Skip to main content

Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections

  • Chapter
  • First Online:
Roles of Host Gene and Non-coding RNA Expression in Virus Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 419))

  • 2555 Accesses

Abstract

Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus–host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Acosta EG, Bartenschlager R (2016) Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development. Expert Rev Vaccines 15:467–482

    CAS  PubMed  Google Scholar 

  • Acosta EG, Castilla V, Damonte EB (2009) Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11:1533–1549

    CAS  PubMed  Google Scholar 

  • Agis-Juarez RA, Galvan I, Medina F, Daikoku T, Padmanabhan R, Ludert JE, del Angel RM (2009) Polypyrimidine tract-binding protein is relocated to the cytoplasm and is required during dengue virus infection in Vero cells. J Gen Virol 90:2893–2901

    CAS  PubMed  Google Scholar 

  • Anwar A, Leong KM, Ng ML, Chu JJ, Garcia-Blanco MA (2009) The polypyrimidine tract-binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. J Biol Chem 284:17021–170219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artpradit C, Robinson LN, Gavrilov BK, Rurak TT, Ruchirawat M, Sasisekharan R (2013) Recognition of heparan sulfate by clinical strains of dengue virus serotype 1 using recombinant subviral particles. Virus Res 176:69–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ast T, Cohen G, Schuldiner M (2013) A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152:1134–1145

    CAS  PubMed  Google Scholar 

  • Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, Kasinrerk W, Malasit P, Atkinson JP, Diamond MS (2007) Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 3:e183

    PubMed  PubMed Central  Google Scholar 

  • Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, Galarza-Munoz G, McGrath EL, Urrabaz-Garza R, Gao J, Wu P, Menon R, Saade G, Fernandez-Salas I, Rossi SL, Vasilakis N, Routh A, Bradrick SS, Garcia-Blanco MA (2016) A screen of FDA-approved drugs for inhibitors of Zika Virus infection. Cell Host Microbe 20:259–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beasley DW, Whiteman MC, Zhang S, Huang CY, Schneider BS, Smith DR, Gromowski GD, Higgs S, Kinney RM, Barrett AD (2005) Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beatman E, Oyer R, Shives KD, Hedman K, Brault AC, Tyler KL, Beckham JD (2012) West Nile virus growth is independent of autophagy activation. Virology 433:262–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenthal T, Carmichael GG (1979) RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem 48:525–548

    CAS  PubMed  Google Scholar 

  • Byk LA, Gamarnik AV (2016) Properties and functions of the Dengue Virus Capsid Protein. Annu Rev Virol 3:263–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byk LA, Iglesias NG, De Maio FA, Gebhard LG, Rossi M, Gamarnik AV (2016) Dengue virus genome uncoating requires ubiquitination. MBio 7(3):e00804–e00816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith DR (2007) Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 79:386–392

    PubMed  Google Scholar 

  • Campos RK, Wong B, Xie X, Lu YF, Shi PY, Pompon J, Garcia-Blanco MA, Bradrick SS (2017) RPLP1 and RPLP2 are essential flavivirus host factors that promote early viral protein accumulation. J Virol 91(4):e01706–e01716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carnec X, Meertens L, Dejarnac O, Perera-Lecoin M, Hafirassou ML, Kitaura J, Ramdasi R, Schwartz O, Amara A (2016) The Phosphatidylserine and Phosphatidylethanolamine receptor CD300a Binds Dengue Virus and enhances infection. J Virol 90:92–102

    CAS  PubMed  Google Scholar 

  • Cervantes-Salazar M, Angel-Ambrocio AH, Soto-Acosta R, Bautista-Carbajal P, Hurtado-Monzon AM, Alcaraz-Estrada SL, Ludert JE, del Angel RM (2015) Dengue virus NS1 protein interacts with the ribosomal protein RPL18: this interaction is required for viral translation and replication in Huh-7 cells. Virology 484:113–126

    CAS  PubMed  Google Scholar 

  • Chan KR, Ong EZ, Tan HC, Zhang SL, Zhang Q, Tang KF, Kaliaperumal N, Lim AP, Hibberd ML, Chan SH, Connolly JE, Krishnan MN, Lok SM, Hanson BJ, Lin CN, Ooi EE (2014) Leukocyte immunoglobulin-like receptor B1 is critical for antibody-dependent dengue. Proc Natl Acad Sci U S A 111:2722–2727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672–676

    CAS  PubMed  Google Scholar 

  • Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871

    CAS  PubMed  Google Scholar 

  • Cheng G, Cox J, Wang P, Krishnan MN, Dai J, Qian F, Anderson JF, Fikrig E (2010) A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142:714–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu WW, Kinney RM, Dreher TW (2005) Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79:8303–8315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choy MM, Zhang SL, Costa VV, Tan HC, Horrevorts S, Ooi EE (2015) Proteasome inhibition suppresses Dengue Virus egress in antibody dependent infection. PLoS Negl Trop Dis 9:e0004058

    PubMed  PubMed Central  Google Scholar 

  • Clyde K, Harris E (2006) RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 80:2170–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Courageot MP, Frenkiel MP, dos Santos CD, Deubel V, Despres P (2000) Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 74:564–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crabtree MB, Kinney RM, Miller BR (2005) Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch Virol 150:771–786

    CAS  PubMed  Google Scholar 

  • D’Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B, Piorkowski G, Maquart M, Descamps D, Damond F, Leparc-Goffart I (2016) Evidence of sexual transmission of Zika Virus. N Engl J Med 374:2195–2198

    PubMed  Google Scholar 

  • Dalrymple N, Mackow ER (2011) Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol 85:9478–9485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Laxminarayana SV, Chandra N, Ravi V, Desai A (2009) Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology 385:47–57

    CAS  PubMed  Google Scholar 

  • Davis CW, Mattei LM, Nguyen HY, Ansarah-Sobrinho C, Doms RW, Pierson TC (2006) The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 281:37183–37194

    CAS  PubMed  Google Scholar 

  • Davis WG, Blackwell JL, Shi PY, Brinton MA (2007) Interaction between the cellular protein eEF1A and the 3’-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 81:10172–10187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau VM, Malasit P, Rey FA, Mongkolsapaya J, Screaton GR (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol 17:1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dejnirattisai W, Webb AI, Chan V, Jumnainsong A, Davidson A, Mongkolsapaya J, Screaton G (2011) Lectin switching during dengue virus infection. J Infect Dis 203:1775–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devaux PF, Herrmann A, Ohlwein N, Kozlov MM (2008) How lipid flippases can modulate membrane structure. Biochim Biophys Acta 1778:1591–1600

    CAS  PubMed  Google Scholar 

  • Diaz A, Ahlquist P (2012) Role of host reticulon proteins in rearranging membranes for positive-strand RNA virus replication. Curr Opin Microbiol 15:519–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Lu X, Li J, Liu Y (2008) Novel binding between pre-membrane protein and vacuolar ATPase is required for efficient dengue virus secretion. Biochem Biophys Res Commun 373:319–324

    CAS  PubMed  Google Scholar 

  • Edgil D, Polacek C, Harris E (2006) Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976–8296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans EA, Gilmore R, Blobel G (1986) Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci U S A 83:581–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evron T, Daigle TL, Caron MG (2012) GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci 33:154–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V (1999) Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73:6104–6110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman DI, Schauer AT, Baumann MR, Baron LS, Adhya SL (1981) Evidence that ribosomal protein S10 participates in control of transcription termination. Proc Natl Acad Sci U S A 78:1115–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich S, Schmidt T, Geissler R, Lilie H, Chabierski S, Ulbert S, Liebert UG, Golbik RP, Behrens SE (2014) AUF1 p45 promotes West Nile virus replication by an RNA chaperone activity that supports cyclization of the viral genome. J Virol 88:11586–11599

    PubMed  PubMed Central  Google Scholar 

  • Friedrich S, Schmidt T, Schierhorn A, Lilie H, Szczepankiewicz G, Bergs S, GOLBIK RP, Behrens SE (2016) Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45. Rna 22(10):1574–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamarnik AV, Andino R (1998) Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293–2304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C (2016) Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res 134:244–249

    CAS  PubMed  Google Scholar 

  • Garcia-Montalvo BM, Medina F, del Angel RM (2004) La protein binds to NS5 and NS3 and to the 5′ and 3′ ends of Dengue 4 virus RNA. Virus Res 102:141–150

    CAS  PubMed  Google Scholar 

  • Garske T, van Kerkhove MD, Yactayo S, Ronveaux O, Lewis RF, Staples JE, Perea W, Ferguson NM, Yellow Fever Expert Committee (2014) Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med 11:e1001638

    PubMed  PubMed Central  Google Scholar 

  • Gomila RC, Martin GW, Gehrke L (2011) NF90 binds the dengue virus RNA 3′ terminus and is a positive regulator of dengue virus replication. PLoS ONE 6:e16687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guirakhoo F, Hunt AR, Lewis JG, Roehrig JT (1993) Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194:219–223

    CAS  PubMed  Google Scholar 

  • Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11:591–598

    CAS  PubMed  Google Scholar 

  • Hackett BA, Yasunaga A, Panda D, Tartell MA, Hopkins KC, Hensley SE, Cherry S (2015) RNASEK is required for internalization of diverse acid-dependent viruses. Proc Natl Acad Sci U S A 112:7797–7802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F, Cao-Lormeau VM, Choumet V, Briant L, Despres P, Amara A, Yssel H, Misse D (2015) Biology of Zika Virus infection in human skin cells. J Virol 89:8880–8896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW (2005) N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 79:13262–13274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrower J, Kiedrzynski T, Baker S, Upton A, Rahnama F, Sherwood J, Huang QS, Todd A, Pulford D (2016) Sexual Transmission of Zika Virus and persistence in Semen, New Zealand, 2016. Emerg Infect Dis 22:1855–1857

    PubMed  PubMed Central  Google Scholar 

  • Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, Randall G (2010) Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107:17345–17350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton NS, Randall G (2010) Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8:422–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch AJ, Medigeshi GR, Meyers HL, Defilippis V, Fruh K, Briese T, Lipkin WI, Nelson JA (2005) The Src family kinase c-Yes is required for maturation of West Nile virus particles. J Virol 79:11943–11951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias NG, Mondotte JA, Byk LA, de Maio FA, Samsa MM, Alvarez C, Gamarnik AV (2015) Dengue Virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets. Traffic 16:962–977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov A, Mikhailova T, Eliseev B, Yeramala L, Sokolova E, Susorov D, Shuvalov A, Schaffitzel C, Alkalaeva E (2016) PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res 44:7766–7776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL (2008) RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 36:712–725

    CAS  PubMed  Google Scholar 

  • Jan CH, Williams CC, Weissman JS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346:1257521

    PubMed  PubMed Central  Google Scholar 

  • Jiang L, Yao H, Duan X, Lu X, Liu Y (2009) Polypyrimidine tract-binding protein influences negative strand RNA synthesis of dengue virus. Biochem Biophys Res Commun 385:187–192

    CAS  PubMed  Google Scholar 

  • Jindadamrongwech S, Thepparit C, Smith DR (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927

    CAS  PubMed  Google Scholar 

  • Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, Schuldiner M (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:1693–1697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ (2014) Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol 88:4687–4697

    PubMed  PubMed Central  Google Scholar 

  • Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19:104–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia M, Khasa R, Sharma M, Nain M, Vrati S (2013) Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol 87:148–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Chubatsu LS, Admon A, Stahl J, Fellous R, Linn S (1995) Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J Biol Chem 270:13620–13629

    CAS  PubMed  Google Scholar 

  • Kim JM, Yun SI, Song BH, Hahn YS, Lee CH, Oh HW, Lee YM (2008) A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol 82:7846–7862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi N, Karisola P, Pena-Cruz V, Dorfman DM, Jinushi M, Umetsu SE, Butte MJ, Nagumo H, Chernova I, Zhu B, Sharpe AH, Ito S, Dranoff G, Kaplan GG, Casasnovas JM, Umetsu DT, Dekruyff RH, Freeman GJ (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27:927–940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Orba Y, Yamaguchi H, Takahashi K, Sasaki M, Hasebe R, Kimura T, Sawa H (2014) Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection. Virus Res 191:83–91

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Suzuki T, Kawaguchi A, Phongphaew W, Yoshii K, Iwano T, Harada A, Kariwa H, Orba Y, Sawa H (2016) Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes. J Biol Chem 291:6559–6568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174

    CAS  PubMed  Google Scholar 

  • Kostyuchenko VA, Lim EX, Zhang S, Fibriansah G, Ng TS, Ooi JS, Shi J, Lok SM (2016) Structure of the thermally stable Zika virus. Nature 533:425–428

    CAS  PubMed  Google Scholar 

  • Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455:242–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan MN, Sukumaran B, Pal U, Agaisse H, Murray JL, Hodge TW, Fikrig E (2007) Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81:4881–4885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroschewski H, Allison SL, Heinz FX, Mandl CW (2003) Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308:92–100

    CAS  PubMed  Google Scholar 

  • Kudelko M, Brault JB, Kwok K, Li MY, Pardigon N, Peiris JS, Bruzzone R, Despres P, Nal B, Wang PG (2012) Class II ADP-ribosylation factors are required for efficient secretion of dengue viruses. J Biol Chem 287:767–777

    CAS  PubMed  Google Scholar 

  • Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Gorlich D (1998) Identification of a tRNA-specific nuclear export receptor. Mol Cell 1:359–369

    CAS  PubMed  Google Scholar 

  • Landry DM, Hertz MI, Thompson SR (2009) RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes Dev 23:2753–2764

    CAS  PubMed  PubMed Central  Google Scholar 

  • le Sommer C, Barrows NJ, Bradrick SS, Pearson JL, Garcia-Blanco MA (2012) G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication. PLoS Negl Trop Dis 6:e1820

    PubMed  PubMed Central  Google Scholar 

  • Lee E, Lobigs M (2000) Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74:8867–8875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG (2008) The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830–1834

    CAS  PubMed  Google Scholar 

  • Li MY, Grandadam M, Kwok K, Lagache T, Siu YL, Zhang JS, Bruzzone R, Wang PG (2015) KDEL receptors assist dengue virus exit from the endoplasmic reticulum. Cell reports 10(9):1496–1507

    Google Scholar 

  • LINDENBACH B, THIEL H-J, RICE C (2013) Flaviviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM. (eds) Fields virology. 6th edn. Wolters Kluwer Health/Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Liu H, Chiou SS, Chen WJ (2004) Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface. J Med Virol 72:618–624

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, Xiang Y, Wang P, Cheng G (2014) Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog 10:e1003931

    PubMed  PubMed Central  Google Scholar 

  • Lobigs M, Lee E, Ng ML, Pavy M, Lobigs P (2010) A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. Virology 401:80–89

    CAS  PubMed  Google Scholar 

  • Louie RJ, Guo J, Rodgers JW, White R, Shah N, Pagant S, Kim P, Livstone M, Dolinski K, McKinney BA, Hong J, Sorscher EJ, Bryan J, Miller EA, Hartman JLT (2012) A yeast phenomic model for the gene interaction network modulating CFTR-DeltaF508 protein biogenesis. Genome Med 4:103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozach PY, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier JL, Rey FA, Despres P, Arenzana-Seisdedos F, Amara A (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem 280:23698–23708

    CAS  PubMed  Google Scholar 

  • Luca VC, Nelson CA, Fremont DH (2013) Structure of the St. Louis encephalitis virus postfusion envelope trimer. J Virol 87:818–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Dang Y, Wu Y, Jia G, Anaya E, Zhang J, Abraham S, Choi JG, Shi G, Qi L, Manjunath N, Wu H (2015) A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death. Cell Rep 12:673–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE (2016) Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535:159–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo R, Nagamine CM, Spagnolo J, MĂ©ndez E, Rahe M, Gale M, Yuan J, Kirkegaard K (2013) Inhibition of cellular autophagy deranges dengue virion maturation. J Virol 87(3):1312–1321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, Lemke G, Schwartz O, Amara A (2012) The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12:544–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17

    PubMed  PubMed Central  Google Scholar 

  • Miner JJ, Sene A, Richner JM, Smith AM, Santeford A, Ban N, Weger-Lucarelli J, Manzella F, Ruckert C, Govero J, Noguchi KK, Ebel GD, Diamond MS, Apte RS (2016) Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears. Cell Rep 16:3208–3218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moller-Tank S, Maury W (2014) Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 468–470:565–580

    PubMed  Google Scholar 

  • Mondotte JA, Lozach PY, Amara A, Gamarnik AV (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81:7136–7148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science 302:248

    CAS  PubMed  Google Scholar 

  • Muylaert IR, Chambers TJ, Galler R, Rice CM (1996) Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222:159–168

    CAS  PubMed  Google Scholar 

  • Nagy PD, Strating JR, van Kuppeveld FJ (2016) Building Viral Replication Organelles: Close Encounters of the Membrane Types. PLoS Pathog 12:e1005912

    PubMed  PubMed Central  Google Scholar 

  • Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Despres P (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nour AM, Li Y, Wolenski J, Modis Y (2013) Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLoS Pathog 9:e1003585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K, Kinoshita H, del Carmen Parquet M, Raekiansyah M, Kimura D, Yui K, Islam MA, Hasebe F, Morita K (2012) Dengue virus strain DEN2 16681 utilizes a specific glycochain of syndecan-2 proteoglycan as a receptor. J Gen Virol 93(4):761–770

    CAS  PubMed  Google Scholar 

  • Padwad YS, Mishra KP, Jain M, Chanda S, Ganju L (2010) Dengue virus infection activates cellular chaperone Hsp70 in THP-1 cells: downregulation of Hsp70 by siRNA revealed decreased viral replication. Viral Immunol 23:557–565

    CAS  PubMed  Google Scholar 

  • Pena J, Harris E (2012) Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway. PLoS ONE 7:e38202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perera-Lecoin M, Meertens L, Carnec X, Amara A (2014) Flavivirus entry receptors: an update. Viruses 6:69–88

    Google Scholar 

  • Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, Pasa-Tolic L, Metz TO, Adamec J, Kuhn RJ (2012) Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog 8:e1002584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perreira JM, Aker AM, Savidis G, Chin CR, McDougall WM, Portmann JM, Meraner P, Smith MC, Rahman M, Baker RE, Gauthier A, Franti M, Brass AL (2015) RNASEK Is a V-ATPase-Associated Factor Required for Endocytosis and the Replication of Rhinovirus, Influenza A Virus, and Dengue Virus. Cell Rep 12:850–863

    CAS  PubMed  Google Scholar 

  • Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493

    CAS  PubMed  Google Scholar 

  • Polacek C, Friebe P, Harris E (2009) Poly(A)-binding protein binds to the non-polyadenylated 3’ untranslated region of dengue virus and modulates translation efficiency. J Gen Virol 90:687–692

    CAS  PubMed  Google Scholar 

  • Reyes-del Valle J, Chávez-Salinas S, Medina F, del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79(8):4557–4567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard M, Boulin T, Robert VJ, Richmond JE, Bessereau JL (2013) Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. Proc Natl Acad Sci U S A 110:E1055–E1063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roehrig JT, Butrapet S, Liss NM, Bennett SL, Luy BE, Childers T, Boroughs KL, Stovall JL, Calvert AE, Blair CD, Huang CY (2013) Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion. Virology 441:114–125

    CAS  PubMed  Google Scholar 

  • Romero-Brey I, Bartenschlager R (2014) Membranous replication factories induced by plus-strand RNA viruses. Viruses 6:2826–2857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, da Poian AT, Bozza PT, Gamarnik AV (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5:e1000632

    PubMed  PubMed Central  Google Scholar 

  • Satoh T, Ohba A, Liu Z, Inagaki T, Satoh AK (2015) dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors. Elife 4:e06306

    PubMed Central  Google Scholar 

  • Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S, Kowalik TF, Brass AL (2016) Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics. Cell Rep 16:232–246

    CAS  PubMed  Google Scholar 

  • Seitz HM, Camenisch TD, Lemke G, Earp HS, Matsushima GK (2007) Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J Immunol 178:5635–5642

    CAS  PubMed  Google Scholar 

  • Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, Garcia-Blanco MA (2009) Discovery of insect and human dengue virus host factors. Nature 458:1047–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ (2016) The 3.8 A resolution cryo-EM structure of Zika virus. Science 352:467–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J (2011) Flavivirus cell entry and membrane fusion. Viruses 3:160–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnan P (2011) N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413:253–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler K, Allison SL, Schalich J, Heinz FX (1997) Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabata K, Arimoto M, Arakawa M, Nara A, Saito K, Omori H, Arai A, Ishikawa T, Konishi E, Suzuki R, Matsuura Y, Morita E (2016a) Unique Requirement for ESCRT Factors in Flavivirus Particle Formation on the Endoplasmic Reticulum. Cell Rep 16:2339–2347

    CAS  PubMed  Google Scholar 

  • Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, Harris E, Pereira L (2016b) Zika Virus Targets Different Primary Human Placental Cells, Suggesting Two Routes for Vertical Transmission. Cell Host Microbe 20:155–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taguwa S, Maringer K, Li X, Bernal-Rubio D, Rauch JN, Gestwicki JE, Andino R, Fernandez-Sesma A, Frydman J (2015) Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Cell 163:1108–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thepparit C, Smith DR (2004) Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78:12647–12656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tio PH, Jong WW, Cardosa MJ (2005) Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J 2:25

    PubMed  PubMed Central  Google Scholar 

  • Tung YT, Wu MF, Wang GJ, Hsieh SL (2014) Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the CLEC5A receptor. Nanomedicine 10:1335–1341

    CAS  PubMed  Google Scholar 

  • Uchida L, Espada-Murao LA, Takamatsu Y, Okamoto K, Hayasaka D, Yu F, Nabeshima T, Buerano CC, Morita K (2014) The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci Rep 4:7395

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Schaar HM, Rust MJ, Chen C, Van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit JM (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4:e1000244

    PubMed  PubMed Central  Google Scholar 

  • Vashist S, Anantpadma M, Sharma H, Vrati S (2009) La protein binds the predicted loop structures in the 3’ non-coding region of Japanese encephalitis virus genome: role in virus replication. J Gen Virol 90:1343–1352

    CAS  PubMed  Google Scholar 

  • Walter P, Blobel G (1981a) Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91:557–561

    CAS  PubMed  Google Scholar 

  • Walter P, Blobel G (1981b) Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91:551–556

    CAS  PubMed  Google Scholar 

  • Walter P, Ibrahimi I, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 91:545–550

    CAS  PubMed  Google Scholar 

  • Walter P, Johnson AE (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10:87–119

    CAS  PubMed  Google Scholar 

  • Wang P, Hu K, Luo S, Zhang M, Deng X, Li C, Jin W, Hu B, He S, Li M, Du T, Xiao G, Zhang B, Liu Y, Hu Q (2016) DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology 488:108–119

    CAS  PubMed  Google Scholar 

  • Ward AM, Bidet K, Yinglin A, Ler SG, Hogue K, Blackstock W, Gunaratne J, Garcia-Blanco MA (2011) Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3’ UTR structures. RNA Biol 8:1173–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward AM, Calvert ME, Read LR, Kang S, Levitt BE, Dimopoulos G, Bradrick SS, Gunaratne J, Garcia-Blanco MA (2016) The Golgi associated ERI3 is a Flavivirus host factor. Sci Rep 6:34379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N (2016) Zika virus: history, emergence, biology, and prospects for control. Antiviral research. 30(130):69–80

    Google Scholar 

  • Wells MF, Salick MR, Wiskow O, Ho DJ, Worringer KA, Ihry RJ, Kommineni S, Bilican B, Klim JR, Hill EJ, Kane LT, Ye C, Kaykas A, Eggan K (2016) Genetic Ablation of AXL Does Not Protect Human Neural Progenitor Cells and Cerebral Organoids from Zika Virus Infection. Cell Stem Cell 19:703–708

    CAS  PubMed  Google Scholar 

  • Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, Fuller SD, Antony C, Krijnse-Locker J, Bartenschlager R (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–375

    CAS  PubMed  Google Scholar 

  • Wilder-Smith A, Byass P (2016) The elusive global burden of dengue. Lancet Infect Dis 16(6):629–631

    PubMed  Google Scholar 

  • Xu Z, Hobman TC (2012) The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles. Virology 433:226–235

    CAS  PubMed  Google Scholar 

  • Ye J, Chen Z, Zhang B, Miao H, Zohaib A, Xu Q, Chen H, Cao S (2013) Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication. PLoS ONE 8:e75188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837

    CAS  PubMed  Google Scholar 

  • Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 6:e1001131

    PubMed  PubMed Central  Google Scholar 

  • Zeisel MB, Felmlee DJ, Baumert TF (2013) Hepatitis C virus entry. Curr Top Microbiol Immunol 369:87–112

    CAS  PubMed  Google Scholar 

  • Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, Zuiani A, Zhang P, Fernandez E, Zhang Q, Dowd KA, Pierson TC, Cherry S, Diamond MS (2016) A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:164–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH (2013) Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat Struct Mol Biol 20:105–110

    PubMed  Google Scholar 

  • Zhou X, Liao WJ, Liao JM, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7:92–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhouravleva G, Frolova L, le Goff X, le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zybert IA, Van der Ende-Metselaar H, Wilschut J, Smit JM (2008) Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol 89:3047–3051

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues from the Bradrick and Garcia-Blanco laboratory, University of Texas Medical Branch for their support. This work was supported by NIH grants R01-AI089526 and R01-AI101431 (MAG-B) and startup funds from the University of Texas Medical Branch.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariano A. Garcia-Blanco or Shelton S. Bradrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Campos, R.K., Garcia-Blanco, M.A., Bradrick, S.S. (2017). Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections. In: Tripp, R., Tompkins, S. (eds) Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Current Topics in Microbiology and Immunology, vol 419. Springer, Cham. https://doi.org/10.1007/82_2017_26

Download citation

Publish with us

Policies and ethics