pp 1-38 | Cite as

The Treponema pallidum Outer Membrane

Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum’s poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete’s immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host–pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form β-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic β-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.

Notes

Acknowledgments

Funded in part by R01 AI-26756 from the National Institutes of Health (NIAID) and the Department of Research, Connecticut Children’s Medical Center.

References

  1. Akins DR, Purcell BK, Mitra MM, Norgard MV, Radolf JD (1993) Lipid modification of the 17-kilodalton membrane immunogen of Treponema pallidum determines macrophage activation as well as amphiphilicity. Infect Immun 61:1202–1210PubMedPubMedCentralGoogle Scholar
  2. Alderete JF, Baseman JB (1979) Surface-associated host proteins on virulent Treponema pallidum. Infect Immun 26:1048–1056PubMedPubMedCentralGoogle Scholar
  3. Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, LeDoyt M, Cruz AR, Salazar JC, Radolf JD (2012) TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol 194:2321–2333PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anand A, Luthra A, Edmond ME, Ledoyt M, Caimano MJ, Radolf JD (2013) The major outer sheath protein (Msp) of Treponema denticola has a bipartite domain architecture and exists as periplasmic and outer membrane-spanning conformers. J Bacteriol 195:2060–2071PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anand A, LeDoyt M, Karanian C, Luthra A, Koszelak-Rosenblum M, Malkowski MG, Puthenveetil R, Vinogradova O, Radolf JD (2015) Bipartite topology of Treponema pallidum repeat proteins C/D and I: outer membrane insertion, trimerization, and porin function require a C-terminal β-barrel domain. J Biol Chem 290:12313–12331PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arora N, Schuenemann VJ, Jager G, Peltzer A, Seitz A, Herbig A, Strouhal M, Grillova L, Sanchez-Buso L, Kuhnert D, Bos KI, Davis LR, Mikalova L, Bruisten S, Komericki P, French P, Grant PR, Pando MA, Vaulet LG, Fermepin MR, Martinez A, Centurion Lara A, Giacani L, Norris SJ, Smajs D, Bosshard PP, Gonzalez-Candelas F, Nieselt K, Krause J, Bagheri HC (2016) Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2:16245PubMedCrossRefGoogle Scholar
  7. Asakura H, Kawamoto K, Haishima Y, Igimi S, Yamamoto S, Makino S (2008) Differential expression of the outer membrane protein W (OmpW) stress response in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Res Microbiol 159:709–717PubMedCrossRefGoogle Scholar
  8. Bagos PG, Liakopoulos TD, Hamodrakas SJ (2004a) Finding B-barrel outer membrane proteins with a markov chain model. WSEAS Trans Biol Biomed 2:186–189Google Scholar
  9. Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ (2004b) A hidden Markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinform 5:29CrossRefGoogle Scholar
  10. Bavro VN, Pietras Z, Furnham N, Perez-Cano L, Fernandez-Recio J, Pei XY, Misra R, Luisi B (2008) Assembly and channel opening in a bacterial drug efflux machine. Mol Cell 30:114–121PubMedPubMedCentralCrossRefGoogle Scholar
  11. Becker PS, Akins DR, Radolf JD, Norgard MV (1994) Similarity between the 38-kilodalton lipoprotein of Treponema pallidum and the glucose/galactose-binding (MglB) protein of Escherichia coli. Infect Immun 62:1381–1391PubMedPubMedCentralGoogle Scholar
  12. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258PubMedPubMedCentralCrossRefGoogle Scholar
  13. Biovia DS (2015) Discovery studio modeling environment. San Diego, CA, USA, Dassault SystèmesGoogle Scholar
  14. Blanco DR, Reimann K, Skare J, Champion CI, Foley D, Exner MM, Hancock RE, Miller JN, Lovett MA (1994) Isolation of the outer membranes from Treponema pallidum and Treponema vincentii. J Bacteriol 176:6088–6099PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blanco DR, Champion CI, Exner MM, Erdjument-Bromage H, Hancock RE, Tempst P, Miller JN, Lovett MA (1995) Porin activity and sequence analysis of a 31-kilodalton Treponema pallidum subsp. pallidum rare outer membrane protein (Tromp1). J Bacteriol 177:3556–3562PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607PubMedGoogle Scholar
  17. Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K, Wojtowicz D, Barnard TJ, Gumbart JC, Buchanan SK (2016) Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens. Structure 24:965–976PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bourell KW, Schulz W, Norgard MV, Radolf JD (1994) Treponema pallidum rare outer membrane proteins: analysis of mobility by freeze-fracture electron microscopy. J Bacteriol 176:1598–1608PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brautigam CA, Deka RK, Schuck P, Tomchick DR, Norgard MV (2012) Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT). J Mol Biol 420:70–86PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brautigam CA, Deka RK, Liu WZ, Norgard MV (2015) Insights into the potential function and membrane organization of the TP0435 (Tp17) lipoprotein from Treponema pallidum derived from structural and biophysical analyses. Protein Sci 24:11–19CrossRefPubMedGoogle Scholar
  21. Brautigam CA, Deka RK, Liu WZ, Norgard MV (2016) The Tp0684 (MglB-2) lipoprotein of Treponema pallidum: a glucose-binding protein with divergent topology. PLoS ONE 11:e0161022PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejkova P, Smajs D, Weinstock GM, Norris SJ, Palzkill T (2008) A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 76:1848–1857PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brusca JS, Radolf JD (1994) Isolation of integral membrane proteins by phase partitioning with Triton X-114. Methods Enzymol 228:182–193PubMedCrossRefGoogle Scholar
  24. Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, Van Voorhis WC (2000) Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis 181:1401–1413PubMedCrossRefGoogle Scholar
  25. Cameron CE, Brouwer NL, Tisch LM, Kurowa JM (2005) Defining the interation of the Treponema pallidum adhesin TP0751 with laminin. Infect Immun 73:7485–7494PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cameron CE (2006) The T. pallidum outer membrane and outer membrane proteins. In: Radolf JD, Lukehart SA (ed) Pathogenic treponema: molecular and cellular biology, Caister Academic Press, Norwich, UK, pp. 237–266Google Scholar
  27. Campanacci V, Bishop RE, Blangy S, Tegoni M, Cambillau C (2006) The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett 580:4877–4883PubMedPubMedCentralCrossRefGoogle Scholar
  28. Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA (1999) Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med 189:647–656PubMedPubMedCentralCrossRefGoogle Scholar
  29. Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA (2000) The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun 68:824–831PubMedPubMedCentralCrossRefGoogle Scholar
  30. Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, Lukehart SA (2004) Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol 52:1579–1596PubMedCrossRefGoogle Scholar
  31. Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA (2013) Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis 7:e2222PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chamberlain NR, Brandt ME, Erwin AL, Radolf JD, Norgard MV (1989a) Major integral membrane protein immunogens of Treponema pallidum are proteolipids. Infect Immun 57:2872–2877PubMedPubMedCentralGoogle Scholar
  33. Chamberlain NR, DeOgny L, Slaughter C, Radolf JD, Norgard MV (1989b) Acylation of the 47-kilodalton major membrane immunogen of Treponema pallidum determines its hydrophobicity. Infect Immun 57:2878–2885PubMedPubMedCentralGoogle Scholar
  34. Chan K, Nasereddin T, Alter L, Centurion-Lara A, Giacani L, Parveen N (2016) Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi produces multiple surface/periplasmic isoforms and mediates adherence. Sci Rep 6:25593ADSPubMedCentralCrossRefPubMedGoogle Scholar
  35. Christiansen S (1963) Protective layer covering pathogenic treponemata. Lancet 1:423–425PubMedCrossRefGoogle Scholar
  36. Conlan S, Bayley H (2003) Folding of a monomeric porin, OmpG, in detergent solution. Biochemistry 42:9453–9465CrossRefPubMedGoogle Scholar
  37. Cox DL, Chang P, McDowall AW, Radolf JD (1992) The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect Immun 60:1076–1083PubMedPubMedCentralGoogle Scholar
  38. Cox DL, Akins DR, Porcella SF, Norgard MV, Radolf JD (1995) Treponema pallidum in gel microdroplets: a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol 15:1151–1164PubMedCrossRefGoogle Scholar
  39. Cox DL, Radolf JD (2001) Insertion of fluorescent fatty acid probes into the outer membranes of the pathogenic spirochaetes Treponema pallidum and Borrelia burgdorferi. Microbiology 147:1161–1169PubMedCrossRefGoogle Scholar
  40. Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, Radolf JD (2010) Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78:5178–5194PubMedPubMedCentralCrossRefGoogle Scholar
  41. Cruz AR, Pillay A, Zuluaga AV, Ramirez LG, Duque JE, Aristizabal GE, Fiel-Gan MD, Jaramillo R, Trujillo R, Valencia C, Jagodzinski L, Cox DL, Radolf JD, Salazar JC (2010) Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis 4:e690PubMedPubMedCentralCrossRefGoogle Scholar
  42. Deitsch KW, Lukehart SA, Stringer JR (2009) Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol 7:493–503PubMedPubMedCentralCrossRefGoogle Scholar
  43. Deka RK, Lee YH, Hagman KE, Shevchenko D, Lingwood CA, Hasemann CA, Norgard MV, Radolf JD (1999) Physicochemical evidence that Treponema pallidum TroA is a zinc-containing metalloprotein that lacks porin-like structure. J Bacteriol 181:4420–4423PubMedPubMedCentralGoogle Scholar
  44. Deka RK, Machius M, Norgard MV, Tomchick DR (2002) Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem 277:41857–41864CrossRefPubMedGoogle Scholar
  45. Deka RK, Goldberg MS, Hagman KE, Norgard MV (2004a) The Tp38 (TpMglB-2) lipoprotein binds glucose in a manner consistent with receptor function in Treponema pallidum. J Bacteriol 186:2303–2308PubMedPubMedCentralCrossRefGoogle Scholar
  46. Deka RK, Neil L, Hagman KE, Machius M, Tomchick DR, Brautigam CA, Norgard MV (2004b) Structural evidence that the 32-kilodalton lipoprotein (Tp32) of Treponema pallidum is an L-methionine-binding protein. J Biol Chem 279:55644–55650PubMedCrossRefGoogle Scholar
  47. Deka RK, Brautigam CA, Yang XF, Blevins JS, Machius M, Tomchick DR, Norgard MV (2006) The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum. J Biol Chem 281:8072–8081PubMedCrossRefGoogle Scholar
  48. Deka RK, Brautigam CA, Tomson FL, Lumpkins SB, Tomchick DR, Machius M, Norgard MV (2007) Crystal structure of the Tp34 (TP0971) lipoprotein of Treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin. J Biol Chem 282:5944–5958CrossRefPubMedGoogle Scholar
  49. Deka RK, Brautigam CA, Goldberg M, Schuck P, Tomchick DR, Norgard MV (2012) Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol 416:678–696PubMedPubMedCentralCrossRefGoogle Scholar
  50. Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV (2013) The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. J Biol Chem 288:11106–11121PubMedPubMedCentralCrossRefGoogle Scholar
  51. Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MA, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD (2011) TP0326, a Treponema pallidum beta-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 80:1496–1515PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dorset DL, Engel A, Haner M, Massalski A, Rosenbusch JP (1983) Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membranes. J Mol Biol 165:701–710PubMedCrossRefGoogle Scholar
  53. Douzi B, Filloux A, Voulhoux R (2012) On the path to uncover the bacterial type II secretion system. Philos Trans R Soc Lond B Biol Sci 367:1059–1072PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dunn JP, Kenedy MR, Iqbal H, Akins DR (2015) Characterization of the β-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi. BMC Microbiol 15:70PubMedPubMedCentralCrossRefGoogle Scholar
  55. Egli C, Leung WK, Muller KH, Hancock RE, McBride BC (1993) Pore-forming properties of the major 53-kilodalton surface antigen from the outer sheath of Treponema denticola. Infect Immun 61:1694–1699PubMedPubMedCentralGoogle Scholar
  56. Ellen RP (2006) Virulence determinants of oral treponemes. In: Radolf JD, Lukehart SA (ed) Pathogenic treponema molecular and cellular biology, Norwich, UK, Caister Academic Press, pp. 357–386Google Scholar
  57. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285CrossRefPubMedGoogle Scholar
  58. Fitzgerald TJ, Johnson RC (1979) Surface mucopolysaccharides of Treponema pallidum. Infect Immun 24:244–251PubMedPubMedCentralGoogle Scholar
  59. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388ADSPubMedCrossRefGoogle Scholar
  60. Freeman TC Jr, Wimley WC (2012) TMBB-DB: a transmembrane β-barrel proteome database. Bioinformatics 28:2425–2430PubMedPubMedCentralCrossRefGoogle Scholar
  61. Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D’Oriano V, Galdiero M (2012) Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 13:843–854PubMedPubMedCentralCrossRefGoogle Scholar
  62. Giacani L, Lukehart S, Centurion-Lara A (2007) Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol 51:289–301PubMedPubMedCentralCrossRefGoogle Scholar
  63. Giacani L, Godornes C, Puray-Chavez M, Guerra-Giraldez C, Tompa M, Lukehart SA, Centurion-Lara A (2009) TP0262 is a modulator of promoter activity of tpr Subfamily II genes of Treponema pallidum ssp. pallidum. Mol Microbiol 72:1087–1099PubMedPubMedCentralCrossRefGoogle Scholar
  64. Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, Centurion-Lara A, Lukehart SA (2010) Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol 184:3822–3829PubMedPubMedCentralCrossRefGoogle Scholar
  65. Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, Benzler M, Hartig JS, Lukehart SA, Centurion-Lara A (2012) Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol 194:4208–4225PubMedPubMedCentralCrossRefGoogle Scholar
  66. Giacani L, Brandt SL, Ke W, Reid TB, Molini BJ, Iverson-Cabral S, Ciccarese G, Drago F, Lukehart SA, Centurion-Lara A (2015) Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat. Infect Immun 83:2275–2289PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, Godornes C, Kitchen A, Lukehart SA, Centurion-Lara A (2006) Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol 23:2220–2233CrossRefPubMedGoogle Scholar
  68. Gu Y, Stansfeld PJ, Zeng Y, Dong H, Wang W, Dong C (2015) Lipopolysaccharide is inserted into the outer membrane through an intramembrane hole, a lumen gate, and the lateral opening of LptD. Structure 23:496–504PubMedPubMedCentralCrossRefGoogle Scholar
  69. Haake DA, Zuckert WR (2015) The leptospiral outer membrane. Curr Top Microbiol Immunol 387:187–221PubMedPubMedCentralGoogle Scholar
  70. Hardy PH Jr, Nell EE (1957) Study of the antigenic structure of Treponema pallidum by specific agglutination. Am J Hyg 66:160–172PubMedGoogle Scholar
  71. Hazlett KR, Sellati TJ, Nguyen TT, Cox DL, Clawson ML, Caimano MJ, Radolf JD (2001) The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. J Exp Med 193:1015–1026PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hazlett KR, Cox DL, Decaffmeyer M, Bennett MP, Desrosiers DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, Radolf JD (2005) TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol 187:6499–6508PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hearn EM, Patel DR, van den Berg B (2008) Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc Natl Acad Sci U S A 105:8601–8606ADSPubMedPubMedCentralCrossRefGoogle Scholar
  74. Heinz E, Lithgow T (2014) A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front Microbiol 5:370PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hirano Y, Hossain MM, Takeda K, Tokuda H, Miki K (2007) Structural studies of the Cpx pathway activator NlpE on the outer membrane of Escherichia coli. Structure 15:963–976PubMedCrossRefGoogle Scholar
  76. Ho EL, Lukehart SA (2011) Syphilis: using modern approaches to understand an old disease. J Clin Invest 121:4584–4592PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hong H, Patel DR, Tamm LK, van den Berg B (2006) The outer membrane protein OmpW forms an eight-stranded b-barrel with a hydrophobic channel. J Biol Chem 281:7568–7577PubMedCrossRefGoogle Scholar
  78. Houston S, Hof R, Honeyman L, Hassler J, Cameron CE (2012) Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin. PLoS Pathog 8:e1002822PubMedCentralCrossRefPubMedGoogle Scholar
  79. Houston S, Russell S, Hof R, Roberts AK, Cullen P, Irvine K, Smith DS, Borchers CH, Tonkin ML, Boulanger MJ, Cameron CE (2014) The multifunctional role of the pallilysin-associated Treponema pallidum protein, Tp0750, in promoting fibrinolysis and extracellular matrix component degradation. Mol Microbiol 91:618–634PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hovind-Hougen K (1983) Morphology. In Schell RF, Musher DM (ed) Pathogenesis and immunology of treponemal infection, Marcel Dekker, New York, pp. 3–28Google Scholar
  81. Iqbal H, Kenedy MR, Lybecker M, Akins DR (2016) The TamB ortholog of Borrelia burgdorferi interacts with the beta-barrel assembly machine (BAM) complex protein BamA. Mol MicrobiolGoogle Scholar
  82. Izard J, Renken C, Hsieh CE, Desrosiers DC, Dunham-Ems S, La Vake C, Gebhardt LL, Limberger RJ, Cox DL, Marko M, Radolf JD (2009) Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 191:7566–7580PubMedPubMedCentralCrossRefGoogle Scholar
  83. Johnson RC, Ritzi DM, Livermore BP (1973) Outer envelope of virulent Treponema pallidum. Infect Immun 8:291–295PubMedPubMedCentralGoogle Scholar
  84. Jones JD, Bourell KW, Norgard MV, Radolf JD (1995) Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins. Infect Immun 63:2424–2434PubMedPubMedCentralGoogle Scholar
  85. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240PubMedPubMedCentralCrossRefGoogle Scholar
  86. Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35:W429–W432PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMedCrossRefGoogle Scholar
  89. Ke W, Molini BJ, Lukehart SA, Giacani L (2015) Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl Trop Dis 9:e0003662PubMedPubMedCentralCrossRefGoogle Scholar
  90. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919ADSCrossRefPubMedGoogle Scholar
  91. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  92. LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, Van Voorhis WC, Lukehart SA (2003) Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol 185:6262–6268PubMedPubMedCentralCrossRefGoogle Scholar
  93. LaFond RE, Centurion-Lara A, Godornes C, Van Voorhis WC, Lukehart SA (2006a) TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect Immun 74:1896–1906PubMedCentralCrossRefPubMedGoogle Scholar
  94. Lafond RE, Lukehart SA (2006) Biological basis for syphilis. Clin Microbiol Rev 19:29–49PubMedPubMedCentralCrossRefGoogle Scholar
  95. LaFond RE, Molini BJ, Van Voorhis WC, Lukehart SA (2006b) Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun 74:6244–6251PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lee YH, Deka RK, Norgard MV, Radolf JD, Hasemann CA (1999) Treponema pallidum TroA is a periplasmic zinc-binding protein with a helical backbone. Nature Structural Biology 6:628–633PubMedCrossRefGoogle Scholar
  97. Lee YH, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, Radolf JD, Hasemann CA (2002) The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation. J Bacteriol 184:2300–2304PubMedPubMedCentralCrossRefGoogle Scholar
  98. Li W, Wen L, Li C, Chen R, Ye Z, Zhao J, Pan J (2016) Contribution of the outer membrane protein OmpW in Escherichia coli to complement resistance from binding to factor H. Microb Pathog 98:57–62CrossRefPubMedGoogle Scholar
  99. Lithgow KV, Hof R, Wetherell C, Phillips D, Houston S and Cameron CE (2017) A defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subps. pallidum. Nat Commun 8:14272Google Scholar
  100. Liu J, Lin T, Botkin DJ, McCrum E, Winkler H, Norris SJ (2009) Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J Bacteriol 191:5026–5036PubMedPubMedCentralCrossRefGoogle Scholar
  101. Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ (2010) Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 403:546–561PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lukehart SA, Miller JN (1978) Demonstration of the in vitro phagocytosis of Treponema pallidum by rabbit peritoneal macrophages. J Immunol 121:2014–2024PubMedGoogle Scholar
  103. Lukehart SA, Shaffer JM, Baker-Zander SA (1992) A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J Infect Dis 166:1449–1453PubMedCrossRefGoogle Scholar
  104. Lukehart SA, Marra CM (2007) Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol Chapter 12:Unit 12A 11Google Scholar
  105. Luthra A, Zhu G, Desrosiers DC, Eggers CH, Mulay V, Anand A, McArthur FA, Romano FB, Caimano MJ, Heuck AP, Malkowski MG, Radolf JD (2011) The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J Biol Chem 286:41656–41668PubMedPubMedCentralCrossRefGoogle Scholar
  106. Luthra A, Anand A, Hawley KL, LeDoyt M, La Vake CJ, Caimano MJ, Cruz AR, Salazar JC, Radolf JD (2015a) A homology model reveals novel structural features and an immunodominant surface loop/opsonic target in the Treponema pallidum BamA ortholog TP_0326. J Bacteriol 197:1906–1920PubMedPubMedCentralCrossRefGoogle Scholar
  107. Luthra A, Anand A, Radolf JD (2015b) Treponema pallidum in gel microdroplets: A method for topological analysis of BamA (TP0326) and localization of rare outer membrane proteins. Methods Mol Biol 1329:67–75PubMedCrossRefGoogle Scholar
  108. Machius M, Brautigam CA, Tomchick DR, Ward P, Otwinowski Z, Blevins JS, Deka RK, Norgard MV (2007) Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor. J Mol Biol 373:681–694PubMedPubMedCentralCrossRefGoogle Scholar
  109. Magnuson HJ, Eagle H, Fleischman R (1948) The minimal infectious inoculum of Spirochaeta pallida (Nichols strain) and a consideration of its rate of multiplication in vivo. Am J Syph Gonorrhea Vener Dis 32:1–18PubMedGoogle Scholar
  110. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226PubMedCrossRefGoogle Scholar
  111. Morgan CA, Lukehart SA, Van Voorhis WC (2002a) Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect Immun 70:6811–6816PubMedPubMedCentralCrossRefGoogle Scholar
  112. Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC (2002b) Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol 169:952–957PubMedCrossRefGoogle Scholar
  113. Morgan CA, Lukehart SA, Van Voorhis WC (2003) Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect Immun 71:5605–5612PubMedCentralCrossRefPubMedGoogle Scholar
  114. Myint M, Bashiri H, Harrington RD, Marra CM (2004) Relapse of secondary syphilis after benzathine penicillin G: molecular analysis. Sex Transm Dis 31:196–199PubMedCrossRefGoogle Scholar
  115. Nandi B, Nandy RK, Sarkar A, Ghose AC (2005) Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151:2975–2986PubMedCrossRefGoogle Scholar
  116. Narita S, Tokuda H (2007) Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 282:13372–13378PubMedCrossRefGoogle Scholar
  117. Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069PubMedCrossRefGoogle Scholar
  118. Nelson RA Jr, Mayer MM (1949) Immobilization of Treponema pallidum in vitro by antibody produced in syphilitic infection. J Exp Med 89:369–393PubMedPubMedCentralCrossRefGoogle Scholar
  119. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656PubMedPubMedCentralCrossRefGoogle Scholar
  120. Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794:769–781PubMedCrossRefGoogle Scholar
  121. Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK (2013) Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501:385–390ADSPubMedPubMedCentralCrossRefGoogle Scholar
  122. Norgard MV, Miller JN (1983) Cloning and expression of Treponema pallidum (Nichols) antigen genes in Escherichia coli. Infect Immun 42:435–445PubMedCentralPubMedGoogle Scholar
  123. Norris SJ, Cox DL, Weinstock GM (2001) Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol 3:37–62PubMedGoogle Scholar
  124. Okuda S, Tokuda H (2011) Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239–259PubMedCrossRefGoogle Scholar
  125. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D (2016) Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 14:337–345PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ou YY, Gromiha MM, Chen SA, Suwa M (2008) TMBETADISC-RBF: Discrimination of b-barrel membrane proteins using RBF networks and PSSM profiles. Comput Biol Chem 32:227–231PubMedCrossRefGoogle Scholar
  127. Parker ML, Houston S, Petrosova H, Lithgow KV, Hof R, Wetherell C, Kao WC, Lin YP, Moriarty TJ, Ebady R, Cameron CE, Boulanger MJ (2016) The structure of Treponema pallidum Tp0751 (Pallilysin) reveals a non-canonical lipocalin fold that mediates adhesion to extracellular matrix components and interactions with host cells. PLoS Pathog 12:e1005919PubMedPubMedCentralCrossRefGoogle Scholar
  128. Penn CW, Cockayne A, Bailey MJ (1985) The outer membrane of Treponema pallidum: biological significance and biochemical properties. J Gen Microbiol 131:2349–2357PubMedGoogle Scholar
  129. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786PubMedCrossRefGoogle Scholar
  130. Petrosova H, Zobanikova M, Cejkova D, Mikalova L, Pospisilova P, Strouhal M, Chen L, Qin X, Muzny DM, Weinstock GM, Smajs D (2012) Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis 6:e1832PubMedPubMedCentralCrossRefGoogle Scholar
  131. Phan G, Picard M, Broutin I (2015) Focus on the Outer Membrane Factor OprM, the Forgotten Player from Efflux Pumps Assemblies. Antibiotics (Basel) 4:544–566CrossRefGoogle Scholar
  132. Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, Borrego MJ, Mendonca J, Carpinteiro D, Vieira L, Gomes JP (2016) Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol 2:16190PubMedCrossRefGoogle Scholar
  133. Porcella SF, Popova TG, Hagman KE, Penn CW, Radolf JD, Norgard MV (1996) A mgl-like operon in Treponema pallidum, the syphilis spirochete. Gene 177:115–121PubMedCrossRefGoogle Scholar
  134. Purcell BK, Swancutt MA, Radolf JD (1990) Lipid modification of the 15 kiloDalton major membrane immunogen of Treponema pallidum. Mol Microbiol 4:1371–1379CrossRefPubMedGoogle Scholar
  135. Radolf JD, Fehniger TE, Silverblatt FJ, Miller JN, Lovett MA (1986) The surface of virulent Treponema pallidum: resistance to antibody binding in the absence of complement and surface association of recombinant antigen 4D. Infect Immun 52:579–585PubMedPubMedCentralGoogle Scholar
  136. Radolf JD, Chamberlain NR, Clausell A, Norgard MV (1988) Identification and localization of integral membrane proteins of virulent Treponema pallidum subsp. pallidum by phase partitioning with the nonionic detergent triton X-114. Infect Immun 56:490–498PubMedPubMedCentralGoogle Scholar
  137. Radolf JD, Moomaw C, Slaughter CA, Norgard MV (1989a) Penicillin-binding proteins and peptidoglycan of Treponema pallidum subsp. pallidum. Infect Immun 57:1248–1254PubMedPubMedCentralGoogle Scholar
  138. Radolf JD, Norgard MV, Schulz WW (1989b) Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci U S A 86:2051–2055ADSPubMedPubMedCentralCrossRefGoogle Scholar
  139. Radolf JD, Bourell KW, Akins DR, Brusca JS, Norgard MV (1994) Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol 176:21–31PubMedPubMedCentralCrossRefGoogle Scholar
  140. Radolf JD (1995) Treponema pallidum and the quest for outer membrane proteins. Mol Microbiol 16:1067–1073PubMedCrossRefGoogle Scholar
  141. Radolf JD, Goldberg MS, Bourell K, Baker SI, Jones JD, Norgard MV (1995a) Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63:2154–2163PubMedPubMedCentralGoogle Scholar
  142. Radolf JD, Robinson EJ, Bourell KW, Akins DR, Porcella SF, Weigel LM, Jones JD, Norgard MV (1995b) Characterization of outer membranes isolated from Treponema pallidum, the syphilis spirochete. Infect Immun 63:4244–4252PubMedPubMedCentralGoogle Scholar
  143. Radolf JD, Lukehart SA (2006) Immunology of Syphilis. In Radolf JD, Lukehart SA (ed) Pathogenic Treponemes: Cellular and Molecular Biology, Caister Academic Press, Norfolk, UK, pp 285–322Google Scholar
  144. Radolf JD, Hazlett KRO, Lukehart SA (2006). Pathogenesis of Syphilis. In Radolf JD, Lukehart SA (ed) Pathogenic Treponemes: Cellular and Molecular Biology, Caister Academic Press, Norfolk, UK, pp. 197–236Google Scholar
  145. Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99PubMedPubMedCentralGoogle Scholar
  146. Radolf JD, Tramont EC, Salazar JC (2014) Syphilis (Treponema pallidum). In Bennett JE, Dolin R, Blaser MJ (ed) Mandell, Douglas and Bennett’s principles and practice of infectious diseases, Churchill Livingtone, Elsevier, Philadelphia, pp. 2684–2709Google Scholar
  147. Radolf JD, Deka RK, Anand A, Smajs D, Norgard MV, Yang XF (2016) Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 14:744–759PubMedPubMedCentralCrossRefGoogle Scholar
  148. Randall A, Cheng J, Sweredoski M, Baldi P (2008) TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics 24:513–520PubMedCrossRefGoogle Scholar
  149. Reid TB, Molini BJ, Fernandez MC, Lukehart SA (2014) Antigenic variation of TprK facilitates development of secondary syphilis. Infect Immun 82:4959–4967PubMedPubMedCentralCrossRefGoogle Scholar
  150. Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK (2015). Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci 370Google Scholar
  151. Salazar JC, Hazlett KR, Radolf JD (2002) The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect 4:1133–1140PubMedCrossRefGoogle Scholar
  152. Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194:4081–4087PubMedCentralCrossRefPubMedGoogle Scholar
  153. Selkrig J, Belousoff MJ, Headey SJ, Heinz E, Shiota T, Shen HH, Beckham SA, Bamert RS, Phan MD, Schembri MA, Wilce MC, Scanlon MJ, Strugnell RA, Lithgow T (2015) Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module. Sci rep 5:12905ADSPubMedPubMedCentralCrossRefGoogle Scholar
  154. Sena AC, Pillay A, Cox DL, Radolf JD (2015). Treponema and Brachyspira, human host-associated spirochetes. In Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW (ed) Manual of Clinical Microbiology, ASM Press, Washington, D.C, pp. 1055–1081Google Scholar
  155. Setubal JC, Reis M, Matsunaga J, Haake DA (2006) Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152:113–121PubMedPubMedCentralCrossRefGoogle Scholar
  156. Shao L, Kinnally KW, Mannella CA (1996) Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa. Biophys J 71:778–786PubMedPubMedCentralCrossRefGoogle Scholar
  157. Shevchenko DV, Akins DR, Robinson EJ, Li M, Shevchenko OV, Radolf JD (1997) Identification of homologs for thioredoxin, peptidyl prolyl cis-trans isomerase, and glycerophosphodiester phosphodiesterase in outer membrane fractions from Treponema pallidum, the syphilis spirochete. Infect Immun 65:4179–4189PubMedPubMedCentralGoogle Scholar
  158. Shevchenko DV, Sellati TJ, Cox DL, Shevchenko OV, Robinson EJ, Radolf JD (1999) Membrane topology and cellular location of the Treponema pallidum glycerophosphodiester phosphodiesterase (GlpQ) ortholog. Infect Immun 67:2266–2276PubMedPubMedCentralGoogle Scholar
  159. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414PubMedPubMedCentralCrossRefGoogle Scholar
  160. Smajs D, Norris SJ, Weinstock GM (2012) Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol 12:191–202PubMedCrossRefGoogle Scholar
  161. Smith SG, Mahon V, Lambert MA, Fagan RP (2007) A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1–11PubMedCrossRefGoogle Scholar
  162. Stamm LV, Bergen HL (2000) The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and Street strain 14 encodes heterogeneous TprK proteins. Infect Immun 68:6482–6486PubMedPubMedCentralCrossRefGoogle Scholar
  163. Stamm LV, Folds JD, Bassford PJ Jr (1982) Expression of Treponema pallidum antigens in Escherichia coli K-12. Infect Immun 36:1238–1241PubMedPubMedCentralGoogle Scholar
  164. Stamm LV, Greene SR, Bergen HL, Hardham JM, Barnes NY (1998) Identification and sequence analysis of Treponema pallidum tprJ, a member of a polymorphic multigene family. FEMS Microbiol Lett 169:155–163PubMedCrossRefGoogle Scholar
  165. Sun ES, Molini BJ, Barrett LK, Centurion-Lara A, Lukehart SA, Van Voorhis WC (2004) Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microbes Infect 6:725–737PubMedCrossRefGoogle Scholar
  166. Swancutt MA, Radolf JD, Norgard MV (1990) The 34-kilodalton membrane immunogen of Treponema pallidum is a lipoprotein. Infect Immun 58:384–392PubMedPubMedCentralGoogle Scholar
  167. Tokunaga M, Loranger JM, Wu HC (1984) A distinct signal peptidase for prolipoprotein in Escherichia coli. J Cell Biochem 24:113–120PubMedCrossRefGoogle Scholar
  168. Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43:W401–W407PubMedPubMedCentralCrossRefGoogle Scholar
  169. Turner TB, Hollander DH (1957) Biology of the treponematoses. World Health Organization, GenevaGoogle Scholar
  170. van den Berg B (2005) The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15:401–407PubMedCrossRefGoogle Scholar
  171. van den Berg B (2012) Structural basis for outer membrane sugar uptake in pseudomonads. J Biol Chem 287:41044–41052PubMedPubMedCentralCrossRefGoogle Scholar
  172. van den Berg B, Black PN, Clemons WM Jr, Rapoport TA (2004) Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–1509ADSPubMedCrossRefGoogle Scholar
  173. Walfield AM, Hanff PA, Lovett MA (1982) Expression of Treponema pallidum antigens in Escherichia coli. Science 216:522–523ADSCrossRefPubMedGoogle Scholar
  174. Walker EM, Zampighi GA, Blanco DR, Miller JN, Lovett MA (1989) Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol 171:5005–5011PubMedPubMedCentralCrossRefGoogle Scholar
  175. Webb CT, Heinz E, Lithgow T (2012) Evolution of the beta-barrel assembly machinery. Trends Microbiol 20:612–620PubMedCrossRefGoogle Scholar
  176. Weigel LM, Brandt ME, Norgard MV (1992) Analysis of the N-terminal region of the 47-kilodalton integral membrane lipoprotein of Treponema pallidum. Infect Immun 60:1568–1576PubMedPubMedCentralGoogle Scholar
  177. Weigel LM, Radolf JD, Norgard MV (1994) The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity. Proc Natl Acad Sci U S A 91:11611–11615ADSPubMedPubMedCentralCrossRefGoogle Scholar
  178. Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. struct Rev Biochem 83:99–128CrossRefGoogle Scholar
  179. Wimley WC (2003) The versatile β-barrel membrane protein. Curr Opin Struct Biol 13:404–411PubMedCrossRefGoogle Scholar
  180. Wu XB, Tian LH, Zou HJ, Wang CY, Yu ZQ, Tang CH, Zhao FK, Pan JY (2013) Outer membrane protein OmpW of Escherichia coli is required for resistance to phagocytosis. Res Microbiol 164:848–855PubMedCrossRefGoogle Scholar
  181. Yang J, Zhang Y (2015) Protein structure and function prediction using I-TASSER. Curr Protoc Bioinform 52:5 8 1–15Google Scholar
  182. Yonehara R, Yamashita E, Nakagawa A (2016) Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa. Proteins 84:759–769PubMedCrossRefGoogle Scholar
  183. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651PubMedCrossRefGoogle Scholar
  184. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zeth K, Thein M (2010) Porins in prokaryotes and eukaryotes: common themes and variations. Biochem J 431:13–22PubMedCrossRefGoogle Scholar
  186. Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genomic Sciences, and ImmunologyUConn HealthFarmingtonUSA
  2. 2.Department of MedicineUConn HealthFarmingtonUSA

Personalised recommendations