Advertisement

Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules

  • Roland Benz
  • Holger Barth
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 406)

Abstract

A-B types of toxins are among the most potent bacterial protein toxins produced by gram-positive bacteria. Prominent examples are the tripartite anthrax toxin of Bacillus anthracis and the different A-B type clostridial toxins that are the causative agents of severe human and animal diseases and could serve as biological weapons. The components of all these toxins comprise one binding/transport (B) subunit and one or two separate, non-linked enzymatically active (A) subunits. The A and B subunits are separately produced and secreted by the pathogenic gram-positive bacteria and must assemble on the surface of eukaryotic target cells to form biologically active toxin complexes. The B components are cleaved by proteases to generate the biologically active species that binds to receptors on the surface of the target cells and form there oligomers which bind the A subunits. The AB complexes are internalized by receptor-mediated endocytosis and reach early or late endosomes that become acidified. Subsequently, the B components form channels in endosomal membranes that are indispensable for the transport of the enzymatic subunits across these membranes into the cytosol of target cells via the trans-membrane channels. In addition to the channels formed by the B components, host cell factors including chaperones and further folding helper enzymes are involved in the import of the enzymatic subunits into the cytosol of eukaryotic cells. Positively charged heterocyclic molecules, such as chloroquine and related aminoquinolinium and azolopyridinium salts have been shown in recent years to bind with high affinity to the channels formed by the B components of binary toxins. Since binding to the B components is also a prerequisite for transport of the A components across the endosomal membranes the channel blockers also prevent transport of the A subunits into the host cell cytosol. The inhibition of toxin uptake into cells by such pharmacological compounds should also be of clinically interest because the toxins are the major virulence factors causing anthrax on the one hand and severe enteric disease on the other hand. Therefore, the novel toxin inhibitors should be attractive compounds for an application in combination with antibiotics to prevent or treat the diseases associated with binary toxins. Here the different processes involved in channel block in vitro and inhibition of intoxication of living target cells are reviewed in some detail.

References

  1. Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392CrossRefPubMedGoogle Scholar
  3. Aktories K, Barth H (2011) New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. Eur J Cell Biol 90:944–950CrossRefPubMedGoogle Scholar
  4. Arévalo MT, Li J, Diaz-Arévalo D, Chen Y, Navarro A, Wu L, Yan Y, Zeng M (2017) A dual purpose universal influenza vaccine candidate confers protective immunity against anthrax. Immunology 150:276–289CrossRefPubMedGoogle Scholar
  5. Bachmeyer C, Benz R, Barth H, Aktories K, Gilbert M, Popoff MR (2001) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds in vitro and intoxification in vivo. FASEB J. 15:1658–1660PubMedGoogle Scholar
  6. Bachmeyer C, Orlik F, Barth H, Aktories K, Benz R (2003) Mechanism of C2-toxin inhibition by fluphenazine and related compounds: investigation of their binding kinetics to the C2II-channel using the current noise analysis. J Mol Biol 333:527–540CrossRefPubMedGoogle Scholar
  7. Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barth H, Aktories D, Blöcker K (2002) The uptake machinery of clostridial actin ADP-ribosylating toxins—a cell delivery system for fusion proteins and polypeptide drugs. Naunyn Schmiedebergs Arch Pharmacol 366:501–512CrossRefPubMedGoogle Scholar
  9. Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275:18704–18711CrossRefPubMedGoogle Scholar
  10. Beitzinger C, Bronnhuber A, Duscha K, Riedl Z, Huber-Lang M, Benz R, Hajós G, Barth H (2013) Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin. PLoS ONE 8:e66099CrossRefPubMedPubMedCentralGoogle Scholar
  11. Beitzinger C, Stefani C, Kronhardt A, Rolando M, Flatau G, Lemichez E, Benz R (2012) Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA). PLoS ONE 7:e46964CrossRefPubMedPubMedCentralGoogle Scholar
  12. Benz R, Schmid A, Nakae T, Vos-Scheperkeuter GH (1986) Pore formation by LamB of Escherichia coli in lipid bilayer membranes. J Bacteriol 165:978–986CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bezrukov SM, Winterhalter M (2000) Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. Phys Rev Lett 85:202–205CrossRefPubMedGoogle Scholar
  14. Blanke SR, Milne JC, Benson EL, Collier RJ (1996) Fused polycationic peptide mediates delivery of diphtheria toxin A chain to the cytosol in the presence of anthrax protective antigen. Proc Natl Acad Sci U S A 93:8437–8442CrossRefPubMedPubMedCentralGoogle Scholar
  15. Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci U S A 86:2209–2213CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blaustein RO, Lea EJ, Finkelstein A (1990) Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Single-channel analysis. J Gen Physiol 96:921–942CrossRefPubMedGoogle Scholar
  17. Blöcker D, Bachmeyer C, Benz R, Aktories K, Barth H (2003a) Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Biochemistry 42:5368–5377CrossRefPubMedGoogle Scholar
  18. Blöcker D, Behlke J, Aktories K, Barth H (2001) Cellular uptake of the binary Clostridium perfringens iota toxin. Infect Immun 69:2980–2987CrossRefPubMedPubMedCentralGoogle Scholar
  19. Blöcker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K, Barth H (2003b) Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278:37360–37367CrossRefPubMedGoogle Scholar
  20. Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA (2001) Identification of the cellular receptor for anthrax toxin. Nature 414:225–229CrossRefPubMedGoogle Scholar
  21. Bronnhuber A, Maier E, Riedl Z, Hajós G, Benz R, Barth H (2014) Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication. Toxicology 316:25–33CrossRefPubMedGoogle Scholar
  22. Chandra S, Kaur M, Midha S, Gorantala J, Bhatnagar R (2007) Induction of cytotoxic T-lymphocyte response against Mycobacterial antigen using domain I of anthrax edema factor as antigen delivery system. Biochem Biophys Res Commun 357:50–365CrossRefPubMedGoogle Scholar
  23. Chauhan V, Bhatnagar R (2002) Identification of amino acid residues of anthrax protective antigen involved in binding with lethal factor. Infect Immun 70:4477–4484CrossRefPubMedPubMedCentralGoogle Scholar
  24. Collier RJ, Young JA (2003) Anthrax toxin. Annu Rev Cell Dev Biol 19:45–70CrossRefPubMedGoogle Scholar
  25. Cunningham K, Lacy DB, Mogridge J, Collier RJ (2002) Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. Proc Natl Acad Sci U S A. 99:7049–7053CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dixon TC, Fadl AA, Koehler TM, Swanson JA, Hanna PC (2000) Early Bacillus anthracis-macrophage interactions: intracellular survival survival and escape. Cell Microbiol 2:453–463CrossRefPubMedGoogle Scholar
  27. Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275(4):2328–2334Google Scholar
  28. Eigen M, Kruse W, Maass G, De Maeyer L (1964) Rate constants of protolytic reactions in aqueous solutions. Prog React Kinet 2:287–318Google Scholar
  29. Elliott JL, Mogridge J, Collier RJ (2000) A quantitative study of the interactions of Bacillus anthracis edema factor and lethal factor with activated protective antigen. Biochemistry 39:6706–6713CrossRefPubMedGoogle Scholar
  30. Escuyer V, Collier RJ (1991) Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun 59:3381–3386PubMedPubMedCentralGoogle Scholar
  31. Finkelstein A (1994) The channel formed in planar lipid bilayers by the protective antigen component of anthrax toxin. Toxicology 87:29–41CrossRefPubMedGoogle Scholar
  32. Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126PubMedGoogle Scholar
  33. Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 69:6004–6011CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hajós G, Messmer A (1984) Ambident reactivity of a thiazolo[3,2-a]pyridinium salt with nucleophiles. J Heterocyclic Chem 21:809–811CrossRefGoogle Scholar
  35. Halverson KM, Panchal RG, Nguyen TL, Gussio R, Little SF, Misakian M, Bavari S, Kasianowicz JJ (2005) Anthrax biosensor, protective antigen ion channel asymmetric blockade. J Biol Chem 280:34056–34062CrossRefPubMedGoogle Scholar
  36. Hanna PC, Acosta D, Collier RJ (1993) On the role of macrophages in anthrax. Proc Natl Acad Sci U S A 90:10198–10201CrossRefPubMedPubMedCentralGoogle Scholar
  37. Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003a) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278:32266–32274CrossRefPubMedGoogle Scholar
  38. Haug G, Wilde C, Leemhuis J, Meyer DK, Aktories K, Barth H (2003b) Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry 42:15284–15291CrossRefPubMedGoogle Scholar
  39. Heine K, Pust S, Enzenmüller S, Barth H (2008) ADP-ribosylation of actin by Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death. Infect Immun 76:4600–4608CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jiang J, Pentelute BL, Collier RJ, Zhou ZH (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521:545–549CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kaiser E, Böhm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff MR, Fischer G, Barth H (2012) FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 blocks membrane translocation of the toxin in mammalian cells. Cell Microbiol 14:1193–1205CrossRefPubMedGoogle Scholar
  42. Kaiser E, Pust S, Kroll C, Barth H (2009) Cyclophilin A facilitates translocation of the Clostridium botulinum C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell Microbiol 11:780–795CrossRefPubMedGoogle Scholar
  43. Katayama H, Wang J, Tama F, Chollet L, Gogol EP, Collier RJ, Fisher MT (2010) Three-dimensional structure of the anthrax toxin pore inserted into lipidnanodiscs and lipid vesicles. Proc Natl Acad Sci U S A 107:3453–3457CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kintzer AF, Sterling HJ, Tang II, Williams ER, Krantz BA (2010) Anthrax toxin receptor drives protective antigen oligomerization and stabilizes the heptameric and octameric oligomer by a similar mechanism. PLoS ONE 5:e13888CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kintzer AF, Thoren KL, Sterling HJ, Dong KC, Feld GK, Tang II, Zhang TT, Williams ER, Berger JM, Krantz BA (2009) The protective antigen component of anthrax toxin forms functional octameric complexes. J Mol Biol 392:614–629CrossRefPubMedPubMedCentralGoogle Scholar
  46. Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR (2002) Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 277(8):6143–6152CrossRefPubMedGoogle Scholar
  47. Knapp O, Benz R, Popoff MR (2016) Pore-forming activity of clostridial binary toxins. Biochim Biophys Acta 1858:512–525CrossRefPubMedGoogle Scholar
  48. Knapp O, Maier E, Waltenberger E, Mazuet C, Benz R, Popoff MR (2015) Residues involved in the pore-forming activity of the Clostridium perfringens iota toxin. Cell Microbiol 17(2):288–302CrossRefPubMedGoogle Scholar
  49. Kong Y, Guo Q, Yu C, Dong D, Zhao J, Cai C, Hou L, Song X, Fu L, Xu J, Chen W (2009) Fusion protein of Delta 27LFn and EFn has the potential as a novel anthrax toxin inhibitor. FEBS Lett 583:1257–1260CrossRefPubMedGoogle Scholar
  50. Krantz BA, Finkelstein A, Collier RJ (2006) Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J Mol Biol 355:968–979CrossRefPubMedGoogle Scholar
  51. Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z, Finkelstein A, Collier RJ (2005) A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309:777–781CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kreidler AM, Benz R, Barth H (2017) Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 91:1431–1445CrossRefPubMedGoogle Scholar
  53. Kronhardt A, Beitzinger C, Barth H, Benz R (2016) Chloroquine analog interaction with C2- and Iota-Toxin in vitro and in living cells. Toxins (Basel) 8(8)Google Scholar
  54. Kronhardt A, Rolando M, Beitzinger C, Stefani C, Leuber M, Flatau G, Popoff MR, Benz R, Lemichez E (2011) Cross-reactivity of anthrax and C2 toxin: protective antigen promotes the uptake of botulinum C2I toxin into human endothelial cells. PLoS ONE 6:e23133CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lacy DB, Collier RJ (2002) Structure and function of anthrax toxin. Curr Top Microbiol Immunol 271:61–85PubMedGoogle Scholar
  56. Lacy DB, Mourez M, Fouassier A, Collier RJ (2002) Mapping the anthrax protective antigen binding site on the lethal and edema factors. J Biol Chem 277:3006–3010CrossRefPubMedGoogle Scholar
  57. Leppla SH, Arora N, Varughese M (1999) Anthrax toxin fusion proteins for intracellular delivery of macromolecules. J Appl Microbiol 87:284CrossRefPubMedGoogle Scholar
  58. Leuber M, Kronhardt A, Tonello F, Dal Molin F, Benz R (2008) Binding of N-terminal fragments of anthrax edema factor (EF(N)) and lethal factor (LF(N)) to the protective antigen pore. Biochim Biophys Acta 1778:1436–1443CrossRefPubMedGoogle Scholar
  59. Menard A, Papini E, Mock M, Montecucco C (1996) The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors. Biochem J 320:687–691CrossRefPubMedPubMedCentralGoogle Scholar
  60. Messmer A, Gelléri A, Hajós G (1986) Synthesis and nitrogen elimination of 3-aryltetrazolo[1,5-a]pyridinium salts and its angular benzologues. Tetrahedron 42:4827–4836CrossRefGoogle Scholar
  61. Miller CJ, Elliott JL, Collier RJ (1999) Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38:10432–10441CrossRefPubMedGoogle Scholar
  62. Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671CrossRefPubMedGoogle Scholar
  63. Mogridge J, Cunningham K, Lacy DB, Mourez M, Collier RJ (2002) The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc Natl Acad Sci U S A 99:7045–7048CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nassi S, Collier RJ, Finkelstein A (2002) PA63 channel of anthrax toxin: an extended beta-barrel. Biochemistry 41:1445–1450Google Scholar
  65. Nekolla S, Andersen C, Benz R (1994) Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophys J 66:1388–1397CrossRefPubMedPubMedCentralGoogle Scholar
  66. Neumeyer T, Schiffler B, Maier E, Lang AE, Aktories K, Benz R (2008) Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel. J Biol Chem 283:3904–3914CrossRefPubMedGoogle Scholar
  67. Neumeyer T, Tonello F, Dal Molin F, Schiffler B, Benz R (2006a) Anthrax edema factor, voltage-dependent binding to the protective antigen ion channel and comparison to LF binding. J Biol Chem 281:32335–32343CrossRefPubMedGoogle Scholar
  68. Neumeyer T, Tonello F, Dal Molin F, Schiffler B, Orlik F, Benz R (2006b) Anthrax lethal factor (LF) mediated block of the anthrax protective antigen (PA) ion channel: effect of ionic strength and voltage. Biochemistry 45:3060–3068CrossRefPubMedGoogle Scholar
  69. Nguyen TL (2004) Three-dimensional model of the pore form of anthrax protective antigen. Structure and biological implications. J Biomol Struct Dyn 22:253–265CrossRefPubMedGoogle Scholar
  70. Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673PubMedPubMedCentralGoogle Scholar
  71. Ohishi I, Yanagimoto A (1992) Visualizations of binding and internalization of two nonlinked protein components of botulinum C2 toxin in tissue culture cells. Infect Immun 60:4648–4655PubMedPubMedCentralGoogle Scholar
  72. Orlik F, Schiffler B, Benz R (2005) Anthrax toxin protective antigen: inhibition of channel function by chloroquine and related compounds and study of binding kinetics using the current noise analysis. Biophys J 88:1715–1724CrossRefPubMedGoogle Scholar
  73. Palkó R, Riedl Z, Egyed O, Fábián L, Hajós G (2006) New facile tandem route to oxo- and thioxo[1,2,4]triazolo[1,5-a]pyridinium salts. J Org Chem 71:7805–7812CrossRefPubMedGoogle Scholar
  74. Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, Lacy DB, Collier RJ, Park S, Leppla SH, Hanna P, Liddington RC (2001) Crystal structure of the anthrax lethal factor. Nature 414:229–233CrossRefPubMedGoogle Scholar
  75. Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C (1999) Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett 462:199–204CrossRefPubMedGoogle Scholar
  76. Perelle S, Domenighini M, Popoff MR (1996) Evidence that Arg-295, Glu-378, and Glu-380 are active-site residues of the ADP-ribosyltransferase activity of iota toxin. FEBS Lett 395:191–194CrossRefPubMedGoogle Scholar
  77. Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407PubMedPubMedCentralGoogle Scholar
  78. Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838CrossRefPubMedGoogle Scholar
  79. Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368CrossRefPubMedGoogle Scholar
  80. Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306PubMedPubMedCentralGoogle Scholar
  81. Ren G, Quispe J, Leppla SH, Mitra AK (2004) Large-scale structural changes accompany binding of lethal factor to anthrax protective antigen: a cryo-electron microscopic study. Structure 12:2059–2066CrossRefPubMedGoogle Scholar
  82. Schering B, Barmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229CrossRefPubMedGoogle Scholar
  83. Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364:705–715CrossRefPubMedGoogle Scholar
  84. Schmid A, Benz R, Just I, Aktories K (1994) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine. J Biol Chem 269:16706–16711PubMedGoogle Scholar
  85. Scobie HM, Rainey GJ, Bradley KA, Young JA (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A 100:5170–5174CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sellman BR, Nassi S, Collier RJ (2001) Point mutations in anthrax protective antigen that block translocation. J Biol Chem 276:8371–8376CrossRefPubMedGoogle Scholar
  87. Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251:1223–1228PubMedGoogle Scholar
  88. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866Google Scholar
  89. Stiles BG, Wilkins TD (1986a) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:683–688PubMedPubMedCentralGoogle Scholar
  90. Stiles BG, Wilkins TD (1986b) Clostridium perfringens iota toxin: synergism between two proteins. Toxicon 24:767–773CrossRefPubMedGoogle Scholar
  91. Timári G, Hajós G, Messmer A (1990) Alkylation and ring opening of two differently fused pyridoquinazolones. J Heterocycl Chem 27:2005–2009CrossRefGoogle Scholar
  92. Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic beta/gamma-actin in arginine 177. J Biol Chem 263:696–700PubMedGoogle Scholar
  93. Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742PubMedGoogle Scholar
  94. Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245PubMedGoogle Scholar
  95. Wohnsland F, Benz R (1997) 1/f-Noise of open bacterial porin channels. J Membr Biol 158:77–85CrossRefPubMedGoogle Scholar
  96. Young JA, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265CrossRefPubMedGoogle Scholar
  97. Young JJ, Bromberg-White JL, Zylstra C, Church JT, Boguslawski E, Resau JH, Williams BO, Duesbery NS (2007) LRP5 and LRP6 are not required for protective antigen-mediated internalization or lethality of anthrax lethal toxin. PLoS Pathog 3:e27CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhang S, Finkelstein A, Collier RJ (2004a) Evidence that translocation of anthrax toxin’s lethal factor is initiated by entry of its N terminus into the protective antigen channel. Proc Natl Acad Sci USA 101:16756–16761CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhang S, Udho E, Wu Z, Collier RJ, Finkelstein A (2004b) Protein translocation through anthrax toxin channels formed in planar lipid bilayers. Biophys J 87:3842–3849CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
  2. 2.Institute of Pharmacology and ToxicologyUniversity of Ulm Medical CenterUlmGermany

Personalised recommendations