mRNA Cancer Vaccines—Messages that Prevail

  • Christian GrunwitzEmail author
  • Lena M. KranzEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 405)


During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.



We gratefully acknowledge helpful discussions with Katalin Karikó and Ugur Sahin.


  1. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738CrossRefPubMedGoogle Scholar
  2. Anderson BR et al (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38:5884–5892CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150CrossRefPubMedGoogle Scholar
  4. Bonehill A et al (2003) Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res 63:5587–5594PubMedGoogle Scholar
  5. Bonehill A et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172:6649–6657CrossRefPubMedGoogle Scholar
  6. Bonini C, Lee SP, Riddell SR, Greenberg PD (2001) Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells. J Immunol 166:5250–5257CrossRefPubMedGoogle Scholar
  7. Broos K et al (2016) Particle-mediated intravenous delivery of antigen mRNA results in strong antigen-specific T-cell responses despite the induction of Type I interferon. Off J Am Soc Gene Cell Ther 38:1–11Google Scholar
  8. Canonico A, Plitman J, Conary J, Meyrick B, Brigham K (1994a) No lung toxicity after repeated aerosol or intravenous delivery of plasmid-cationic liposome complexes. J Appl Physiol 77:415–419PubMedGoogle Scholar
  9. Canonico A, Conary J, Meyrick B, Brigham K (1994b) Aerosol and intravenous transfection of human alpha 1-antitrypsin gene to lungs of rabbits. Am J Respir Cell Mol Biol 10:24–29CrossRefPubMedGoogle Scholar
  10. Carralot J-P et al (2004) Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 61:2418–2424CrossRefPubMedGoogle Scholar
  11. Crook K, Stevenson BJ, Dubouchet M, Porteous DJ (1998) Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum. Gene Ther 5:137–143CrossRefPubMedGoogle Scholar
  12. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa, C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531Google Scholar
  13. Diken M et al (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708CrossRefPubMedGoogle Scholar
  14. Diken M et al (2013) mTOR inhibition improves antitumor effects of vaccination with antigen-encoding RNA. Cancer Immunol Res 1:386–392CrossRefPubMedGoogle Scholar
  15. Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3’UTRs. PLoS ONE 6:e18067CrossRefPubMedPubMedCentralGoogle Scholar
  16. Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235:289–295CrossRefPubMedGoogle Scholar
  17. Felgner PL et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fotin-Mleczek M et al (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 34:1–15CrossRefPubMedGoogle Scholar
  19. Heil F et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529CrossRefPubMedGoogle Scholar
  20. Hirota K, Terada H (2012) Endocytosis of particle formulations by macrophages and its application to clinical treatmentGoogle Scholar
  21. Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1–7CrossRefPubMedGoogle Scholar
  22. Holtkamp S et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017CrossRefPubMedGoogle Scholar
  23. Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997CrossRefPubMedGoogle Scholar
  24. Ishii KJ, Akira S (2005) TLR ignores methylated RNA? Immunity 23:111–113CrossRefPubMedGoogle Scholar
  25. Karikó K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550CrossRefPubMedGoogle Scholar
  26. Karikó K, Muramatsu H, Keller JM, Weissman D (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20:948–953CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim S-G et al (2008) Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine 26:6433–6440CrossRefPubMedGoogle Scholar
  28. Kowalczyk A et al (2016) Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 34:3882–3893CrossRefPubMedGoogle Scholar
  29. Kranz LM et al (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:396–401CrossRefPubMedGoogle Scholar
  30. Kreiter S et al (2007) Simultaneous ex vivo quantification of antigen-specific CD4+ and CD8+ T cell responses using in vitro transcribed RNA. Cancer Immunol Immunother 56:1577–1587CrossRefPubMedGoogle Scholar
  31. Kreiter S et al (2008) Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol 180:309–318CrossRefPubMedGoogle Scholar
  32. Kreiter S et al (2010a) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040CrossRefPubMedGoogle Scholar
  33. Kreiter S et al (2010b) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040CrossRefPubMedGoogle Scholar
  34. Kreiter S et al (2011) FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 71:6132–6142CrossRefPubMedGoogle Scholar
  35. Kübler H et al (2015) Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer 3:26CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kuhn A et al (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971CrossRefPubMedGoogle Scholar
  37. Lai SK, Wang Y-Y, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–171CrossRefPubMedGoogle Scholar
  38. Lee E et al (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 7:1701–1717CrossRefPubMedGoogle Scholar
  39. Li S, Rizzo MA, Bhattacharya S, Huang L (1998) Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther 5:930–937CrossRefPubMedGoogle Scholar
  40. Liu Y et al (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 15:167–173CrossRefPubMedGoogle Scholar
  41. Martinon F et al (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23:1719–1722CrossRefPubMedGoogle Scholar
  42. Mauro VP, Chappell SA (2014) A critical analysis of codon optimization in human therapeutics. Trends Mol Med 20:604–613CrossRefPubMedPubMedCentralGoogle Scholar
  43. Miller H, Zhang J, Kuolee R, Patel GB, Chen W (2007) Intestinal M cells: the fallible sentinels? World J Gastroenterol 13:1477–1486CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mockey M et al (2007) mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther 14:802–814CrossRefPubMedGoogle Scholar
  46. Oberli MA et al (2016) Lipid nanoparticle–Assisted mRNA delivery for potent cancer immunotherapy. Nano Lett acs.nanolett.6b03329. doi: 10.1021/acs.nanolett.6b03329
  47. Pasquinelli AE, Dahlberg JE, Lund E (1995) Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1:957–967PubMedPubMedCentralGoogle Scholar
  48. Perche F et al (2011) Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 7:445–453CrossRefPubMedGoogle Scholar
  49. Phua KKL (2015) Towards targeted delivery systems : Ligand conjugation strategies for mRNA nanoparticle tumor vaccines. J Immunol Res 2015Google Scholar
  50. Phua KKL, Leong KW, Nair SK (2013) Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. J Control Release 166:227–233CrossRefPubMedPubMedCentralGoogle Scholar
  51. Phua KKL, Nair SK, Leong KW (2014a) Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale 6:7715–7729CrossRefPubMedPubMedCentralGoogle Scholar
  52. Phua KKL, Staats HF, Leong KW, Nair SK (2014b) Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci Rep 4:5128CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pichlmair A et al (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pollard C et al (2013) Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 21:251–259CrossRefPubMedGoogle Scholar
  55. Rajapaksa TE et al (2010) Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem 285:23739–23746CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rittig SM et al (2011) Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 19:990–999CrossRefPubMedGoogle Scholar
  57. Rittig SM et al (2016) Long-term survival correlates with immunological responses in renal cell carcinoma patients treated with mRNA-based immunotherapy. Oncoimmunology 5:e1108511CrossRefPubMedGoogle Scholar
  58. Sahin U, Karikó K, Türeci Ö (2014) mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov 13:759–780CrossRefPubMedGoogle Scholar
  59. Saulquin X et al (2002) +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J Exp Med 195:353–358CrossRefPubMedPubMedCentralGoogle Scholar
  60. Scheel B et al (2004) Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 34:537–547CrossRefPubMedGoogle Scholar
  61. Scheel B et al (2005) Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 35:1557–1566CrossRefPubMedGoogle Scholar
  62. Schlee M et al (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schwab SR, Li KC, Kang C, Shastri N (2003) Constitutive display of cryptic translation products by MHC class I molecules. Science 301:1367–1371CrossRefPubMedGoogle Scholar
  64. Sebastian M et al (2011) Messenger RNA vaccination in NSCLC: findings from a phase I/IIa clinical trial. J Clin Oncol 29:2584CrossRefGoogle Scholar
  65. Selmi A et al (2016) Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol Immunother 65:1075–1083CrossRefPubMedGoogle Scholar
  66. Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE (2001) Synthesis and properties of mRNAs containing the novel ‘anti-reverse’ cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG. RNA 7:1486–1495PubMedPubMedCentralGoogle Scholar
  67. Strenkowska M et al (2016) Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res 44:9578–9590PubMedPubMedCentralGoogle Scholar
  68. Su Z et al (2002) Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res 62:5041–5048PubMedGoogle Scholar
  69. Su X, Fricke J, Kavanagh DG, Irvine DJ (2011) In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm 8:774–787CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tacken PJ, de Vries IJM, Torensma R, Figdor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802CrossRefPubMedGoogle Scholar
  71. Tang DC, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356:152–154CrossRefPubMedGoogle Scholar
  72. Thess A et al (2015) Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther. doi: 10.1038/mt.2015.103 PubMedPubMedCentralGoogle Scholar
  73. Van der Jeught K et al (2014) Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 5:10100–10113CrossRefPubMedPubMedCentralGoogle Scholar
  74. Van der Jeught K, Van Lint S, Thielemans K, Breckpot K (2015) Intratumoral delivery of mRNA: overcoming obstacles for effective immunotherapy. Oncoimmunology 4:e1005504CrossRefPubMedPubMedCentralGoogle Scholar
  75. Van Lint S et al (2012) Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 72:1661–1671CrossRefPubMedGoogle Scholar
  76. Van Lint S et al (2016) Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol Res 4:146–156CrossRefPubMedGoogle Scholar
  77. Weide B et al (2008) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 31:180–188CrossRefPubMedGoogle Scholar
  78. Weide B et al (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32:498–507CrossRefPubMedGoogle Scholar
  79. Yoneyama M, Fujita T (2007) Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem 282:15315–15318CrossRefPubMedGoogle Scholar
  80. Zelphati O, Szoka FC (1996) Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A 93:11493–11498CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhou X, Huang L (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1189:195–203CrossRefPubMedGoogle Scholar
  82. Züst R et al (2011) Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137–143CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.BioNTech RNA Pharmaceuticals GmbHMainzGermany

Personalised recommendations