Skip to main content

ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship?

  • Chapter
  • First Online:
Coordinating Organismal Physiology Through the Unfolded Protein Response

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 414))

Abstract

The accumulation of protein aggregates has a fundamental role in the patophysiology of distinct neurodegenerative diseases. This phenomenon may have a common origin, where disruption of intracellular mechanisms related to protein homeostasis (here termed proteostasis) control during aging may result in abnormal protein aggregation. The unfolded protein response (UPR) embodies a major element of the proteostasis network triggered by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as possible mechanism of neurodegenerative and synaptic dysfunction, and in addition contribute to the abnormal aggregation of key disease-related proteins. In this article we overview the most recent findings suggesting a causal role of ER stress in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abisambra JF, Jinwal UK, Blair LJ et al (2013) Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci Off J Soc Neurosci 33(22):9498–9507

    Article  CAS  Google Scholar 

  • Acosta-Alvear D, Zhou Y, Blais A et al (2007) XBP1 controls diverse cell type-and condition-specific transcriptional regulatory networks. Mol Cell 27(1):53–66

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Association (2015) Alzheimer’s Dementia: J Alzheimer’s Assoc 11(3):332–384

    Google Scholar 

  • Apodaca J, Kim I, Rao H (2006) Cellular tolerance of prion protein PrP in yeast involves proteolysis and the unfolded protein response. Biochem Biophys Res Commun 347(1):319–326

    Article  CAS  PubMed  Google Scholar 

  • Atkin JD, Farg MA, Turner BJ et al (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281(40):30152–30165

    Article  CAS  PubMed  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A et al (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919

    Article  CAS  PubMed  Google Scholar 

  • Baleriola J, Walker CA, Jean YY et al (2014) Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158(5):1159–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard C, Gauthier S, Corbett A et al (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031

    Article  PubMed  Google Scholar 

  • Belal C, Ameli NJ, El Kommos A et al (2012) The homocysteine-inducible endoplasmic reticulum (ER) stress protein Herp counteracts mutant α-synuclein-induced ER stress via the homeostatic regulation of ER-resident calcium release channel proteins. Hum Mol Genet 21(5):963–977

    Article  CAS  PubMed  Google Scholar 

  • Bellucci A, Navarria L, Zaltieri M et al (2011) Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease. J Neurochem 116(4):588–605

    Article  CAS  PubMed  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555

    Article  CAS  PubMed  Google Scholar 

  • Bennett EJ, Shaler TA, Woodman B et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448(7154):704–708

    Article  CAS  PubMed  Google Scholar 

  • Berezovska O, Lleo A, Herl LD, Frosch MP et al (2005) Familial Alzheimer’s disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci Off J Soc Neurosci 25(11):3009–3017

    Article  CAS  Google Scholar 

  • Bernard-Marissal N, Sunyach C, Marissal T, Raoul C et al (2015) Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis 73:130–136

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Bouman L, Schlierf A, Lutz AK et al (2011) Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ 18(5):769–782

    Article  CAS  PubMed  Google Scholar 

  • Boyce M et al (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Sci 307(5711):935–939

    Article  CAS  Google Scholar 

  • Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochem Biophys Acta 1739(2–3):331–354

    CAS  PubMed  Google Scholar 

  • Brown AR, Rebus S, McKimmie CS et al (2005) Gene expression profiling of the preclinical scrapie-infected hippocampus. Biochem Biophys Res Commun 334(1):86–95

    Article  CAS  PubMed  Google Scholar 

  • Brown RH (1998) SOD1 aggregates in ALS: cause, correlate or consequence? Nat Med 4(12):1362–1364

    Article  CAS  PubMed  Google Scholar 

  • Carnemolla A, Fossale E, Agostoni E et al (2009) Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease. J Biol Chem 284(27):18167–18173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas-Tinto S, Zhang Y, Sanchez-Garcia J et al (2011) The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet 20(11):2144–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Carranza DL, Zhang Y, Guerrero-Munoz MJ et al (2012) Differential activation of the ER stress factor XBP1 by oligomeric assemblies. Neurochem Res 37(8):1707–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  CAS  PubMed  Google Scholar 

  • Cavedo E, Lista S, Khachaturian Z et al (2014) The road ahead to cure Alzheimer’s disease: development of biological markers and neuroimaging methods for prevention trials across all stages and target populations. J Prev Alzheimer’s Dis 1(3):181–202

    CAS  Google Scholar 

  • Cho KJ, Lee BI, Cheon SY et al (2009) Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease. Neuroscience 163(4):1128–1134

    Article  CAS  PubMed  Google Scholar 

  • Chung CY, Khurana V, Auluck PK et al (2013) Identification and rescue of α-synuclein toxicity in Parkinson patient–derived neurons. Sci 342(6161):983–987

    Article  CAS  Google Scholar 

  • Cisse M, Duplan E, Lorivel T et al (2016) The transcription factor XBP1s restores hippocampal synaptic plasticity and memory by control of the Kalirin-7 pathway in Alzheimer model. Mol Psychiatry

    Google Scholar 

  • Colla E, Jensen PH, Pletnikova O, Troncoso JC et al (2012a) Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci: Off J Soc Neurosci 32(10):3301–3305

    Article  CAS  Google Scholar 

  • Colla E, Coune P, Liu Y et al (2012b) Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci: Off J Soc Neurosci 32(10):3306–3320

    Article  CAS  Google Scholar 

  • Conn KJ, Gao W, McKee A et al (2004) Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson’s disease and Lewy body pathology. Brain Res 1022(1–2):164–172

    Article  CAS  PubMed  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Sci (New York, N.Y.) 313(5785):324–328

    Article  CAS  Google Scholar 

  • Cornejo VH, Hetz C (2013) Seminars in immunopathology. In: The unfolded protein response in Alzheimers disease, pp 277–292

    Google Scholar 

  • Cornejo VH, Pihán P, Vidal RL et al (2013) Role of the unfolded protein response in organ physiology: lessons from mouse models. IUBMB Life 65(12):962–975

    Article  CAS  PubMed  Google Scholar 

  • Costa-Mattioli M, Sossin WS, Klann E et al (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61(1):10–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coune PG, Bensadoun J-C, Aebischer P et al (2011) Rab1A over-expression prevents Golgi apparatus fragmentation and partially corrects motor deficits in an alpha-synuclein based rat model of Parkinson’s disease. J Parkinson’s Dis 1(4):373–387

    CAS  Google Scholar 

  • Credle JJ, Forcelli PA, Delannoy M et al (2015) α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiol Dis 76:112–125

    Article  CAS  PubMed  Google Scholar 

  • Crunkhorn S (2015) Neurodegenerative disease: phosphatase inhibitor prevents protein-misfolding diseases. Nat Rev Drug Discov 14(6):386

    PubMed  Google Scholar 

  • Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3(4):269–283

    Article  CAS  PubMed  Google Scholar 

  • Das I, Krzyzosiak A, Schneider K, Wrabetz L et al (2015) Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science (New York, N.Y.) 348(6231):239–242

    Article  CAS  Google Scholar 

  • Deitch JS, Alexander GM, Bensinger A et al (2014) Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis. PLoS ONE 9(6):e99879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Domenico F, Head E, Butterfield DA et al (2014) Oxidative stress and proteostasis network: culprit and casualty of Alzheimers-like neurodegeneration. Adv Geriatrics

    Google Scholar 

  • Dion PA, Daoud H, Rouleau GA (2009) Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 10(11):769–782

    Article  CAS  PubMed  Google Scholar 

  • Dovey HF, John V, Anderson JP et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76(1):173–181

    Article  CAS  PubMed  Google Scholar 

  • Duennwald ML, Lindquist S (2008) Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 22(23):3308–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufey E, Sepúlveda D, Rojas-Rivera D et al (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am J Physiol Cell Physiol 307(7):C582–C594

    Article  CAS  PubMed  Google Scholar 

  • Duran-Aniotz C, Martínez G, Hetz C (2014) Memory loss in Alzheimer’s disease: are the alterations in the UPR network involved in the cognitive impairment? Front Aging Neurosci 6:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duran-Aniotz C et al (2017) IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. Acta Neuropathol 1–18

    Google Scholar 

  • Duvoisin RC (1995) Recent advances in the genetics of Parkinson’s disease. Adv Neurol 69:33–40

    Google Scholar 

  • Egawa N, Yamamoto K, Inoue H et al (2011) The endoplasmic reticulum stress sensor, ATF6α, protects against neurotoxin-induced dopaminergic neuronal death. J Biol Chem 286(10):7947–7957

    Article  CAS  PubMed  Google Scholar 

  • Endres K, Reinhardt S (2013) ER-stress in Alzheimer’s disease: turning the scale? Am J Neurodegener Dis 2(4):247–265

    PubMed  PubMed Central  Google Scholar 

  • Fawcett EM, Hoyt JM, Johnson JK et al (2015) Hypoxia disrupts proteostasis in Caenorhabditis elegans. Aging Cell 14(1):92–101

    Article  CAS  PubMed  Google Scholar 

  • Ferreiro E, Oliveira CR, Pereira CM (2008) The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis 30(3):331–342

    Article  CAS  PubMed  Google Scholar 

  • Filézac de L’Etang A, Maharjan N, Braña C et al (2015) Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci 18(2):227–238

    Article  PubMed  CAS  Google Scholar 

  • Fouillet A, Levet C, Virgone A, Robin M et al (2012) ER stress inhibits neuronal death by promoting autophagy. Autophagy 8(6):915–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman OJ, Mallucci GR (2016) The UPR and synaptic dysfunction in neurodegeneration. Brain Res

    Article  CAS  PubMed  Google Scholar 

  • Gkogkas C, Middleton S, Kremer AM et al (2008) VAPB interacts with and modulates the activity of ATF6. Hum Mol Genet 17(11):1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Glenner GG, Wong CW (2012) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein 1984. Biochem Biophys Res Commun 425(3):534–539

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Perez P, Woehlbier U, Chian RJ et al (2015) Identification of rare protein disulfide isomerase gene variants in amyotrophic lateral sclerosis patients. Gene 566(2):158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbatyuk MS, Shabashvili A, Chen W et al (2012) Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 20(7):1327–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawardena S, Goldstein LS (2005) Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways. Arch Neurol 62(1):46–51

    Article  PubMed  Google Scholar 

  • Haass C (2004) Take five–BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 23(3):483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday M, Radford H, Sekine Y et al (2015) Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis 6:e1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamos JE, Oblas B, Pulaski-Salo D et al (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurol 41(3):345

    Article  CAS  PubMed  Google Scholar 

  • Hashida K, Kitao Y, Sudo H et al (2012) ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinsons disease. PLoS ONE 7(10):e47950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henstridge CM, Pickett E, Spires-Jones TL (2016) Synaptic pathology: a shared mechanism in neurological disease. Ageing Res Rev 28:72–84

    Article  CAS  PubMed  Google Scholar 

  • Herms JW, Korte S, Gall S et al (2000) Altered intracellular calcium homeostasis in cerebellar granule cells of prion protein-deficient mice. J Neurochem 75(4):1487–1492

    Article  CAS  PubMed  Google Scholar 

  • Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102

    Article  CAS  PubMed  Google Scholar 

  • Hetz CA, Soto C (2006) Stressing out the ER: a role of the unfolded protein response in prion-related disorders. Curr Mol Med 6(1):37–43

    Google Scholar 

  • Hetz Flores C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J et al (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22(20):5435–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz C, Russelakis-Carneiro M, Wälchli S et al (2005a) The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci 25(11):2793–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz C, Lee A-H, Gonzalez-Romero D, Thielen P et al (2008) Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci 105(2):757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz C, Thielen P, Matus S et al (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23(19):2294–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12(9):703–719

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Russelakis-Carneiro M, Walchli S et al (2005) The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci 25:2793–2802

    Article  CAS  PubMed  Google Scholar 

  • Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5(1):101–108

    PubMed  PubMed Central  Google Scholar 

  • Ho YS, Yang X, Lau JC et al (2012) Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle: implication in Alzheimer’s disease pathogenesis. J Alzheimer’s Dis: JAD 28(4):839–854

    Article  CAS  Google Scholar 

  • Honjo Y, Ito H, Horibe T, Takahashi R et al (2010) Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease. Brain Res 1349:90–96

    Article  CAS  PubMed  Google Scholar 

  • Honjo Y, Kaneko S, Ito H et al (2011) Protein disulfide isomerase-immunopositive inclusions in patients with amyotrophic lateral sclerosis. Amyotroph Later Scler Off Publ World Fed Neurol Res Gr Mot Neuron Dis 12(6):444–450

    CAS  Google Scholar 

  • Hoozemans JJM, Veerhuis R, Van Haastert ES et al (2005) The unfolded protein response is activated in Alzheimers disease. Acta Neuropathol 110(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • Hoozemans JJM, Van Haastert ES, Eikelenboom P et al (2007) Activation of the unfolded protein response in Parkinsons disease. Biochem Biophys Res Commun 354(3):707–711

    Article  CAS  PubMed  Google Scholar 

  • Hoozemans JJ, van Haastert ES, Nijholt DA et al (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoozemans JJ, van Haastert ES, Nijholt DA et al (2012) Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neuro-Degener Dis 10(1–4):212–215

    Article  CAS  Google Scholar 

  • Hu B-R, Janelidze S, Ginsberg MD et al (2001) Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab 21(7):865–875

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Yamada M, Tanaka H et al (2009) Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol Dis 36(3):470–476

    Article  CAS  PubMed  Google Scholar 

  • Jankovic J, Aguilar LG (2008) Current approaches to the treatment of Parkinsons disease. Neuropsychiatry Dis Treat 4(4):743–757

    Article  CAS  Google Scholar 

  • Jiang Y, Chadwick SR, Lajoie P (2016) Endoplasmic reticulum stress: the cause and solution to Huntington’s disease? Brain Res

    Google Scholar 

  • Jiang HQ, Ren M, Jiang HZ et al (2014) Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 277:132–138

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Gan M, Ebrahim AS et al (2010) ER stress response plays an important role in aggregation of α-synuclein. Mol Neurodegener 5:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalathur RK, Giner-Lamia J, Machado S et al (2015) The unfolded protein response and its potential role in Huntington’s disease elucidated by a systems biology approach. F1000Res 4:103

    Google Scholar 

  • Katayama T, Imaizumi K, Manabe T et al (2004) Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28(1–2):67–78

    Article  CAS  PubMed  Google Scholar 

  • Katayama T, Imaizumi K, Sato N et al (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1(8):479–485

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21(12):1406–1415

    Article  CAS  PubMed  Google Scholar 

  • Kern A, Behl C (2009) The unsolved relationship of brain aging and late-onset Alzheimer disease. Biochem Biophys Acta 1790(10):1124–1132

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi H, Almer G, Yamashita S et al (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci 103(15):6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Raphael AR, LaDow ES et al (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46(2):152–160

    Article  CAS  PubMed  Google Scholar 

  • Kitao Y, Imai Y, Ozawa K et al (2007) Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation. Hum Mol Genet 16(1):50–60

    Article  CAS  PubMed  Google Scholar 

  • Kouroku Y, Fujita E, Jimbo A et al (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 11(13):1505–1515

    Article  CAS  PubMed  Google Scholar 

  • Kouroku Y, Fujita E, Tanida I et al (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239

    Article  CAS  PubMed  Google Scholar 

  • Kwok CT, Morris AG, Frampton J et al (2013) Association studies indicate that protein disulfide isomerase is a risk factor in amyotrophic lateral sclerosis. Free Radic Biol Med 58:81–86

    Article  CAS  PubMed  Google Scholar 

  • Labbadia J, Morimoto RI (2014) Proteostasis and longevity: when does aging really begin? F1000Prime Rep 6:7

    Google Scholar 

  • De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  • Lautenschlaeger J, Prell T, Grosskreutz J (2012) Endoplasmic reticulum stress and the ER mitochondria calcium cycle in amyotrophic lateral sclerosis. Amyotroph Later Scler 13(2):166–177

    Article  CAS  Google Scholar 

  • Ledesma MD, Galvan C, Hellias B et al (2002) Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem 83(6):1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Lee H-J, Patel S, Lee S-J (2005) Intravesicular localization and exocytosis of α-synuclein and its aggregates. J Neurosci 25(25):6016–6024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DY, Lee KS, Lee HJ et al (2010a) Activation of PERK signaling attenuates Abeta-mediated ER stress. PLoS ONE 5(5):e10489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JH, Won SM et al (2010b) Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med 42(5):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Noh JY, Oh Y et al (2012) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 21(1):101–114

    Article  PubMed  CAS  Google Scholar 

  • Liu SY, Wang W, Cai ZY et al (2013) Polymorphism -116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer’s disease. CNS Neurosci Ther 19(4):229–234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loewen CA, Feany MB (2010) The unfolded protein response protects from tau neurotoxicity in vivo. PloS One 5(9)

    Google Scholar 

  • Lourenco MV, Ferreira ST, De Felice FG (2015) Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer’s disease and diabetes. Prog Neurobiol 129:37–57

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Bolon B, Kahn S et al (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 4(3):231–232

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Trinh MA, Wexler AJ et al (2013) Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat Neurosci 16(9):1299–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa S, Leigh PN, King A et al (2009) TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 29(6):672–683

    Article  PubMed  Google Scholar 

  • Maharjan N, Saxena S (2016) ER strikes again: proteostasis dysfunction in ALS. EMBO J 35(8):798–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maly DJ, Papa FR (2014) Druggable sensors of the unfolded protein response. Nat Chem Biol 10(11):892–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez G, Vidal RL, Mardones P et al (2016) Regulation of memory formation by the transcription factor XBP1. Cell Rep 14(6):1382–1394

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Vicente M, Talloczy Z, Wong E et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13(5):567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masters CL, Multhaup G, Simms G et al (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4(11):2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matus S, Castillo K, Hetz C (2012) Hormesis: protecting neurons against cellular stress in Parkinson disease. Autophagy 8(6):997–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matus S, Lopez E, Valenzuela V, Nassif M et al (2013) Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS ONE 8(7):e66672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mays CE, Soto C (2016) The stress of prion disease. Brain Res

    Google Scholar 

  • McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126(4):479–497

    Article  CAS  PubMed  Google Scholar 

  • Mercado G, Valdés P, Hetz C (2013) An ERcentric view of Parkinson’s disease. Trends Mol Med 19(3):165–175

    Article  CAS  PubMed  Google Scholar 

  • Mercado G, Castillo V, Soto P et al (2016) ER stress and Parkinson’s disease: pathological inputs that converge into the secretory pathway. Brain Res 1648(Pt B):626–632

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda T, Hayakawa Y, Itoh M et al (2007) ATF4 regulates γ-secretase activity during amino acid imbalance. Biochem Biophys Res Commun 352(3):722–727

    Article  CAS  PubMed  Google Scholar 

  • Moreno JA, Radford H, Peretti D et al (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nat 485(7399):507–511

    Article  CAS  Google Scholar 

  • Moreno JA, Halliday M, Molloy C et al (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5(206):206ra138

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Morales-Scheihing D, Gonzalez-Romero D et al (2010) Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathog 6(10):e1001138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagata T, Ilieva H, Murakami T et al (2007) Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 29(8):767–771

    Article  PubMed  Google Scholar 

  • Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75(5):822–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitoh H, Matsuzawa A, Tobiume K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitoh H, Kadowaki H, Nagai A et al (2008) ALS-linked mutant SOD1 induces ER stress-and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22(11):1451–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley H, Cole SL, Logan S, Maus E et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci Off J Soc Neurosci 26(40):10129–10140

    Article  CAS  Google Scholar 

  • Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    Article  CAS  PubMed  Google Scholar 

  • Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  CAS  PubMed  Google Scholar 

  • Page G, Rioux Bilan A, Ingrand S et al (2006) Activated double-stranded RNA-dependent protein kinase and neuronal death in models of Alzheimer’s disease. Neurosci 139(4):1343–1354

    Article  CAS  Google Scholar 

  • Pasini S, Corona C, Liu J et al (2015) Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep 11(2):183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks–a driver for protein function in evolution. Nat Rev Mol Cell Biol 14(4):237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudencio M, Belzil VV, Batra R, Ross CA et al (2015) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 18(8):1175–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci 95(23):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusiner SB, Scott MR (1997) Genetics of prions. Annu Rev Genet 31:139–175

    Article  CAS  PubMed  Google Scholar 

  • Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012

    Google Scholar 

  • Rozas P, Bargsted L, Martínez F et al (2016) The ER proteostasis network in ALS: determining the differential motoneuron vulnerability. Neurosci Lett

    Google Scholar 

  • Ross CA, Poirier MA (2005) What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11):891–898

    Article  CAS  PubMed  Google Scholar 

  • Ryu EJ, Harding HP, Angelastro JM et al (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22(24):10690–10698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sado M, Yamasaki Y, Iwanaga T et al (2009) Protective effect against Parkinson’s disease-related insults through the activation of XBP1. Brain Res 1257:16–24

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kauppinen A, Suuronen T et al (2009) ER stress in Alzheimer’s disease: a novel neuronal trigger for inflammation and Alzheimer’s pathology. J Neuroinflamm 6:41

    Article  CAS  Google Scholar 

  • Sato N, Urano F, Yoon Leem J et al (2000) Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nat Cell Biol 2(12):863–870

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35–48

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627–636

    Article  CAS  PubMed  Google Scholar 

  • Sämann J, Hegermann J, von Gromoff E et al (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284(24):16482–16491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheff SW, Ansari MA, Mufson EJ (2016) Oxidative stress and hippocampal synaptic protein levels in elderly cognitively intact individuals with Alzheimer’s disease pathology. Neurobiol Aging 42:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheper W, Hoozemans JJ (2015) The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol 130(3):315–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si L, Xu T, Wang F, Liu Q (2012) X-box-binding protein 1-modified neural stem cells for treatment of Parkinson’s disease. Neural Regener Res 7(10):736–740

    CAS  Google Scholar 

  • Silva RM, Ries V, Oo TF, Yarygina O et al (2005) CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J Neurochem 95(4):974–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slodzinski H, Moran LB, Michael GJ et al (2009) Homocysteine-induced endoplasmic reticulum protein (herp) is up-regulated in parkinsonian substantia nigra and present in the core of Lewy bodies. Clin Neuropathol 28(5):333–343

    CAS  PubMed  Google Scholar 

  • Smith HL, Mallucci GR (2016) The unfolded protein response: mechanisms and therapy of neurodegeneration. Brain J Neurol 139(Pt 8):2113–2121

    Article  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan J, Brown RH (2013) Amyotrophic lateral sclerosis: problems and prospects. Ann Neurol 74(3):309–316

    Article  CAS  PubMed  Google Scholar 

  • Steele AD, Hetz C, Yi CH et al (2007) Prion pathogenesis is independent of caspase-12. Prion 1(4):243–247

    Article  PubMed  PubMed Central  Google Scholar 

  • De Strooper B, Karran E (2016) The cellular phase of Alzheimers disease. Cell 164(4):603–615

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Sun Y, Ling SC et al (2015) Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc Natl Acad Sci USA 112(50):E6993–E7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Matsuoka M (2012) TDP-43 toxicity is mediated by the unfolded protein response-unrelated induction of C/EBP homologous protein expression. J Neurosci Res 90(3):641–647

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Kanekura K, Levine TP et al (2009) ALS-linked P56S-VAPB, an aggregated loss-of-function mutant of VAPB, predisposes motor neurons to ER stress-related death by inducing aggregation of co-expressed wild-type VAPB. J Neurochem 108(4):973–985

    Article  CAS  PubMed  Google Scholar 

  • Tobisawa S, Hozumi Y, Arawaka S et al (2003) Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem Biophys Res Commun 303(2):496–503

    Article  CAS  PubMed  Google Scholar 

  • Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775(1–2):24–29

    Article  CAS  PubMed  Google Scholar 

  • Torres M, Castillo K, Armisén R et al (2010) Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS ONE 5(12):e15658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres M, Medinas DB, Matamala JM et al (2015) The protein-disulfide isomerase ERp57 regulates the steady-state levels of the prion protein. J Biol Chem 290(39):23631–23645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsaytler P et al (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Sci 332(6025):91–94

    Article  CAS  Google Scholar 

  • Unterberger U, Höftberger R, Gelpi E et al (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65(4):348–357

    Article  CAS  PubMed  Google Scholar 

  • Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Sci 287(5453):664–666

    Article  CAS  Google Scholar 

  • Valdés P, Mercado G, Vidal RL et al (2014) Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc Natl Acad Sci USA 111(18):6804–6809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valenzuela V, Martínez G, Duran-Aniotz C et al (2016) Gene therapy to target ER stress in brain diseases. Brain Res

    Article  CAS  PubMed  Google Scholar 

  • van der Harg JM, Nölle A, Zwart R et al (2014) The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress. Cell Death Dis 5:e1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varma D, Sen D (2015) Role of the unfolded protein response in the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp 75(1):1–26

    Google Scholar 

  • Vassar R (2009) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Alzheimer’s Dementia 5(4):P81–P82

    Article  Google Scholar 

  • Vidal R, Caballero B, Couve A, Hetz C (2011) Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease. Curr Mol Med 11(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Vidal RL, Figueroa A, Court FA et al (2012) Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet 21(10):2245–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira FG, Ping Q, Moreno AJ et al (2015) Guanabenz treatment accelerates disease in a mutant SOD1 mouse model of ALS. PLoS ONE 10(8):e0135570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vitte J, Traver S, De Paula M et al (2010) Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. J Neuropathol Exp Neurol 69(9):959–972

    Article  CAS  PubMed  Google Scholar 

  • Vossel KA, Zhang K, Brodbeck J et al (2010) Tau reduction prevents Abeta-induced defects in axonal transport. Sci (New York, N.Y.) 330(6001):198

    Article  CAS  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228

    Article  CAS  PubMed  Google Scholar 

  • Walker L, McAleese KE, Thomas AJ et al (2015) Neuropathologically mixed Alzheimer’s and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 129(5):729–748

    Article  CAS  PubMed  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Sci 334(6059):1081–1086

    Article  CAS  Google Scholar 

  • Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nat 529(7586):326–335

    Article  CAS  Google Scholar 

  • Wang L, Popko B, Roos RP (2011) The unfolded protein response in familial amyotrophic lateral sclerosis. Hum Mol Genet 20(5):1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ye R, Barron E et al (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 17(3):488–498

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Popko B, Tixier E et al (2014) Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol Dis 71:317–324

    Article  CAS  PubMed  Google Scholar 

  • Wate R, Ito H, Zhang JH et al (2005) Expression of an endoplasmic reticulum-resident chaperone, glucose-regulated stress protein 78, in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Acta Neuropathol 110(6):557–562

    Article  CAS  PubMed  Google Scholar 

  • Woehlbier U, Colombo A, Saaranen MJ et al (2016) ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J 35(8):845–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo BC, Krapfenbauer K, Cairns N et al (2002) Overexpressed protein disulfide isomerase in brains of patients with sporadic Creutzfeldt-Jakob disease. Neurosci Lett 334(3):196–200

    Article  CAS  PubMed  Google Scholar 

  • Yoon SO, Park DJ, Ryu JC et al (2012) JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75(5):824–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Cao P, Smith MA et al (2011) Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS ONE 6(8):e22354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Jansen-West K, Xu YF et al (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128(4):505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuleta A, Vidal RL, Armentano D et al (2012) AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntingtons disease. Biochem Biophys Res Commun 420(3):558–563

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Millennium Institute No. P09-015-F, FONDAP program 15150012, CONICYT-Brazil 441921/2016-7, ALS Therapy Alliance 2014-F-059, Muscular Dystrophy Association 382453, Michael J. Fox Foundation for Parkinson’s Research—Target Validation grant No 9277, FONDECYT No. 1140549, Office of Naval Research-Global (ONR-G) N62909-16-1-2003, FONDEF D11E1007, U.S. Air Force Office of Scientific Research FA9550-16-1-0384, FONDEF ID16I10223, and ALSRP Therapeutic Idea Award AL150111 (CH). FC is a postdoctoral fellow funded by FONDAP program 15150012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Hetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cabral-Miranda, F., Hetz, C. (2017). ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship?. In: Wiseman, R., Haynes, C. (eds) Coordinating Organismal Physiology Through the Unfolded Protein Response. Current Topics in Microbiology and Immunology, vol 414. Springer, Cham. https://doi.org/10.1007/82_2017_52

Download citation

Publish with us

Policies and ethics