in the 16S rRNA associated with spectinomycin resistance in Chlamydia psittaci 6BC. Antimicrob Agents Chemother 49(11):4455–4464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binet R, Maurelli AT (2007) Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. Antimicrob Agents Chemother 51(12):4267–4275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binet R, Maurelli AT (2009a) The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness. Bmc Microbiology 9

    Google Scholar 

  • Binet R, Maurelli AT (2009b) Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc Natl Acad Sci USA 106(1):292–297

    Article  PubMed  Google Scholar 

  • Binet R, Bowlin AK, Maurelli AT, Rank RG (2010) Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs. Antimicrob Agents Chemother 54(3):1094–1101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges V, Ferreira R, Nunes A, Sousa-Uva M, Abreu M, Borrego MJ, Gomes JP (2013) Effect of long-term laboratory propagation on Chlamydia trachomatis genome dynamics. Infect Genet Evol 17:23–32

    Article  PubMed  CAS  Google Scholar 

  • Brothwell JA, Muramatsu MK, Toh E, Rockey DD, Putman TE, Barta ML, Hefty PS, Suchland RJ, Nelson DE (2016) Interrogating genes that mediate Chlamydia trachomatis survival in cell culture using conditional mutants and recombination. J Bacteriol 198(15):2131–2139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunham R, Yang C, Maclean I, Kimani J, Maitha G, Plummer F (1994) Chlamydia trachomatis from individuals in a sexually transmitted disease core group exhibit frequent sequence variation in the major outer membrane protein (omp1) gene. J Clin Invest 94(1):458–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burall LS, Rodolakis A, Rekiki A, Myers GS, Bavoil PM (2009) Genomic analysis of an attenuated Chlamydia abortus live vaccine strain reveals defects in central metabolism and surface proteins. Infect Immun 77(9):4161–4167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, Maclean I, Mohammed Z, Peeling R, Roshick C, Schachter J, Solomon AW, Stamm WE, Suchland RJ, Taylor L, West SK, Quinn TC, Belland RJ, McClarty G (2003) Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest 111(11):1757–1769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson JH, Porcella SF, McClarty G, Caldwell HD (2005) Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect Immun 73(10):6407–6418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson JH, Whitmire WM, Crane DD, Wicke L, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Porcella SF, Martinez-Orengo N, Heinzen RA, Kari L, Caldwell HD (2008) The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun 76(6):2273–2283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casson N, Medico N, Bille J, Greub G (2006) Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts. Microbes Infect 8(5):1294–1300

    Article  PubMed  CAS  Google Scholar 

  • Casson N, Entenza JM, Borel N, Pospischil A, Greub G (2008) Murine model of pneumonia caused by Parachlamydia acanthamoebae. Microb Pathog 45(2):92–97

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhou Z, Conrad T, Yang Z, Dai J, Li Z, Wu Y, Zhong G (2015a) In vitro passage selects for Chlamydia muridarum with enhanced infectivity in cultured cells but attenuated pathogenicity in mouse upper genital tract. Infect Immun 83(5):1881–1892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Yang Z, Sun X, Tang L, Ding Y, Xue M, Zhou Z, Baseman J, Zhong G (2015b) Intrauterine infection with plasmid-free Chlamydia muridarum reveals a critical role of the plasmid in chlamydial ascension and establishes a model for evaluating plasmid-independent pathogenicity. Infect Immun 83(6):2583–2592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101(27):10166–10171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collingro A, Poppert S, Heinz E, Schmitz-Esser S, Essig A, Schweikert M, Wagner M, Horn M (2005) Recovery of an environmental Chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp. Microbiology 151(Pt 1):301–309

    Article  PubMed  CAS  Google Scholar 

  • Collingro A, Tischler P, Weinmaier T, Penz T, Heinz E, Brunham RC, Read TD, Bavoil PM, Sachse K, Kahane S, Friedman MG, Rattei T, Myers GS, Horn M (2011) Unity in variety–the pan-genome of the Chlamydiae. Mol Biol Evol 28(12):3253–3270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrad TA, Gong S, Yang Z, Matulich P, Keck J, Beltrami N, Chen C, Zhou Z, Dai J, Zhong G (2015) The chromosome-encoded hypothetical protein TC0668 Is an upper genital tract pathogenicity factor of Chlamydia muridarum. Infect Immun 84(2):467–479

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dean D, Schachter J, Dawson CR, Stephens RS (1992) Comparison of the major outer membrane protein variant sequence regions of B/Ba isolates: a molecular epidemiologic approach to Chlamydia trachomatis infections. J Infect Dis 166(2):383–392

    Article  PubMed  CAS  Google Scholar 

  • DeMars R, Weinfurter J (2008) Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance. J Bacteriol 190(5):1605–1614

    Article  PubMed  CAS  Google Scholar 

  • DeMars R, Weinfurter J, Guex E, Lin J, Potucek Y (2007) Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis. J Bacteriol 189(3):991–1003

    Article  PubMed  CAS  Google Scholar 

  • Dessus-Babus S, Bebear CM, Charron A, Bebear C, de Barbeyrac B (1998) Sequencing of gyrase and topoisomerase IV quinolone-resistance-determining regions of Chlamydia trachomatis and characterization of quinolone-resistant mutants obtained In vitro. Antimicrob Agents Chemother 42(10):2474–2481

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ding H, Gong S, Tian Y, Yang Z, Brunham R, Zhong G (2013) Transformation of sexually transmitted infection-causing serovars of Chlamydia trachomatis using Blasticidin for selection. PLoS ONE 8(11):e80534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donati M, Huot-Creasy H, Humphrys M, Di Paolo M, Di Francesco A, Myers GS (2014) Genome Sequence of Chlamydia suis MD56, isolated from the conjunctiva of a weaned piglet. Genome Announc 2(3):e00425

    Article  PubMed  PubMed Central  Google Scholar 

  • Draghi A 2nd, Popov VL, Kahl MM, Stanton JB, Brown CC, Tsongalis GJ, West AB, Frasca S Jr (2004) Characterization of “Candidatus piscichlamydia salmonis” (order Chlamydiales), a chlamydia-like bacterium associated with epitheliocystis in farmed Atlantic salmon (Salmo salar). J Clin Microbiol 42(11):5286–5297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dreses-Werringloer U, Padubrin I, Kohler L, Hudson AP (2003) Detection of nucleotide variability in rpoB in both rifampin-sensitive and rifampin-resistant strains of Chlamydia trachomatis. Antimicrob Agents Chemother 47(7):2316–2318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49(Pt 2):415–440

    Article  PubMed  CAS  Google Scholar 

  • Falkow S (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–276

    Article  PubMed  Google Scholar 

  • Farencena A, Comanducci M, Donati M, Ratti G, Cevenini R (1997) Characterization of a new isolate of Chlamydia trachomatis which lacks the common plasmid and has properties of biovar trachoma. Infect Immun 65(7):2965–2969

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell HD, McClarty G (2002) Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem 277(30):26893–26903

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Harrison KS, Ramirez Y, Auer D, Chowdhury BK, Prusty BK, Sauer F, Dimond Z, Kisker C, Scott Hefty P, Rudel T (2017) Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. Elife 6

    Google Scholar 

  • Fitch WM, Peterson EM, de la Maza LM (1993) Phylogenetic analysis of the outer-membrane-protein genes of Chlamydiae, and its implication for vaccine development. Mol Biol Evol 10(4):892–913

    PubMed  CAS  Google Scholar 

  • Gerard HC, Mishra MK, Mao G, Wang S, Hali M, Whittum-Hudson JA, Kannan RM, Hudson AP (2013) Dendrimer-enabled DNA delivery and transformation of Chlamydia pneumoniae. Nanomedicine 9(7):996–1008

    Article  PubMed  CAS  Google Scholar 

  • Gomes JP, Bruno WJ, Borrego MJ, Dean D (2004) Recombination in the genome of Chlamydia trachomatis involving the polymorphic membrane protein C gene relative to ompA and evidence for horizontal gene transfer. J Bacteriol 186(13):4295–4306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong S, Yang Z, Lei L, Shen L, Zhong G (2013) Characterization of Chlamydia trachomatis plasmid-encoded open reading frames. J Bacteriol 195(17):3819–3826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greub G, Berger P, Papazian L, Raoult D (2003) Parachlamydiaceae as rare agents of pneumonia. Emerg Infect Dis 9(6):755–756

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadfield J, Harris SR, Seth-Smith HMB, Parmar S, Andersson P, Giffard PM, Schachter J, Moncada J, Ellison L, Vaulet MLG, Fermepin MR, Radebe F, Mendoza S, Ouburg S, Morre SA, Sachse K, Puolakkainen M, Korhonen SJ, Sonnex C, Wiggins R, Jalal H, Brunelli T, Casprini P, Pitt R, Ison C, Savicheva A, Shipitsyna E, Hadad R, Kari L, Burton MJ, Mabey D, Solomon AW, Lewis D, Marsh P, Unemo M, Clarke IN, Parkhill J, Thomson NR (2017) Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion. Genome Res 27(7):1220–1229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Hacker G, Pichler P, Mechtler K, Muller A, Baranyi C, Toenshoff ER, Montanaro J, Horn M (2010) Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae. Mol Microbiol 77(3):687–700

    Article  PubMed  CAS  Google Scholar 

  • Hayes LJ, Yearsley P, Treharne JD, Ballard RA, Fehler GH, Ward ME (1994) Evidence for naturally occurring recombination in the gene encoding the major outer membrane protein of lymphogranuloma venereum isolates of Chlamydia trachomatis. Infect Immun 62(12):5659–5663

    PubMed  PubMed Central  CAS  Google Scholar 

  • Holzer M, Laroucau K, Creasy HH, Ott S, Vorimore F, Bavoil PM, Marz M, Sachse K (2016) Whole-genome sequence of Chlamydia gallinacea type strain 08-1274/3. Genome Announc 4(4):e00708

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooppaw AJ, Fisher DJ (2016) A coming of age story: Chlamydia in the Post-Genetic Era. Infect Immun 84(3):612–621

    Article  PubMed Central  CAS  Google Scholar 

  • Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, Brandt P, Nyakatura GJ, Droege M, Frishman D, Rattei T, Mewes HW, Wagner M (2004) Illuminating the evolutionary history of chlamydiae. Science 304(5671):728–730

    Article  PubMed  CAS  Google Scholar 

  • Illingworth M, Hooppaw AJ, Ruan L, Fisher DJ, Chen L (2017) Biochemical and genetic analysis of the Chlamydia GroEL Chaperonins. J Bacteriol 199(12):e00844

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffrey BM, Suchland RJ, Quinn KL, Davidson JR, Stamm WE, Rockey DD (2010) Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination. Infect Immun 78(6):2544–2553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeffrey BM, Suchland RJ, Eriksen SG, Sandoz KM, Rockey DD (2013) Genomic and phenotypic characterization of in vitro-generated Chlamydia trachomatis recombinants. BMC Microbiol 13:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson CM, Fisher DJ (2013) Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron. PLoS ONE 8(12):e83989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21(4):385–389

    Article  PubMed  CAS  Google Scholar 

  • Kannan RM, Gerard HC, Mishra MK, Mao G, Wang S, Hali M, Whittum-Hudson JA, Hudson AP (2013) Dendrimer-enabled transformation of Chlamydia trachomatis. Microb Pathog 65:29–35

    Article  PubMed  CAS  Google Scholar 

  • Kari L, Whitmire WM, Carlson JH, Crane DD, Reveneau N, Nelson DE, Mabey DC, Bailey RL, Holland MJ, McClarty G, Caldwell HD (2008) Pathogenic diversity among Chlamydia trachomatis ocular strains in nonhuman primates is affected by subtle genomic variations. J Infect Dis 197(3):449–456

    Article  PubMed  CAS  Google Scholar 

  • Kari L, Goheen MM, Randall LB, Taylor LD, Carlson JH, Whitmire WM, Virok D, Rajaram K, Endresz V, McClarty G, Nelson DE, Caldwell HD (2011) Generation of targeted Chlamydia trachomatis null mutants. Proc Natl Acad Sci USA 108(17):7189–7193

    Article  PubMed  PubMed Central  Google Scholar 

  • Kari L, Southern TR, Downey CJ, Watkins HS, Randall LB, Taylor LD, Sturdevant GL, Whitmire WM, Caldwell HD (2014) Chlamydia trachomatis polymorphic membrane protein D is a virulence factor involved in early host-cell interactions. Infect Immun 82(7):2756–2762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlsen M, Nylund A, Watanabe K, Helvik JV, Nylund S, Plarre H (2008) Characterization of ‘Candidatus Clavochlamydia salmonicola’: an intracellular bacterium infecting salmonid fish. Environ Microbiol 10(1):208–218

    PubMed  CAS  Google Scholar 

  • Key CE, Fisher DJ (2017) Use of group II intron technology for targeted mutagenesis in Chlamydia trachomatis. Methods Mol Biol 1498:163–177

    Article  PubMed  CAS  Google Scholar 

  • Kokes M, Dunn JD, Granek JA, Nguyen BD, Barker JR, Valdivia RH, Bastidas RJ (2015) Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 17(5):716–725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lagkouvardos I, Jehl MA, Rattei T, Horn M (2014) Signature protein of the PVC superphylum. Appl Environ Microbiol 80(2):440–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lampe MF, Suchland RJ, Stamm WE (1993) Nucleotide sequence of the variable domains within the major outer membrane protein gene from serovariants of Chlamydia trachomatis. Infect Immun 61(1):213–219

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lei L, Chen J, Hou S, Ding Y, Yang Z, Zeng H, Baseman J, Zhong G (2014) Reduced live organism recovery and lack of hydrosalpinx in mice infected with plasmid-free Chlamydia muridarum. Infect Immun 82(3):983–992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Chen C, Gong S, Hou S, Qi M, Liu Q, Baseman J, Zhong G (2014) Transformation of Chlamydia muridarum reveals a role for Pgp5 in suppression of plasmid-dependent gene expression. J Bacteriol 196(5):989–998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lohr M, Prohl A, Ostermann C, Liebler-Tenorio E, Schroedl W, Aeby S, Greub G, Reinhold P (2015) A bovine model of a respiratory Parachlamydia acanthamoebae infection. Pathog Dis 73(1):1–14

    PubMed  CAS  Google Scholar 

  • Lowden NM, Yeruva L, Johnson CM, Bowlin AK, Fisher DJ (2015) Use of aminoglycoside 3’ adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Res Notes 8:570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo ML, Leenay RT, Beisel CL (2016) Current and future prospects for CRISPR-based tools in bacteria. Biotechnol Bioeng 113(5):930–943

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A, Izutsu H, Miyashita N, Ohuchi M (1998) Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J Clin Microbiol 36(10):3013–3019

    PubMed  PubMed Central  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ, Sandlin RC, Maurelli AT (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185(4):1218–1228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra MK, Gerard HC, Whittum-Hudson JA, Hudson AP, Kannan RM (2012) Dendrimer-enabled modulation of gene expression in Chlamydia trachomatis. Mol Pharm 9(3):413–421

    Article  PubMed  CAS  Google Scholar 

  • Misiurina O, Shipitsina EV, Finashutina Iu P, Lazarev VN, Akopian TA, Savicheva AM, Govorun VM (2004) Analysis of point mutations in the ygeD, gyrA and parC genes in fluoroquinolones resistant clinical isolates of Chlamydia trachomatis. Mol Gen Mikrobiol Virusol 3:3–7

    Google Scholar 

  • Mojica S, Huot Creasy H, Daugherty S, Read TD, Kim T, Kaltenboeck B, Bavoil P, Myers GS (2011) Genome sequence of the obligate intracellular animal pathogen Chlamydia pecorum E58. J Bacteriol 193(14):3690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrison RP, Caldwell HD (2002) Immunity to murine chlamydial genital infection. Infect Immun 70(6):2741–2751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moulder JW (1985) Comparative biology of intracellular parasitism. Microbiol Rev 49(3):298–337

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller KE, Wolf K, Fields KA (2016) Gene deletion by fluorescence-reported allelic exchange mutagenesis in Chlamydia trachomatis. MBio 7(1):e01817–01815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller KE, Wolf K, Fields KA (2017) Chlamydia trachomatis Transformation and Allelic Exchange Mutagenesis. Curr Protoc Microbiol 45: 11A 13 11–11A 13 15

    Google Scholar 

  • Muramatsu MK, Brothwell JA, Stein BD, Putman TE, Rockey DD, Nelson DE (2016) Beyond tryptophan synthase: identification of genes that contribute to Chlamydia trachomatis survival during IFN-gamma induced persistence and reactivation. Infect Immun

    Google Scholar 

  • Nelson DE, Taylor LD, Shannon JG, Whitmire WM, Crane DD, McClarty G, Su H, Kari L, Caldwell HD (2007) Phenotypic rescue of Chlamydia trachomatis growth in IFN-gamma treated mouse cells by irradiated Chlamydia muridarum. Cell Microbiol 9(9):2289–2298

    Article  PubMed  CAS  Google Scholar 

  • Nguyen BD, Valdivia RH (2012) Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc Natl Acad Sci USA 109(4):1263–1268

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen BD, Valdivia RH (2013) Forward genetic approaches in Chlamydia trachomatis. J Vis Exp 80:e50636

    Google Scholar 

  • Nunes A, Gomes JP (2014) Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect Genet Evol 23:49–64

    Article  PubMed  CAS  Google Scholar 

  • O’Connell CM, Nicks KM (2006) A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture. Microbiology 152(Pt 6):1601–1607

    Article  PubMed  CAS  Google Scholar 

  • O’Connell CM, Ingalls RR, Andrews CW Jr, Scurlock AM, Darville T (2007) Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J Immunol 179(6):4027–4034

    Article  PubMed  Google Scholar 

  • Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella SF, Heinzen RA (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci USA 106(11):4430–4434

    Article  PubMed  PubMed Central  Google Scholar 

  • Omsland A, Sager J, Nair V, Sturdevant DE, Hackstadt T (2012) Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium. Proc Natl Acad Sci USA 109(48):19781–19785

    Article  PubMed  PubMed Central  Google Scholar 

  • Omsland A, Sixt BS, Horn M, Hackstadt T (2014) Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev 38(4):779–801

    Article  PubMed  CAS  Google Scholar 

  • Palmer L, Falkow S (1986) A common plasmid of Chlamydia trachomatis. Plasmid 16(1):52–62

    Article  PubMed  CAS  Google Scholar 

  • Peterson EM, Markoff BA, Schachter J, de la Maza LM (1990) The 7.5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid 23(2):144–148

    Article  PubMed  CAS  Google Scholar 

  • Pickett MA, Everson JS, Pead PJ, Clarke IN (2005) The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology-Sgm 151:893–903

    Article  CAS  Google Scholar 

  • Qin B, McClarty G (1992) Effect of 6-thioguanine on Chlamydia trachomatis growth in wild-type and hypoxanthine-guanine phosphoribosyltransferase-deficient cells. J Bacteriol 174(9):2865–2873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajaram K, Giebel AM, Toh E, Hu S, Newman JH, Morrison SG, Kari L, Morrison RP, Nelson DE (2015) Mutational analysis of the Chlamydia muridarum plasticity zone. Infect Immun 83(7):2870–2881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsey KH, Sigar IM, Schripsema JH, Denman CJ, Bowlin AK, Myers GA, Rank RG (2009) Strain and virulence diversity in the mouse pathogen Chlamydia muridarum. Infect Immun 77(8):3284–3293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rank RG, Yeruva L (2014) Hidden in plain sight: chlamydial gastrointestinal infection and its relevance to persistence in human genital infection. Infect Immun 82(4):1362–1371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rank RG, Bowlin AK, Reed RL, Darville T (2003) Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect Immun 71(11):6148–6154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28(6):1397–1406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Read TD, Myers GS, Brunham RC, Nelson WC, Paulsen IT, Heidelberg J, Holtzapple E, Khouri H, Federova NB, Carty HA, Umayam LA, Haft DH, Peterson J, Beanan MJ, White O, Salzberg SL, Hsia RC, McClarty G, Rank RG, Bavoil PM, Fraser CM (2003) Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31(8):2134–2147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodolakis A (1983) In vitro and in vivo properties of chemically induced temperature-sensitive mutants of Chlamydia psittaci var. ovis: screening in a murine model. Infect Immun 42(2):525–530

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rodolakis A, Souriau A (1983) Response of ewes to temperature-sensitive mutants of Chlamydia psittaci (var ovis) obtained by NTG mutagenesis. Ann Rech Vet 14(2):155–161

    PubMed  CAS  Google Scholar 

  • Rodolakis A, Souriau A (1986) Response of goats to vaccination with temperature-sensitive mutants of Chlamydia psittaci obtained by nitrosoguanidine mutagenesis. Am J Vet Res 47(12):2627–2631

    PubMed  CAS  Google Scholar 

  • Russell M, Darville T, Chandra-Kuntal K, Smith B, Andrews CW Jr, O’Connell CM (2011) Infectivity acts as in vivo selection for maintenance of the chlamydial cryptic plasmid. Infect Immun 79(1):98–107

    Article  PubMed  CAS  Google Scholar 

  • Sachse K, Laroucau K (2015) Two more species of Chlamydia-does it make a difference? Pathog Dis 73(1):1–3

    Article  PubMed  CAS  Google Scholar 

  • Sachse K, Laroucau K, Riege K, Wehner S, Dilcher M, Creasy HH, Weidmann M, Myers G, Vorimore F, Vicari N, Magnino S, Liebler-Tenorio E, Ruettger A, Bavoil PM, Hufert FT, Rossello-Mora R, Marz M (2014) Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Syst Appl Microbiol 37(2):79–88

    Article  PubMed  Google Scholar 

  • Schofl G, Voigt A, Litsche K, Sachse K, Saluz HP (2011) Complete genome sequences of four mammalian isolates of Chlamydophila psittaci. J Bacteriol 193(16):4258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seth-Smith HM, Harris SR, Persson K, Marsh P, Barron A, Bignell A, Bjartling C, Clark L, Cutcliffe LT, Lambden PR, Lennard N, Lockey SJ, Quail MA, Salim O, Skilton RJ, Wang Y, Holland MJ, Parkhill J, Thomson NR, Clarke IN (2009) Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain. BMC Genom 10:239

    Article  CAS  Google Scholar 

  • Shao L, Melero J, Zhang N, Arulanandam B, Baseman J, Liu Q, Zhong G (2017) The cryptic plasmid is more important for Chlamydia muridarum to colonize the mouse gastrointestinal tract than to infect the genital tract. PLoS ONE 12(5):e0177691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sixt BS, Bastidas RJ, Finethy R, Baxter RM, Carpenter VK, Kroemer G, Coers J, Valdivia RH (2017) The Chlamydia trachomatis inclusion membrane protein CpoS counteracts STING-mediated cellular surveillance and suicide programs. Cell Host Microbe 21(1):113–121

    Article  PubMed  CAS  Google Scholar 

  • Snavely EA, Kokes M, Dunn JD, Saka HA, Nguyen BD, Bastidas RJ, McCafferty DG, Valdivia RH (2014) Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog Dis 71(3):336–351

    Article  PubMed  CAS  Google Scholar 

  • Song L, Carlson JH, Whitmire WM, Kari L, Virtaneva K, Sturdevant DE, Watkins H, Zhou B, Sturdevant GL, Porcella SF, McClarty G, Caldwell HD (2013) Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes. Infect Immun 81(3):636–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song L, Carlson JH, Zhou B, Virtaneva K, Whitmire WM, Sturdevant GL, Porcella SF, McClarty G, Caldwell HD (2014) Plasmid-mediated transformation tropism of chlamydial biovars. Pathog Dis 70(2):189–193

    Article  PubMed  CAS  Google Scholar 

  • Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282(5389):754–759

    Article  PubMed  CAS  Google Scholar 

  • Stephens RS, Myers G, Eppinger M, Bavoil PM (2009) Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol 55(2):115–119

    Article  PubMed  CAS  Google Scholar 

  • Stothard DR, Williams JA, Van Der Pol B, Jones RB (1998) Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun 66(12):6010–6013

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stride MC, Polkinghorne A, Miller TL, Groff JM, Lapatra SE, Nowak BF (2013) Molecular characterization of “Candidatus Parilichlamydia carangidicola,” a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, “Candidatus Parilichlamydiaceae” fam. nov. (order Chlamydiales). Appl Environ Microbiol 79(5):1590–1597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sturdevant GL, Kari L, Gardner DJ, Olivares-Zavaleta N, Randall LB, Whitmire WM, Carlson JH, Goheen MM, Selleck EM, Martens C, Caldwell HD (2010) Frameshift mutations in a single novel virulence factor alter the in vivo pathogenicity of Chlamydia trachomatis for the female murine genital tract. Infect Immun 78(9):3660–3668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suchland RJ, Rockey DD, Bannantine JP, Stamm WE (2000) Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 68(1):360–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suchland RJ, Sandoz KM, Jeffrey BM, Stamm WE, Rockey DD (2009) Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents Chemother 53(11):4604–4611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tam JE, Davis CH, Wyrick PB (1994) Expression of recombinant DNA introduced into Chlamydia trachomatis by electroporation. Can J Microbiol 40(7):583–591

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Brown A, Vaughan L, Greub G, Timms P, Polkinghorne A (2015) Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathog Dis 73(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Thomas NS, Lusher M, Storey CC, Clarke IN (1997) Plasmid diversity in Chlamydia. Microbiology 143(Pt 6):1847–1854

    Article  PubMed  CAS  Google Scholar 

  • Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, Livingstone M, Cerdeno-Tarraga AM, Harris B, Doggett J, Ormond D, Mungall K, Clarke K, Feltwell T, Hance Z, Sanders M, Quail MA, Price C, Barrell BG, Parkhill J, Longbottom D (2005) The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res 15(5):629–640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomson NR, Holden MT, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P, O’Connor CD, Goodhead I, Norbertzcak H, Harris B, Ormond D, Rance R, Quail MA, Parkhill J, Stephens RS, Clarke IN (2008) Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 18(1):161–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tipples G, McClarty G (1991) Isolation and initial characterization of a series of Chlamydia trachomatis isolates selected for hydroxyurea resistance by a stepwise procedure. J Bacteriol 173(16):4932–4940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Treharne JD, Yearsley PJ, Ballard RC (1989) In vitro studies of Chlamydia trachomatis susceptibility and resistance to rifampin and rifabutin. Antimicrob Agents Chemother 33(8):1393–1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Nagarajan U, Hennings L, Bowlin AK, Rank RG (2010) Local host response to chlamydial urethral infection in male guinea pigs. Infect Immun 78(4):1670–1681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN (2011) Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 7(9):e1002258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YB, Cutcliffe LT, Skilton RJ, Ramsey KH, Thomson NR, Clarke IN (2014) The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum. Pathogens and Disease 72(1):19–23

    Article  PubMed  CAS  Google Scholar 

  • Weber MM, Bauler LD, Lam J, Hackstadt T (2015) Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Infect Immun 83(12):4710–4718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weber MM, Lam JL, Dooley CA, Noriea NF, Hansen BT, Hoyt FH, Carmody AB, Sturdevant GL, Hackstadt T (2017) Absence of specific Chlamydia trachomatis inclusion membrane proteins triggers premature inclusion membrane lysis and host cell death. Cell Rep 19(7):1406–1417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weisburg WG, Hatch TP, Woese CR (1986) Eubacterial origin of chlamydiae. J Bacteriol 167(2):570–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wesolowski J, Weber MM, Nawrotek A, Dooley CA, Calderon M, St Croix CM, Hackstadt T, Cherfils J, Paumet F (2017) Chlamydia hijacks ARF GTPases to coordinate microtubule posttranslational modifications and golgi complex positioning. MBio 8(3):e02280

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickstrum J, Sammons LR, Restivo KN, Hefty PS (2013) Conditional gene expression in Chlamydia trachomatis using the tet system. PLoS ONE 8(10):e76743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolner-Hanssen P, Patton DL, Holmes KK (1991) Protective immunity in pig-tailed macaques after cervical infection with Chlamydia trachomatis. Sex Transm Dis 18(1):21–25

    Article  PubMed  CAS  Google Scholar 

  • Wylie JL, Wang LL, Tipples G, McClarty G (1996) A single point mutation in CTP synthetase of Chlamydia trachomatis confers resistance to cyclopentenyl cytosine. J Biol Chem 271(26):15393–15400

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Starr T, Song L, Carlson JH, Sturdevant GL, Beare PA, Whitmire WM, Caldwell HD (2015) Chlamydial lytic exit from host cells is plasmid regulated. MBio 6(6):e01648–01615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C, Kari L, Sturdevant GL, Song L, Patton MJ, Couch CE, Ilgenfritz JM, Southern TR, Whitmire WM, Briones M, Bonner C, Grant C, Hu P, McClarty G, Caldwell HD (2017) Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host-pathogen interactions. Pathog Dis 75(3):ftx035

    Article  PubMed Central  Google Scholar 

  • Yeruva L, Spencer N, Bowlin AK, Wang Y, Rank RG (2013) Chlamydial infection of the gastrointestinal tract: a reservoir for persistent infection. Pathog Dis 68(3):88–95

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Cheng QX, Liu AM, Zhao GP, Wang J (2017) A novel and efficient method for bacteria genome editing employing both CRISPR/Cas9 and an antibiotic resistance cassette. Front Microbiol 8:812

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong G (2017) Chlamydial plasmid-dependent pathogenicity. Trends Microbiol 25(2):141–152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

DE Nelson was supported by grants AI099278 and AI116706, and G Zhong was supported by grants AI121989, AI105712, AI047997, from the United States National Institutes of Health, Division of Allery and Infectious Diseases. We would like Drs. Harlan Caldwell and Derek Fisher for discussion and insights regarding aspects of this manuscript. Finally, any oversights of relevant studies were not intentional and the authors would like to apologize for any instance of this in advance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brothwell, J.A., Muramatsu, M.K., Zhong, G., Nelson, D.E. (2017). Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence. In: Häcker, G. (eds) Biology of Chlamydia . Current Topics in Microbiology and Immunology, vol 412. Springer, Cham. https://doi.org/10.1007/82_2017_76

Download citation

Publish with us

Policies and ethics