Skip to main content

Genetic Manipulation of Borrelia Spp.

  • Chapter
  • First Online:
Spirochete Biology: The Post Genomic Era

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 415))

Abstract

The spirochetes Borrelia (Borreliella) burgdorferi and Borrelia hermsii, the etiologic agents of Lyme disease and relapsing fever, respectively, cycle in nature between an arthropod vector and a vertebrate host. They have extraordinarily unusual genomes that are highly segmented and predominantly linear. The genetic analyses of Lyme disease spirochetes have become increasingly more sophisticated, while the age of genetic investigation in the relapsing fever spirochetes is just dawning. Molecular tools available for B. burgdorferi and related species range from simple selectable markers and gene reporters to state-of-the-art inducible gene expression systems that function in the animal model and high-throughput mutagenesis methodologies, despite nearly overwhelming experimental obstacles. This armamentarium has empowered borreliologists to build a formidable genetic understanding of the cellular physiology of the spirochete and the molecular pathogenesis of Lyme disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams PP, Flores Avile C, Jewett MW (2017a) A dual luciferase reporter system for B. burgdorferi measures transcriptional activity during tick-pathogen interactions. Front Cell Infect Microbiol 7:225

    Google Scholar 

  • Adams PP, Flores Avile C, Popitsch N, Bilusic I, Schroeder R, Lybecker M, Jewett MW (2017b) In vivo expression technology and 5′ end mapping of the Borrelia burgdorferi transcriptome identify novel RNAs expressed during mammalian infection. Nucleic Acids Res 45:775–792

    Article  CAS  PubMed  Google Scholar 

  • Alverson J, Samuels DS (2002) groEL expression in gyrB mutants of Borrelia burgdorferi. J Bacteriol 184:6069–6072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alverson J, Bundle SF, Sohaskey CD, Lybecker MC, Samuels DS (2003) Transcriptional regulation of the ospAB and ospC promoters from Borrelia burgdorferi. Mol Microbiol 48:1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Arnold WK, Savage CR, Brissette CA, Seshu J, Livny J, Stevenson B (2016) RNA-seq of Borrelia burgdorferi in multiple phases of growth reveals insights into the dynamics of gene expression, transcriptome architecture, and noncoding RNAs. PLoS ONE 11:e0164165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Babb K, McAlister JD, Miller JC, Stevenson B (2004) Molecular characterization of Borrelia burgdorferi erp promoter/operator elements. J Bacteriol 186:2745–2756

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bandy NJ, Salman-Dilgimen A, Chaconas G (2014) Construction and characterization of a Borrelia burgdorferi strain with conditional expression of the essential telomere resolvase, ResT. J Bacteriol 196:2396–2404

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barbour AG, Guo BP (2010) Pathogenesis of relapsing fever. In Samuels DS, Radolf JD (eds) Borrelia: Molecular biology, host interaction and pathogenesis. Norfolk, UK Caister Academic Press, pp 333–357

    Google Scholar 

  • Barthold SW, Cadavid D, Philipp MT (2010) Animal models of borreliosis. In Samuels DS, Radolf JD (eds) Borrelia: Molecular biology, host interaction and pathogenesis. Norfolk, UK Caister Academic Press, pp 359–411

    Google Scholar 

  • Battisti JM, Raffel SJ, Schwan TG (2008). A system for site-specific genetic manipulation of the relapsing fever spirochete Borrelia hermsii. In DeLeo FR, Otto M (eds) Bacterial pathogenesis: Methods and protocols. Totowa, New Jersey Humana Press, pp 69–84

    Google Scholar 

  • Beaurepaire C, Chaconas G (2005) Mapping of essential replication functions of the linear plasmid lp17 of B. burgdorferi by targeted deletion walking. Mol Microbiol 57:132–142

    Article  CAS  PubMed  Google Scholar 

  • Bestor A, Stewart PE, Jewett MW, Sarkar A, Tilly K, Rosa PA (2010) Use of the Cre-lox recombination system to investigate the lp54 gene requirement in the infectious cycle of Borrelia burgdorferi. Infect Immun 78:2397–2407

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blevins JS, Revel AT, Smith AH, Bachlani GN, Norgard MV (2007) Adaptation of a luciferase gene reporter and lac expression system to Borrelia burgdorferi. Appl Environ Microbiol 73:1501–1513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bono JL, Elias AF, Kupko JJ III, Stevenson B, Tilly K, Rosa P (2000) Efficient targeted mutagenesis in Borrelia burgdorferi. J Bacteriol 182:2445–2452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Botkin DJ, Abbott AN, Stewart PE, Rosa PA, Kawabata H, Watanabe H, Norris SJ (2006) Identification of potential virulence determinants by Himar1 transposition of infectious Borrelia burgdorferi B31. Infect Immun 74:6690–6699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boylan JA, Posey JE, Gherardini FC (2003) Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator. Proc Natl Acad Sci USA 100:11684–11689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brisson D, Drecktrah D, Eggers CH, Samuels DS (2012) Genetics of Borrelia burgdorferi. Annu Rev Genet 46:515–536

    Article  CAS  PubMed  Google Scholar 

  • Bugrysheva JV, Bryksin AV, Godfrey HP, Cabello FC (2005) Borrelia burgdorferi rel is responsible for generation of guanosine-3′-diphosphate-5′-triphosphate and growth control. Infect Immun 73:4972–4981

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Burtnick MN, Downey JS, Brett PJ, Boylan JA, Frye JG, Hoover TR, Gherardini FC (2007) Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol Microbiol 65:277–293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Byram R, Stewart PE, Rosa P (2004) The essential nature of the ubiquitous 26-kilobase circular replicon of Borrelia burgdorferi. J Bacteriol 186:3561–3569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cabello FC, Dubytska L, Bryksin AV, Bugrysheva JV, Godfrey HP (2006). Genetic studies of the Borrelia burgdorferi bmp gene family. In Cabello FC, Hulinska D, Godfrey HP (eds) Molecular Biology of Spirochetes. Amsterdam, Netherlands IOS Press, pp 235–249

    Google Scholar 

  • Caimano MJ, Eggers CH, Hazlett KRO, Radolf JD (2004) RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72:6433–6445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, Gilbert MA, Schwartz I, Radolf JD (2007) Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65:1193–1217

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Caimano MJ, Drecktrah D, Kung F, Samuels DS (2016) Interaction of the Lyme disease spirochete with its tick vector. Cell Microbiol 18:919–927

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carroll JA, Stewart PE, Rosa P, Elias AF, Garon CF (2003) An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology 149:1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516

    Article  CAS  PubMed  Google Scholar 

  • Chaconas G, Norris SJ (2013) Peaceful coexistence amongst Borrelia plasmids: getting by with a little help from their friends? Plasmid 70:161–167

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chaconas G, Stewart PE, Tilly K, Bono JL, Rosa P (2001) Telomere resolution in the Lyme disease spirochete. EMBO J 20:3229–3237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chan K, Alter L, Barthold SW, Parveen N (2015) Disruption of bbe02 by insertion of a luciferase gene increases transformation efficiency of Borrelia burgdorferi and allows live imaging in Lyme disease susceptible C3H mice. PLoS ONE 10:e0129532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chan K, Nasereddin T, Alter L, Centurion-Lara A, Giacani L, Parveen N (2016) Treponema pallidum lipoprotein TP0435 expressed in Borrelia burgdorferi produces multiple surface/periplasmic isoforms and mediates adherence. Sci Rep 6:25593

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73

    Article  CAS  PubMed  Google Scholar 

  • Charon NW, Cockburn A, Li C, Liu J, Miller KA, Miller MR, Motaleb MA, Wolgemuth CW (2012) The unique paradigm of spirochete motility and chemotaxis. Annu Rev Microbiol 66:349–370

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, Leong JM (2008) In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol 190:7885–7891

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chu C-Y, Stewart PE, Bestor A, Hansen B, Lin T, Gao L, Norris SJ, Rosa PA (2016) Function of the Borrelia burgdorferi FtsH homolog is essential for viability both in vitro and in vivo and independent of HflK/C. MBio 7:e00404–16

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cloud JL, Marconi RT, Eggers CH, Garon CF, Tilly K, Samuels DS (1997) Cloning and expression of the Borrelia burgdorferi lon gene. Gene 194:137–141

    Article  CAS  PubMed  Google Scholar 

  • Coleman JL, Katona LI, Kuhlow C, Toledo A, Okan NA, Tokarz R, Benach JL (2009) Evidence that two ATP-dependent (Lon) proteases in Borrelia burgdorferi serve different functions. PLoS Pathog 5:e1000676

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Coutte L, Botkin DJ, Gao L, Norris SJ (2009) Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLoS Pathog 5:e1000293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Criswell D, Tobiason VL, Lodmell JS, Samuels DS (2006) Mutations conferring aminoglycoside and spectinomycin resistance in Borrelia burgdorferi. Antimicrob Agents Chemother 50:445–452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crother TR, Champion CI, Whitelegge JP, Aguilera R, Wu X-Y, Blanco DR, Miller JN, Lovett MA (2004) Temporal analysis of the antigenic composition of Borrelia burgdorferi during infection in rabbit skin. Infect Immun 72:5063–5072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Di L, Pagan PE, Packer D, Martin CL, Akther S, Ramrattan G, Mongodin EF, Fraser CM, Schutzer SE, Luft BJ, Casjens SR, Qiu W-G (2014) BorreliaBase: a phylogeny-centered browser of Borrelia genomes. BMC Bioinf 15:233

    Article  Google Scholar 

  • Drecktrah D, Douglas JM, Samuels DS (2010) Use of rpsL as a counterselectable marker in Borrelia burgdorferi. Appl Environ Microbiol 76:985–987

    Article  CAS  PubMed  Google Scholar 

  • Drecktrah D, Hall LS, Hoon-Hanks LL, Samuels DS (2013) An inverted repeat in the ospC operator is required for induction in Borrelia burgdorferi. PLoS ONE 8:e68799

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dresser AR, Hardy PO, Chaconas G (2009) Investigation of the genes involved in antigenic switching at the vlsE locus in Borrelia burgdorferi: an essential role for the RuvAB branch migrase. PLoS Pathog 5:e1000680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, Radolf JD (2009) Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest 119:3652–3665

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dunham-Ems SM, Caimano MJ, Eggers CH, Radolf JD (2012) Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission. PLoS Pathog 8:e1002532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dunn JP, Kenedy MR, Iqbal H, Akins DR (2015) Characterization of the β-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi. BMC Microbiol 15:70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Earnhart CG, LeBlanc DV, Alix KE, Desrosiers DC, Radolf JD, Marconi RT (2010) Identification of residues within ligand-binding domain 1 (LBD1) of the Borrelia burgdorferi OspC protein required for function in the mammalian environment. Mol Microbiol 76:393–408

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Earnhart CG, Rhodes DV, Marconi RT (2011) Disulfide-mediated oligomer formation in Borrelia burgdorferi outer surface protein C, a critical virulence factor and potential Lyme disease vaccine candidate. Clin Vaccine Immunol 18:901–906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eggers CH, Kimmel BJ, Bono JL, Elias A, Rosa P, Samuels DS (2001) Transduction by Ï•BB-1, a bacteriophage of Borrelia burgdorferi. J Bacteriol 183:4771–4778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eggers CH, Caimano MJ, Clawson ML, Miller WG, Samuels DS, Radolf JD (2002) Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for expression of fluorescent reporters in the Lyme disease spirochaete. Mol Microbiol 43:281–296

    Article  CAS  PubMed  Google Scholar 

  • Eggers CH, Caimano MJ, Radolf JD (2004) Analysis of promoter elements involved in the transcriptional initiation of RpoS-dependent Borrelia burgdorferi genes. J Bacteriol 186:7390–7402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eggers CH, Caimano MJ, Radolf JD (2006) Sigma factor selectivity in Borrelia burgdorferi: RpoS recognition of the ospE/ospF/elp promoters is dependent on the sequence of the –10 region. Mol Microbiol 59:1859–1875

    Article  CAS  PubMed  Google Scholar 

  • Eggers CH, Gray CM, Preisig AM, Glenn DM, Pereira J, Ayers RW, Alshahrani M, Acabbo C, Becker MR, Bruenn KN, Cheung T, Jendras TM, Shepley AB, Moeller JT (2016) Phage-mediated horizontal gene transfer of both prophage and heterologous DNA by Ï•BB-1, a bacteriophage of Borrelia burgdorferi. Pathog Dis 74:ftw107

    Google Scholar 

  • Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K, Bono JL, Akins DR, Radolf JD, Schwan TG, Rosa P (2002) Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70:2139–2150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Elias AF, Bono JL, Kupko JJ 3rd, Stewart PE, Krum JG, Rosa PA (2003) New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. J Mol Microbiol Biotechnol 6:29–40

    Article  CAS  PubMed  Google Scholar 

  • Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA, Halpern M, Kurhanewicz S, Jewett MW (2014) Correction: In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. PLoS Pathog 10:e1004260

    Article  CAS  PubMed  Google Scholar 

  • Falkow S (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–276

    Article  PubMed  Google Scholar 

  • Fine LM, Earnhart CG, Marconi RT (2011) Genetic transformation of the relapsing fever spirochete Borrelia hermsii: stable integration and expression of green fluorescent protein from linear plasmid 200. J Bacteriol 193:3241–3245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fingerle V, Rauser S, Hammer B, Kahl O, Heimerl C, Schulte-Spechtel U, Gern L, Wilske B (2002) Dynamics of dissemination and outer surface protein expression of different European Borrelia burgdorferi sensu lato strains in artificially infected Ixodes ricinus nymphs. J Clin Microbiol 40:1456–1463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fingerle V, Goettner G, Gern L, Wilske B, Schulte-Spechtel U (2007) Complementation of a Borrelia afzelii OspC mutant highlights the crucial role of OspC for dissemination of Borrelia afzelii in Ixodes ricinus. Int J Med Microbiol 297:97–107

    Article  CAS  PubMed  Google Scholar 

  • Frank KL, Bundle SF, Kresge ME, Eggers CH, Samuels DS (2003) aadA confers streptomycin-resistance in Borrelia burgdorferi. J Bacteriol 185:6723–6727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quakenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MK, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochete, Borrelia burgdorferi. Nature 390:580–586

    Article  CAS  PubMed  Google Scholar 

  • Galbraith KM, Ng AC, Eggers BJ, Kuchel CR, Eggers CH, Samuels DS (2005) parC mutations in fluoroquinolone-resistant Borrelia burgdorferi. Antimicrob Agents Chemother 49:4354–4357

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ge Y, Old IG, Saint Girons I, Charon NW (1997) Molecular characterization of a large Borrelia burgdorferi motility operon which is initiated by a consensus σ70 promoter. J Bacteriol 179:2289–2299

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gilbert MA, Morton EA, Bundle SF, Samuels DS (2007) Artificial regulation of ospC expression in Borrelia burgdorferi. Mol Microbiol 63:1259–1273

    Article  CAS  PubMed  Google Scholar 

  • Gilmore RD Jr, Piesman J (2000) Inhibition of Borrelia burgdorferi migration from the midgut to the salivary glands following feeding by ticks on OspC-immunized mice. Infect Immun 68:411–414

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, Radolf JD, Rosa PA (2004a) Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun 72:5938–5946

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, Schwan TG, Policastro PF, Elias AF, Rosa PA (2004b) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci USA 101:3142–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm D, Tilly K, Bueschel DM, Fisher MA, Policastro PF, Gherardini FC, Schwan TG, Rosa PA (2005) Defining plasmids required by Borrelia burgdorferi for colonization of tick vector Ixodes scapularis (Acari: Ixodidae). J Med Entomol 42:676–684

    Article  CAS  PubMed  Google Scholar 

  • Groshong AM, Blevins JS (2014) Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. Adv Appl Microbiol 86:41–143

    Article  CAS  PubMed  Google Scholar 

  • Groshong AM, Gibbons NE, Yang XF, Blevins JS (2012) Rrp2, a prokaryotic enhancer-like binding protein, is essential for viability of Borrelia burgdorferi. J Bacteriol 194:3336–3342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayes BM, Jewett MW, Rosa PA (2010) lacZ reporter system for use in Borrelia burgdorferi. Appl Environ Microbiol 76:7407–7412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayes BM, Dulebohn DP, Sarkar A, Tilly K, Bestor A, Ambroggio X, Rosa PA (2014) Regulatory protein BBD18 of the Lyme disease spirochete: essential role during tick acquisition? MBio 5:e01017–14

    PubMed Central  PubMed  Google Scholar 

  • Hübner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV (2001) Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci USA 98:12724–12729

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyde JA, Shaw DK, Smith R III, Trzeciakowski JP, Skare JT (2010) Characterization of a conditional bosR mutant in Borrelia burgdorferi. Infect Immun 78:265–274

    Article  CAS  PubMed  Google Scholar 

  • Hyde JA, Weening EH, Chang M, Trzeciakowski JP, Höök M, Cirillo JD, Skare JT (2011) Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol Microbiol 82:99–113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iqbal H, Kenedy MR, Lybecker M, Akins DR (2016) The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 102:757–774

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • James AE, Rogovskyy AS, Crowley MA, Bankhead T (2016) Characterization of a DNA adenine methyltransferase gene of Borrelia hermsii and its dispensability for murine infection and persistence. PLoS ONE 11:e0155798

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jewett MW, Lawrence K, Bestor AC, Tilly K, Grimm D, Shaw P, VanRaden M, Gherardini F, Rosa PA (2007) The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Mol Microbiol 64:1358–1374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson RC (1977) The spirochetes. Annu Rev Microbiol 31:89–106

    Article  CAS  PubMed  Google Scholar 

  • Jutras BL, Bowman A, Brissette CA, Adams CA, Verma A, Chenail AM, Stevenson B (2012a) EbfC (YbaB) is a new type of bacterial nucleoid-associated protein and a global regulator of gene expression in the Lyme disease spirochete. J Bacteriol 194:3395–3406

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jutras BL, Verma A, Adams CA, Brissette CA, Burns LH, Whetstine CR, Bowman A, Chenail AM, Zückert WR, Stevenson B (2012b) BpaB and EbfC DNA-binding proteins regulate production of the Lyme disease spirochete’s infection-associated Erp surface proteins. J Bacteriol 194:778–786

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kao W-CA, PÄ›troÅ¡ová H, Ebady R, Lithgow KV, Rojas P, Zhang Y, Kim Y-E, Kim Y-R, Odisho T, Gupta N, Moter A, Cameron CE, Moriarty TJ (2017) Identification of Tp0751 (pallilysin) as a Treponema pallidum vascular adhesin by heterologous expression in the Lyme disease spirochete. Sci Rep 7:1538

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Karimi R, Ehrenberg M (1994) Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur J Biochem 226:355–360

    Article  CAS  PubMed  Google Scholar 

  • Karimi R, Ehrenberg M (1996) Dissociation rates of peptidyl-tRNA from the P-site of E. coli ribosomes. EMBO J 15:1149–1154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kasumba IN, Bestor A, Tilly K, Rosa PA (2015) Use of an endogenous plasmid locus for stable in trans complementation in Borrelia burgdorferi. Appl Environ Microbiol 81:1038–1046

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kawabata H, Norris SJ, Watanabe H (2004) BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun 72:7147–7754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khajanchi BK, Odeh E, Gao L, Jacobs MB, Philipp MT, Lin T, Norris SJ (2016) Phosphoenolpyruvate phosphotransferase system components modulate gene transcription and virulence of Borrelia burgdorferi. Infect Immun 84:754–764

    Article  PubMed Central  CAS  Google Scholar 

  • Knight SW, Samuels DS (1999) Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A in Borrelia burgdorferi. EMBO J 18:4875–4881

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knight SW, Kimmel BJ, Eggers CH, Samuels DS (2000) Disruption of the Borrelia burgdorferi gac gene, encoding the naturally synthesized GyrA C-terminal domain. J Bacteriol 182:2048–2051

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Krishnavajhala A, Wilder HK, Boyle WK, Damania A, Thornton JA, Pérez de León AA, Teel PD, Lopez JE (2017) Imaging of Borrelia turicatae producing the green fluorescent protein reveals persistent colonization of the Ornithodoros turicata midgut and salivary glands from nymphal acquisition through transmission. Appl Environ Microbiol 83:e02503–16

    Article  PubMed Central  PubMed  Google Scholar 

  • Kumru OS, Schulze RJ, Slusser JG, Zückert WR (2010) Development and validation of a FACS-based lipoprotein localization screen in the Lyme disease spirochete Borrelia burgdorferi. BMC Microbiol 10:277

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kumru OS, Bunikis I, Sorokina I, Bergström S, Zückert WR (2011a) Specificity and role of the Borrelia burgdorferi CtpA protease in outer membrane protein processing. J Bacteriol 193:5759–5765

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kumru OS, Schulze RJ, Rodnin MV, Ladokhin AS, Zückert WR (2011b) Surface localization determinants of Borrelia OspC/Vsp family lipoproteins. J Bacteriol 193:2814–2825

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kurtti TJ, Munderloh UG, Johnson RC, Ahlstrand GG (1987) Colony formation and morphology in Borrelia burgdorferi. J Clin Microbiol 25:2054–2058

    PubMed Central  PubMed  CAS  Google Scholar 

  • Labandeira-Rey M, Skare JT (2001) Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69:446–455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lawrenz MB, Kawabata H, Purser JE, Norris SJ (2002) Decreased electroporation efficiency in Borrelia burgdorferi containing linear plasmids lp25 and lp56: impact on transformation of infectious B. burgdorferi. Infect Immun 70:4798–4804

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lenhart TR, Akins DR (2010) Borrelia burgdorferi locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. Mol Microbiol 75:692–709

    Article  CAS  PubMed  Google Scholar 

  • Lenhart TR, Kenedy MR, Yang X, Pal U, Akins DR (2012) BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex. BMC Microbiol 12:60

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leuba-Garcia S, Martinez R, Gern L (1998) Expression of outer surface proteins A and C of Borrelia afzelii in Ixodes ricinus ticks and in the skin of mice. Zentralbl Bakteriol 287:475–484

    Article  CAS  PubMed  Google Scholar 

  • Liang FT, Jacobs MB, Bowers LC, Philipp MT (2002a) An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J Exp Med 195:415–422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang FT, Nelson FK, Fikrig E (2002b) Molecular adaptation of Borrelia burgdorferi in the murine host. J Exp Med 196:275–280

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E (2004) Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 72:5759–5767

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang FT, Xu Q, Sikdar R, Xiao Y, Cox JS, Doerrler WT (2010) BB0250 of Borrelia burgdorferi is a conserved and essential inner membrane protein required for cell division. J Bacteriol 192:6105–6115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin B, Short SA, Eskildsen M, Klempner MS, Hu LT (2001) Functional testing of putative oligopeptide permease (Opp) proteins of Borrelia burgdorferi: a complementation model in opp- Escherichia coli. Biochim Biophys Acta 1499:222–231

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Gao L, Edmondson DG, Jacobs MB, Philipp MT, Norris SJ (2009) Central role of the Holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi. PLoS Pathog 5:e1000679

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin T, Gao L, Zhang C, Odeh E, Jacobs MB, Coutte L, Chaconas G, Philipp MT, Norris SJ (2012) Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS ONE 7:e47532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin T, Troy EB, Hu LT, Gao L, Norris SJ (2014) Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology. Front Cell Infect Microbiol 4:63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin T, Gao L, Zhao X, Liu J, Norris SJ (2015) Mutations in the Borrelia burgdorferi flagellar type III secretion system genes fliH and fliI profoundly affect spirochete flagellar assembly, morphology, motility, structure, and cell division. MBio 6:e00579–15

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu J, Lin T, Botkin DJ, McCrum E, Winkler H, Norris SJ (2009) Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J Bacteriol 191:5026–5036

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liveris D, Mulay V, Schwartz I (2004) Functional properties of Borrelia burgdorferi recA. J Bacteriol 186:2275–2280

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lybecker MC, Abel CA, Feig AL, Samuels DS (2010) Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 78:622–635

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lybecker MC, Samuels DS (2017) Small RNAs of Borrelia burgdorferi: characterizing functional regulators in a sea of sRNAs. Yale J Biol Med 90:317–323

    PubMed Central  PubMed  Google Scholar 

  • Margolis N, Hogan D, Tilly K, Rosa PA (1994) Plasmid location of Borrelia purine biosynthesis gene homologs. J Bacteriol 176:6427–6432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Montgomery RR, Malawista SE, Feen KJ, Bockenstedt LK (1996) Direct demonstration of antigenic substitution of Borrelia burgdorferi ex vivo: exploration of the paradox of the early immune response to outer surface proteins A and C in Lyme disease. J Exp Med 183:261–269

    Article  CAS  PubMed  Google Scholar 

  • Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, Chaconas G (2008) Real-time high resolution 3D imaging of the Lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4:e1000090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morozova OV, Dubytska LP, Ivanova LB, Moreno CX, Bryksin AV, Sartakova ML, Dobrikova EY, Godfrey HP, Cabello FC (2005) Genetic and physiological characterization of 23S rRNA and ftsJ mutants of Borrelia burgdorferi isolated by mariner transposition. Gene 357:63–72

    Article  CAS  PubMed  Google Scholar 

  • Nickoloff JA (1995) Electroporation protocols for microorganisms. In Walker JM (ed) Methods in Molecular Biology. Totowa, New Jersey: Humana Press, p 372

    Google Scholar 

  • Nordstrand A, Barbour AG, Bergström S (2000) Borrelia pathogenesis research in the post-genomic and post-vaccine era. Curr Opin Microbiol 3:86–92

    Article  CAS  PubMed  Google Scholar 

  • Oehler S, Amouyal M, Kolkhof P, von Wilcken-Bergmann B, Müller-Hill B (1994) Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J 13:3348–3355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohnishi J, Piesman J, de Silva AM (2001) Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci USA 98:670–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang Z, Haq S, Norgard MV (2010) Analysis of the dbpBA upstream regulatory region controlled by RpoS in Borrelia burgdorferi. J Bacteriol 192:1965–1974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ouyang Z, Zhou J, Norgard MV (2014a) Synthesis of RpoS is dependent on a putative enhancer binding protein Rrp2 in Borrelia burgdorferi. PLoS ONE 9:e96917

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ouyang Z, Zhou J, Norgard MV (2014b) CsrA (BB0184) is not involved in activation of the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. Infect Immun 82:1511–1522

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E (2004) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113:220–230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Picardeau M, Brenot A, Saint Girons I (2001) First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Mol Microbiol 40:189–199

    Article  CAS  PubMed  Google Scholar 

  • Piesman J, Schwan TG (2010) Ecology of borreliae and their arthropod vectors. In Samuels DS, Radolf JD (eds) Borrelia: Molecular biology, host interaction and pathogenesis. Norfolk, UK Caister Academic Press, pp 251–278

    Google Scholar 

  • Popitsch N, Bilusic I, Rescheneder P, Schroeder R, Lybecker M (2017) Temperature-dependent sRNA transcriptome of the Lyme disease spirochete. BMC Genom 18:28

    Article  CAS  Google Scholar 

  • Purser JE, Norris SJ (2000) Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci USA 97:13865–13870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purser JE, Lawrenz MB, Caimano MJ, Howell JK, Radolf JD, Norris SJ (2003) A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol Microbiol 48:753–764

    Article  CAS  PubMed  Google Scholar 

  • Putteet-Driver AD, Zhong J, Barbour AG (2004) Transgenic expression of RecA of the spirochetes Borrelia burgdorferi and Borrelia hermsii in Escherichia coli revealed differences in DNA repair and recombination phenotypes. J Bacteriol 186:2266–2274

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raffel SJ, Battisti JM, Fischer RJ, Schwan TG (2014) Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks. PLoS Pathog 10:e1004056

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramsey ME, Hyde JA, Medina-Perez DN, Lin T, Gao L, Lundt ME, Li X, Norris SJ, Skare JT, Hu LT (2017) A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species. PLoS Pathog 13:e1006225

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rathinavelu S, de Silva AM (2001) Purification and characterization of Borrelia burgdorferi from feeding nymphal ticks (Ixodes scapularis). Infect Immun 69:3536–3541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rego ROM, Bestor A, Rosa PA (2011) Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi. J Bacteriol 193:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Revel AT, Blevins JS, Almazán C, Neil L, Kocan KM, de la Fuente J, Hagman KE, Norgard MV (2005) bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci USA 102:6972–6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyrat J-M, Pelicic V, Gicquel B, Rappuoli R (1998) Counterselectable markers: untapped tools for bacterial genetics and pathogenesis. Infect Immun 66:4011–4017

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rosa PA, Hogan DM (1992) Colony formation by Borrelia burgdorferi in solid medium: clonal analysis of osp locus variants. In Munderloh UG, Kurtti TJ (eds) First international conference on tick-borne pathogens at the host-vector interface: an agenda for research. St. Paul University of Minnesota, pp 95–103

    Google Scholar 

  • Rosa PA, Tilly K, Stewart PE (2005) The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3:129–143

    Article  CAS  PubMed  Google Scholar 

  • Samuels DS (1995) Electrotransformation of the spirochete Borrelia burgdorferi. In Nickoloff JA (ed) Electroporation protocols for microorganisms. Totowa, New Jersey Humana Press, pp 253–259

    Google Scholar 

  • Samuels DS (2006). Antibiotic resistance in Borrelia burgdorferi: applications for genetic manipulation and implications for evolution. In Cabello FC, Hulinska D, Godfrey HP (eds) Molecular biology of spirochetes. Amsterdam, Netherlands IOS Press, pp 56–70

    Google Scholar 

  • Samuels DS (2011) Gene regulation in Borrelia burgdorferi. Annu Rev Microbiol 65:479–499

    Article  CAS  PubMed  Google Scholar 

  • Samuels DS, Garon CF (1993) Coumermycin A1 inhibits growth and induces relaxation of supercoiled plasmids in Borrelia burgdorferi, the Lyme disease agent. Antimicrob Agents Chemother 37:46–50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Samuels DS, Garon CF (1997) Oligonucleotide-mediated genetic transformation of Borrelia burgdorferi. Microbiology 143:519–522

    Article  CAS  PubMed  Google Scholar 

  • Samuels DS, Mach KE, Garon CF (1994a) Genetic transformation of the Lyme disease agent Borrelia burgdorferi with coumarin-resistant gyrB. J Bacteriol 176:6045–6049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Samuels DS, Radolf JD (2009) Who is the BosR around here anyway? Mol Microbiol 74:1295–1299

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Samuels DS, Marconi RT, Huang WM, Garon CF (1994b) gyrB mutations in coumermycin A1-resistant Borrelia burgdorferi. J Bacteriol 176:3072–3075

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sarkar A, Hayes BM, Dulebohn DP, Rosa PA (2011) Regulation of the virulence determinant OspC by bbd18 on linear plasmid lp17 of Borrelia burgdorferi. J Bacteriol 193:5365–5373

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sartakova M, Dobrikova E, Cabello FC (2000) Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Proc Natl Acad Sci USA 97:4850–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartakova ML, Dobrikova EY, Terekhova DA, Devis R, Bugrysheva JV, Morozova OV, Godfrey HP, Cabello FC (2003) Novel antibiotic-resistance markers in pGK12-derived vectors for Borrelia burgdorferi. Gene 303:131–137

    Article  CAS  PubMed  Google Scholar 

  • Schulze RJ, Zückert WR (2006) Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol 59:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Schulze RJ, Chen S, Kumru OS, Zückert WR (2010) Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol Microbiol 76:1266–1278

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwan TG, Piesman J (2000) Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38:382–388

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA (1995) Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 92:2909–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP, Höök M, Skare JT (2006) Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol 59:1591–1601

    Article  CAS  PubMed  Google Scholar 

  • Shaw DK, Hyde JA, Skare JT (2012) The BB0646 protein demonstrates lipase and haemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol Microbiol 83:319–334

    Article  CAS  PubMed  Google Scholar 

  • Skare JT, Shaw DK, Trzeciakowski JP, Hyde JA (2016) In vivo imaging demonstrates that Borrelia burgdorferi ospC is uniquely expressed temporally and spatially throughout experimental infection. PLoS ONE 11:e0162501

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sohaskey CD, Barbour AG (1999) Esterases in serum-containing growth media counteract chloramphenicol acetyltransferase activity in vitro. Antimicrob Agents Chemother 43:655–660

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sohaskey CD, Arnold C, Barbour AG (1997) Analysis of promoters in Borrelia burgdorferi by use of a transiently expressed reporter gene. J Bacteriol 179:6837–6842

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sohaskey CD, Zückert WR, Barbour AG (1999) The extended promoters for two outer membrane lipoprotein genes of Borrelia spp. uniquely include a T-rich region. Mol Microbiol 33:41–51

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SY, de Silva AM (2008) Reciprocal expression of ospA and ospC in single cells of Borrelia burgdorferi. J Bacteriol 190:3429–3433

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stevenson B, Bono JL, Elias A, Tilly K, Rosa P (1998) Transformation of the Lyme disease spirochete Borrelia burgdorferi with heterologous DNA. J Bacteriol 180:4850–4855

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stewart PE, Rosa PA (2008). Transposon mutagenesis of the Lyme disease agent Borrelia burgdorferi. In DeLeo FR, Otto M (eds) Bacterial pathogenesis: methods and protocols. Totowa, New Jersey Humana Press, pp 85–95

    Google Scholar 

  • Stewart PE, Chaconas G, Rosa P (2003) Conservation of plasmid maintenance functions between linear and circular plasmids in Borrelia burgdorferi. J Bacteriol 185:3202–3209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stewart P, Thalken R, Bono J, Rosa P (2001) Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol 39:714–721

    Article  CAS  PubMed  Google Scholar 

  • Stewart PE, Wang X, Bueschel DM, Clifton DR, Grimm D, Tilly K, Carroll JA, Weis JJ, Rosa PA (2006) Delineating the requirement for the Borrelia burgdorferi virulence factor OspC in the mammalian host. Infect Immun 74:3547–3553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stewart PE, Bestor A, Cullen JN, Rosa PA (2008) A tightly regulated surface protein of Borrelia burgdorferi is not essential to the mouse-tick infectious cycle. Infect Immun 76:1970–1978

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stewart PE, Hoff J, Fischer E, Krum JG, Rosa PA (2004) Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl Environ Microbiol 70:5973–5979

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stoenner HG, Dodd T, Larsen C (1982) Antigenic variation of Borrelia hermsii. J Exp Med 156:1297–1311

    Article  CAS  PubMed  Google Scholar 

  • Strother KO, de Silva A (2005) Role of Borrelia burgdorferi linear plasmid 25 in infection of Ixodes scapularis ticks. J Bacteriol 187:5776–5781

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Terekhova D, Sartakova ML, Wormser GP, Schwartz I, Cabello FC (2002) Erythromycin resistance in Borrelia burgdorferi. Antimicrob Agents Chemother 46:3637–3640

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tilly K, Hauser R, Campbell J, Ostheimer GJ (1993) Isolation of dnaJ, dnaK, and grpE homologues from Borrelia burgdorferi and complementation of Escherichia coli mutants. Mol Microbiol 7:359–369

    Article  CAS  PubMed  Google Scholar 

  • Tilly K, Elias AF, Bono JL, Stewart P, Rosa P (2000) DNA exchange and insertional inactivation in spirochetes. J Mol Microbiol Biotechnol 2:433–442

    CAS  PubMed  Google Scholar 

  • Tilly K, Elias AF, Errett J, Fischer E, Iyer R, Schwartz I, Bono JL, Rosa P (2001) Genetics and regulation of chitobiose utilization in Borrelia burgdorferi. J Bacteriol 183:5544–5553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, Vanraden MJ, Stewart P, Rosa P (2006) Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 74:3554–3564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tilly K, Checroun C, Rosa PA (2012) Requirements for Borrelia burgdorferi plasmid maintenance. Plasmid 68:1–12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tilly K, Bestor A, Rosa PA (2013) Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol 89:216–227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Troy EB, Lin T, Gao L, Lazinski DW, Camilli A, Norris SJ, Hu LT (2013) Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Infect Immun 81:2347–2457

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Troy EB, Lin T, Gao L, Lazinski DW, Lundt M, Camilli A, Norris SJ, Hu LT (2016) Global Tn-seq analysis of carbohydrate utilization and vertebrate infectivity of Borrelia burgdorferi. Mol Microbiol 101:1003–1023

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Whetstine CR, Slusser JG, Zückert WR (2009) Development of a single-plasmid-based regulatable gene expression system for Borrelia burgdorferi. Appl Environ Microbiol 75:6553–6558

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu Q, Seemanapalli SV, Lomax L, McShan K, Li X, Fikrig E, Liang FT (2005) Association of linear plasmid 28-1 with an arthritic phenotype of Borrelia burgdorferi. Infect Immun 73:7208–7215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu Q, Seemanapalli SV, McShan K, Liang FT (2006) Constitutive expression of outer surface protein C diminishes the ability of Borrelia burgdorferi to evade specific humoral immunity. Infect Immun 74:5177–5184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu Q, McShan K, Liang FT (2007) Identification of an ospC operator critical for immune evasion of Borrelia burgdorferi. Mol Microbiol 64:220–231

    Article  CAS  PubMed  Google Scholar 

  • Yang XF, Alani SM, Norgard MV (2003) The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci USA 100:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199:641–648

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang XF, Lybecker MC, Pal U, Alani SM, Blevins J, Revel AT, Samuels DS, Norgard MV (2005) Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. J Bacteriol 187:4822–4829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ye M, Zhang J-J, Fang X, Lawlis GB, Troxell B, Zhou Y, Gomelsky M, Lou Y, Yang XF (2014) DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi, is essential for cell growth and virulence. Infect Immun 82:1840–1849

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang J-R, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275–285

    Article  CAS  PubMed  Google Scholar 

  • Zückert WR, Meyer J (1996) Circular and linear plasmids of Lyme disease spirochetes have extensive homology: characterization of a repeated DNA element. J Bacteriol 178:2287–2298

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ben Adler for thoughtful reading of the manuscript and Darrin Akins, Jim Battisti, Melissa Caimano, Sherwood Casjens, George Chaconas, Christian Eggers, Frank Gherardini, Mike Gilbert, Laura Hall, Chris Li, Meghan Lybecker, Rich Marconi, Motaleb, Steve Norris, Justin Radolf, Sandy Raffel, Patti Rosa, Tom Schwan, Jon Skare, Phil Stewart, Kit Tilly, and Frank Yang for useful discussions about the genetic manipulation of Borrelia. Our laboratory is supported by National Institutes of Health grant AI051486 (to D.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Drecktrah or D. Scott Samuels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Drecktrah, D., Samuels, D.S. (2017). Genetic Manipulation of Borrelia Spp.. In: Adler, B. (eds) Spirochete Biology: The Post Genomic Era. Current Topics in Microbiology and Immunology, vol 415. Springer, Cham. https://doi.org/10.1007/82_2017_51

Download citation

Publish with us

Policies and ethics