Skip to main content

Physiologic and Genetic Factors Influencing the Zoonotic Cycle of Borrelia burgdorferi

  • Chapter
  • First Online:
Spirochete Biology: The Post Genomic Era

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 415))

Abstract

Borrelia burgdorferi is a symbiont of ticks of the Ixodes ricinus complex. These ticks serve as vectors to disseminate the spirochete to a variety of susceptible vertebrate hosts, which, in turn, act as reservoirs for naïve ticks to become infected, perpetuating the infectious life cycle of B. burgdorferi. The pivotal role of ticks in this life cycle and tick–spirochete interactions are the focus of this chapter. Here, we describe the challenging physiological environment that spirochetes encounter within Ixodes ticks, and the genetic factors that B. burgdorferi uses to successfully infect, persist, and be transmitted from the vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JF, Magnarelli LA (1984) Avian and mammalian hosts for spirochete-infected ticks and insects in a Lyme disease focus in Connecticut. Yale J Biol Med 57:627–641

    PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson JF, Johnson RC, Magnarelli LA, Hyde FW (1986) Involvement of birds in the epidemiology of the Lyme disease agent Borrelia burgdorferi. Infect Immun 51:394–396

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arnold WK, Savage CR, Brissette CA, Seshu J, Livny J, Stevenson B (2016) RNA-Seq of Borrelia burgdorferi in multiple phases of growth reveals insights into the dynamics of gene expression, transcriptome architecture, and noncoding RNAs. PLoS ONE 11:e0164165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Battisti JM, Bono JL, Rosa PA, Schrumpf ME, Schwan TG, Policastro PF (2008) Outer surface protein A protects Lyme disease spirochetes from acquired host immunity in the tick vector. Infect Immun 76:5228–5237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker M, Bunikis J, Lade BD, Dunn JJ, Barbour AG, Lawson CL (2005) Structural investigation of Borrelia burgdorferi OspB, a bactericidal Fab target. J Biol Chem 280:17363–17370

    Article  PubMed  CAS  Google Scholar 

  • Bergström S, Bundoc VG, Barbour AG (1989) Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 3:479–486

    Article  PubMed  Google Scholar 

  • Bestor A, Rego RO, Tilly K, Rosa PA (2012) Competitive advantage of Borrelia burgdorferi with outer surface protein BBA03 during tick-mediated infection of the mammalian host. Infect Immun 80:3501–3511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bontemps-Gallo S, Lawrence K, Gherardini FC (2016) Two different virulence-related regulatory pathways in Borrelia burgdorferi are directly affected by osmotic fluxes in the blood meal of feeding Ixodes ticks. PLoS Pathog 12:e1005791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourret TJ, Lawrence KA, Shaw JA, Lin T, Norris SJ, Gherardini FC (2016) The nucleotide excision repair pathway protects Borrelia burgdorferi from nitrosative stress in Ixodes scapularis ticks. Front Microbiol 7:1397

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle WK, Wilder HK, Lawrence AM, Lopez JE (2014) Transmission dynamics of Borrelia turicatae from the arthropod vector. PLoS Negl Trop Dis 8:e2767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brooks CS, Vuppala SR, Jett AM, Akins DR (2006) Identification of Borrelia burgdorferi outer surface proteins. Infect Immun 74:296–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown RN, Lane RS (1992) Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science 256:1439–1442

    Article  PubMed  CAS  Google Scholar 

  • Brown RN, Lane RS, Dennis DT (2005) Geographic distributions of tick-borne diseases and their vectors. In: Goodman JL, Dennis DT, Sonenshine DE (eds) Tick-borne diseases of humans. Washington, D.C. ASM Press. pp 363–392

    Google Scholar 

  • Bryceson AD, Parry EH, Perine PL, Warrell DA, Vukotich D, Leithead CS (1970) Louse-borne relapsing fever. Q J Med 39:129–170

    PubMed  CAS  Google Scholar 

  • Burgdorfer W, Varma MGR (1967) Trans-stadial and transovarial development of disease agents in arthropods. Annu Rev Entomol 12:347–376

    Article  PubMed  CAS  Google Scholar 

  • Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease—a tick-borne spirochetosis? Science 216:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Caimano MJ, Dunham-Ems S, Allard AM, Cassera MB, Kenedy M, Radolf JD (2015) Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. Infect Immun 83:3043–3060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrasco SE, Troxell B, Yang Y, Brandt SL, Li H, Sandusky GE, Condon KW, Serezani CH, Yang XF (2015) Outer surface protein OspC is an anti-phagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages. Infect Immun 83:4848–4860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carroll JA, Garon CF, Schwan TG (1999) Effects of environmental pH on membrane proteins in Borrelia burgdorferi. Infect Immun 67:3181–3187

    PubMed  PubMed Central  CAS  Google Scholar 

  • Carroll JA, Cordova RM, Garon CF (2000) Identification of 11 pH-regulated genes in Borrelia burgdorferi localizing to linear plasmids. Infect Immun 68:6677–6684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser C (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516

    Article  PubMed  CAS  Google Scholar 

  • Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73

    Article  PubMed  CAS  Google Scholar 

  • Clark K, Hendricks A, Burge D (2005) Molecular identification and analysis of Borrelia burgdorferi sensu lato in lizards in the southeastern United States. Appl Environ Microbiol 71:2616–2625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis GE (1942) Species unity or plurality of the relapsing fever spirochetes. In: Moulton FR (ed) Relapsing fever in the Americas. Washington, D.C. American Association of the Advancement of Science. pp 41–47

    Google Scholar 

  • Donahue JG, Piesman J, Spielman A (1987) Reservoir competence of white-footed mice for Lyme disease spirochetes. Am J Trop Med Hyg 36:92–96

    Article  PubMed  CAS  Google Scholar 

  • Drecktrah D, Lybecker M, Popitsch N, Rescheneder P, Hall LS, Samuels DS (2015) The Borrelia burgdorferi RelA/SpoT homolog and stringent response regulate survival in the tick vector and global gene expression during starvation. PLoS Pathog 11:e1005160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dulebohn DP, Hayes BM, Rosa PA (2014) Global repression of host-associated genes of the Lyme disease spirochete through post-transcriptional modulation of the alternative sigma factor RpoS. PLoS ONE 9:e93141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, Radolf JD (2009) Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest 119:3652–3665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunham-Ems SM, Caimano MJ, Eggers CH, Radolf JD (2012) Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission. PLoS Pathog 8:e1002532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dutton JE, Todd JL (1905) The nature of human tick-fever in the eastern part of the Congo Free State. Mem Liverpool Sch Trop Med 17:1–18

    Google Scholar 

  • Fazzino L, Tilly K, Dulebohn DP, Rosa PA (2015) Long-term survival of Borrelia burgdorferi lacking the hibernation promotion factor homolog in the unfed tick vector. Infect Immun 83:4800–4810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisher MA, Grimm D, Henion AK, Elias AF, Stewart PE, Rosa PA, Gherardini FC (2005) Borrelia burgdorferi sigma54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102:5162–5167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidmann J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586

    Article  PubMed  CAS  Google Scholar 

  • Fung BP, McHugh GL, Leong JM, Steere AC (1994) Humoral immune response to outer surface protein C of Borrelia burgdorferi in Lyme disease: role of the immunoglobulin M response in the serodiagnosis of early infection. Infect Immun 62:3213–3221

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gilmore RD Jr, Howison RR, Dietrich G, Patton TG, Clifton DR, Carroll JA (2010) The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 107:7515–7520

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, Schwan TG, Policastro PF, Elias AF, Rosa PA (2004) Outer-surface protein C of the Lyme disease spirochete: A protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101:3142–3147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, Sattelle DB, de la Fuente J, Ribeiro JM, Megy K, Thimmapuram J, Miller JR, Walenz BP, Koren S, Hostetler JB, Thiagarajan M, Joardar VS, Hannick LI, Bidwell S, Hammond MP, Young S, Zeng Q, Abrudan JL, Almeida FC, Ayllon N, Bhide K, Bissinger BW, Bonzon-Kulichenko E, Buckingham SD, Caffrey DR, Caimano MJ, Croset V, Driscoll T, Gilbert D, Gillespie JJ, Giraldo-Calderon GI, Grabowski JM, Jiang D, Khalil SM, Kim D, Kocan KM, Koci J, Kuhn RJ, Kurtti TJ, Lees K, Lang EG, Kennedy RC, Kwon H, Perera R, Qi Y, Radolf JD, Sakamoto JM, Sanchez-Gracia A, Severo MS, Silverman N, Simo L, Tojo M, Tornador C, Van Zee JP, Vazquez J, Vieira FG, Villar M, Wespiser AR, Yang Y, Zhu J, Arensburger P, Pietrantonio PV, Barker SC, Shao R, Zdobnov EM, Hauser F, Grimmelikhuijzen CJ, Park Y, Rozas J, Benton R, Pedra JH, Nelson DR, Unger MF, Tubio JM, Tu Z, Robertson HM, Shumway M, Sutton G, Wortman JR, Lawson D, Wikel SK, Nene VM, Fraser CM, Collins FH, Birren B, Nelson KE, Caler E, Hill CA (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 7:10507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamsikova Z, Coipan C, Mahrikova L, Minichova L, Sprong H, Kazimirova M (2016) Borrelia miyamotoi and co-infection with Borrelia afzelii in Ixodes ricinus ticks and rodents from Slovakia. Microb Ecol 73:1000–1008

    Google Scholar 

  • Hayes BM, Dulebohn DP, Sarkar A, Tilly K, Bestor A, Ambroggio X, Rosa PA (2014) Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition? MBio 5:e01017–e01014

    PubMed  PubMed Central  Google Scholar 

  • He M, Ouyang Z, Troxell B, Xu H, Piesman J, Norgard MV, Gomelsky M, Yang XF (2011) Cyclic di-GMP is essential for the survival of the Lyme disease spirochete in ticks. PLoS Pathog 7:e1002133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrmann C, Gern L, Voordouw MJ (2013) Species co-occurrence patterns among Lyme borreliosis pathogens in the tick vector Ixodes ricinus. Appl Environ Microbiol 79:7273–7280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howe TR, LaQuier FW, Barbour AG (1986) Organization of genes encoding two outer membrane proteins of the Lyme disease agent Borrelia burgdorferi within a single transcriptional unit. Infect Immun 54:207–212

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hu CM, Gern L, Aeschlimann A (1992) Changes in the protein profile and antigenicity of different Borrelia burgdorferi strains after reintroduction to Ixodes ricinus ticks. Parasite Immunol 14:415–427

    Article  PubMed  CAS  Google Scholar 

  • Hyde JA, Trzeciakowski JP, Skare JT (2007) Borrelia burgdorferi alters its gene expression and antigenic profile in response to CO2 levels. J Bacteriol 189:437–445

    Article  PubMed  CAS  Google Scholar 

  • Johns R, Ohnishi J, Broadwater A, Sonenshine DE, De Silva AM, Hynes WL (2001) Contrasts in tick innate immune responses to Borrelia burgdorferi challenge: immunotolerance in Ixodes scapularis versus immunocompetence in Dermacentor variabilis (Acari: Ixodidae). J Med Entomol 38:99–107

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Yang X, Coleman AS, Pal U (2010) BBA52 facilitates Borrelia burgdorferi transmission from feeding ticks to murine hosts. J Infect Dis 201:1084–1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lahdenne P, Porcella SF, Hagman KE, Akins DR, Popova TG, Cox DL, Katona LI, Radolf JD, Norgard MV (1997) Molecular characterization of a 6.6-kilodalton Borrelia burgdorferi outer membrane-associated lipoprotein (lp6.6) which appears to be downregulated during mammalian infection. Infect Immun 65:412–421

    PubMed  PubMed Central  CAS  Google Scholar 

  • Levin M, Levine JF, Yang S, Howard P, Apperson CS (1996) Reservoir competence of the southeastern five-lined skink (Eumeces inexpectatus) and the green anole (Anolis carolinensis) for Borrelia burgdorferi. Am J Trop Med Hyg 54:92–97

    Article  PubMed  CAS  Google Scholar 

  • Levine JF, Wilson ML, Spielman A (1985) Mice as reservoirs of the Lyme disease spirochete. Am J Trop Med Hyg 34:355–360

    Article  PubMed  CAS  Google Scholar 

  • Li X, Neelakanta G, Liu X, Beck DS, Kantor FS, Fish D, Anderson JF, Fikrig E (2007a) Role of outer surface protein D in the Borrelia burgdorferi life cycle. Infect Immun 75:4237–4244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, Anderson JF, Radolf JD, Fikrig E (2007b) The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63:694–710

    PubMed  CAS  Google Scholar 

  • Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E (2004) Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 72:5759–5767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magnarelli LA, Anderson JF, Fish D (1987) Transovarial transmission of Borrelia burgdorferi in Ixodes dammini (Acari:Ixodidae). J Infect Dis 156:234–236

    Article  PubMed  CAS  Google Scholar 

  • Mulay VB, Caimano MJ, Iyer R, Dunham-Ems S, Liveris D, Petzke MM, Schwartz I, Radolf JD (2009) Borrelia burgdorferi bba74 is expressed exclusively during tick feeding and is regulated by both arthropod- and mammalian host-specific signals. J Bacteriol 191:2783–2794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narasimhan S, Sukumaran B, Bozdogan J, Thomas V, Liang X, DePonte K, Marcantonio N, Koski RA, Anderson JF, Kantor FS, Fikrig E (2007) A tick antioxidant facilitates the Lyme disease agent’s successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2:7–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, Eppler-Epstein R, Deponte K, Fish D, Fikrig E (2014) Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 15:58–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neelakanta G, Li X, Pal U, Liu X, Beck DS, Deponte K, Fish D, Kantor FS, Fikrig E (2007) Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 3:e33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohnishi J, Piesman J, de Silva AM (2001) Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci U S A 98:670–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ojaimi C, Brooks C, Casjens S, Rosa P, Elias A, Barbour AG, Jasinskas A, Benach J, Katona L, Radolf J, Caimano M, Skare J, Swingle K, Akins D, Schwartz I (2003) Profiling temperature-induced changes in Borrelia burgdorferi gene expression using whole genome arrays. Infect Immun 71:1689–1705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver JD, Lynn GE, Burkhardt NY, Price LD, Nelson CM, Kurtti TJ, Munderloh UG (2016) Infection of immature Ixodes scapularis (Acari: Ixodidae) by membrane feeding. J Med Entomol 53:409–415

    Article  PubMed  Google Scholar 

  • Padula SJ, Sampieri A, Dias F, Szczepanski A, Ryan RW (1993) Molecular characterization and expression of p23 (OspC) from a North American strain of Borrelia burgdorferi. Infect Immun 61:5097–5105

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pal U, de Silva AM, Montgomery RR, Fish D, Anguita J, Anderson JF, Lobet Y, Fikrig E (2000) Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A. J Clin Invest 106:561–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, de Silva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E (2004a) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468

    Article  PubMed  CAS  Google Scholar 

  • Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E (2004b) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113:220–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal U, Dai J, Li X, Neelakanta G, Luo P, Kumar M, Wang P, Yang X, Anderson JF, Fikrig E (2008) A differential role for BB0365 in the persistence of Borrelia burgdorferi in mice and ticks. J Infect Dis 197:148–155

    Article  PubMed  CAS  Google Scholar 

  • Pappas CJ, Iyer R, Petzke MM, Caimano MJ, Radolf JD, Schwartz I (2011) Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle. PLoS Pathog 7:e1002102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patton TG, Brandt KS, Nolder C, Clifton DR, Carroll JA, Gilmore RD (2013) Borrelia burgdorferi bba66 gene inactivation results in attenuated mouse infection by tick transmission. Infect Immun 81:2488–2498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters W (1992) Peritrophic membranes. In: Bradshaw SD, Burggren W, Heller HC, Ishii S, Langer H, Neuweiler G, Randall DJ (eds) Zoophysiology. Berlin, Springer. p 12

    Google Scholar 

  • Piesman J, Oliver JR, Sinsky RJ (1990) Growth kinetics of the Lyme disease spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini). Am J Trop Med Hyg 42:352–357

    Article  PubMed  CAS  Google Scholar 

  • Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway LA, Beverley SM, Turco SJ, Sacks DL (1994) Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A 91:9155–9159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Policastro PF, Schwan TG (2003) Experimental infection of Ixodes scapularis larvae (Acari: Ixodidae) by immersion in low passage cultures of Borrelia burgdorferi. J Med Entomol 40:364–370

    Article  PubMed  Google Scholar 

  • Popitsch N, Bilusic I, Rescheneder P, Schroeder R, Lybecker M (2017) Temperature-dependent sRNA transcriptome of the Lyme disease spirochete. BMC Genom 18:28

    Article  CAS  Google Scholar 

  • Pritt BS, Mead PS, Johnson DK, Neitzel DF, Respicio-Kingry LB, Davis JP, Schiffman E, Sloan LM, Schriefer ME, Replogle AJ, Paskewitz SM, Ray JA, Bjork J, Steward CR, Deedon A, Lee X, Kingry LC, Miller TK, Feist MA, Theel ES, Patel R, Irish CL, Petersen JM (2016) Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. Lancet Infect Dis 16:556–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Promnares K, Kumar M, Shroder DY, Zhang X, Anderson JF, Pal U (2009) Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol Microbiol 74:112–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raffel SJ, Battisti JM, Fischer RJ, Schwan TG (2014) Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks. PLoS Pathog 10:e1004056

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, Anguita J, Norgard MV, Kantor FS, Anderson JF, Koski RA, Fikrig E (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rego RO, Bestor A, Stefka J, Rosa PA (2014) Population bottlenecks during the infectious cycle of the Lyme disease spirochete Borrelia burgdorferi. PLoS ONE 9:e101009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Revel AT, Blevins JS, Almazan C, Neil L, Kocan KM, de la Fuente J, Hagman KE, Norgard MV (2005) bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci U S A 102:6972–6977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogers EA, Terekhova D, Zhang HM, Hovis KM, Schwartz I, Marconi RT (2009) Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol Microbiol 71:1551–1573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rollend L, Fish D, Childs JE (2013) Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks Tick Borne Dis 4:46–51

    Article  PubMed  Google Scholar 

  • Rudzinska MA, Spielman A, Lewengrub S, Piesman J, Karakashian S (1982) Penetration of the peritrophic membrane of the tick by Babesia microti. Cell Tissue Res 221:471–481

    Article  PubMed  CAS  Google Scholar 

  • Sacks DL, Pimenta PF, McConville MJ, Schneider P, Turco SJ (1995) Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med 181:685–697

    Article  PubMed  CAS  Google Scholar 

  • Sadziene A, Wilske B, Ferdows MS, Barbour AG (1993) The cryptic ospC gene of Borrelia burgdorferi B31 is located on a circular plasmid. Infect Immun 61:2192–2195

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar A, Hayes BM, Dulebohn DP, Rosa PA (2011) Regulation of the virulence determinant OspC by bbd18 on linear plasmid lp17 of Borrelia burgdorferi. J Bacteriol 193:5365–5373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA (1995) Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwan TG, Hinnebusch BJ (1998) Bloodstream- versus tick-associated variants of a relapsing fever bacterium. Science 280:1938–1940

    Article  PubMed  CAS  Google Scholar 

  • Schwan TG, Piesman J (2000) Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 39:382–388

    Google Scholar 

  • Seshu J, Boylan JA, Gherardini FC, Skare JT (2004) Dissolved oxygen levels alter gene expression and antigen profiles in Borrelia burgdorferi. Infect Immun 72:1580–1586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shih CM, Chao LL, Yu CP (2002) Chemotactic migration of the Lyme disease spirochete (Borrelia burgdorferi) to salivary gland extracts of vector ticks. Am J Trop Med Hyg 66:616–621

    Article  PubMed  Google Scholar 

  • Stevenson B, Schwan TG, Rosa PA (1995) Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63:4535–4539

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart PE, Wang X, Bueschel DM, Clifton DR, Grimm D, Tilly K, Carroll JA, Weis JJ, Rosa PA (2006) Delineating the requirement for the Borrelia burgdorferi virulence factor OspC in the mammalian host. Infect Immun 74:3547–3553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart PE, Bestor A, Cullen JN, Rosa PA (2008) Tightly regulated surface protein of Borrelia burgdorferi is not essential to the mouse-tick infectious cycle. Infect Immun 76:1970–1978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sytykiewicz H, Karbowiak G, Chorostowska-Wynimko J, Szpechcinski A, Supergan-Marwicz M, Horbowicz M, Szwed M, Czerniewicz P, Sprawka I (2015) Coexistence of Borrelia burgdorferi s.l. genospecies within Ixodes ricinus ticks from central and eastern Poland. Acta Parasitol 60:654–661

    Article  PubMed  Google Scholar 

  • Takano A, Goka K, Une Y, Shimada Y, Fujita H, Shiino T, Watanabe H, Kawabata H (2010) Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol 12:134–146

    Article  PubMed  CAS  Google Scholar 

  • Telford SR 3rd, Mather TN, Moore SI, Wilson ML, Spielman A (1988) Incompetence of deer as reservoirs of the Lyme disease spirochete. Am J Trop Med Hyg 39:105–109

    Article  PubMed  Google Scholar 

  • Tilly K, Grimm D, Bueschel DM, Krum JG, Rosa P (2004) Infectious cycle analysis of a Borrelia burgdorferi mutant defective in transport of chitobiose, a tick cuticle component. Vector Borne Zoonotic Dis 4:159–168

    Article  PubMed  Google Scholar 

  • Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, Stewart P, Rosa P (2006) Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 74:3554–3564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tilly K, Bestor A, Jewett MW, Rosa P (2007) Rapid clearance of Lyme disease spirochetes lacking OspC from skin. Infect Immun 75:1517–1519

    Article  PubMed  CAS  Google Scholar 

  • Tilly K, Bestor A, Rosa PA (2013) Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol 89:216–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tilly K, Bestor A, Rosa PA (2016) Functional equivalence of OspA and OspB, but not OspC, in tick colonization by Borrelia burgdorferi. Infect Immun 84:1565–1573

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandyk JK, Bartholomew DM, Rowley WA, Platt KB (1996) Survival of Ixodes scapularis (Acari: Ixodidae) exposed to cold. J Med Entomol 33:6–10

    Article  PubMed  CAS  Google Scholar 

  • von Lackum K, Ollison KM, Bykowski T, Nowalk AJ, Hughes JL, Carroll JA, Zuckert WR, Stevenson B (2007) Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein IpLA7 (P22, P22-A) during the Lyme disease spirochaete’s mammal-tick infectious cycle. Microbiology 153:1361–1371

    Article  CAS  Google Scholar 

  • Wilske B, Preac-Mursic V, Schierz G, Busch KV (1986) Immunochemical and immunological analysis of European Borrelia burgdorferi strains. Zentralbl Bakteriol Hyg A 263:92–102

    CAS  Google Scholar 

  • Wilske B, Preac-Mursic V, Schierz G, Kuhbeck R, Barbour AG, Kramer M (1988) Antigenic variability of Borrelia burgdorferi. In: Benach JL, Bosler EM (eds) Lyme Disease and Related Disorders. New York, Academy of Sciences. pp 126–143

    Google Scholar 

  • Wilske B, Preac-Mursic V, Jauris S, Hofmann A, Pradel I, Soutschek E, Schwab E, Will G, Wanner G (1993) Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect Immun 61:2182–2191

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xu H, He M, He JJ, Yang XF (2010) Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 78:2910–2918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Hegde S, Shroder DY, Smith AA, Promnares K, Neelakanta G, Anderson JF, Fikrig E, Pal U (2013) The lipoprotein La7 contributes to Borrelia burgdorferi persistence in ticks and their transmission to naïve hosts. Microbes Infect 15:729–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199:641–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Zhang Y, Adusumilli S, Liu L, Narasimhan S, Dai J, Zhao YO, Fikrig E (2011) Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog 7:e1002079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Z, Gern L, Aeschlimann A (1991) The peritrophic membrane of Ixodes ricinus. Parasitol Res 77:635–641

    Article  PubMed  CAS  Google Scholar 

  • Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis SO (2016) Microbiome changes through ontogeny of a tick pathogen vector. Mol Ecol 25:4963–4977

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Tom Schwan for insights and discussions of tick biology and critical reading of the manuscript, and to Austin Athman for graphical expertise. The authors were supported by the Intramural Research Program of the NIAID, NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philip E. Stewart or Patricia A. Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stewart, P.E., Rosa, P.A. (2017). Physiologic and Genetic Factors Influencing the Zoonotic Cycle of Borrelia burgdorferi. In: Adler, B. (eds) Spirochete Biology: The Post Genomic Era. Current Topics in Microbiology and Immunology, vol 415. Springer, Cham. https://doi.org/10.1007/82_2017_43

Download citation

Publish with us

Policies and ethics