pp 1-21 | Cite as

Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine

Chapter
Part of the Current Topics in Microbiology and Immunology book series

Abstract

Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women’s healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.

References

  1. Abromaitis S, Stephens RS (2009) Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog 5(4):e1000357. doi: 10.1371/journal.ppat.1000357 CrossRefGoogle Scholar
  2. Ajonuma LC, Fok KL, Ho LS, Chan PK, Chow PH, Tsang LL, Wong CH, Chen J, Li S, Rowlands DK, Chung YW, Chan HC (2010) CFTR is required for cellular entry and internalization of Chlamydia trachomatis. Cell Biol Int 34(6):593–600. doi: 10.1042/CBI20090227 CrossRefGoogle Scholar
  3. Arno JN, Katz BP, McBride R, Carty GA, Batteiger BE, Caine VA, Jones RB (1994) Age and clinical immunity to infections with Chlamydia trachomatis. Sex Transm Dis 21(1):47–52Google Scholar
  4. Bakken IJ, Skjeldestad FE, Nordbo SA (2007) Chlamydia trachomatis infections increase the risk for ectopic pregnancy: a population-based, nested case-control study. Sex Transm Dis 34(3):166–169. doi: 10.1097/01.olq.0000230428.06837.f7 CrossRefGoogle Scholar
  5. Bancroft GJ, Schreiber RD, Bosma GC, Bosma MJ, Unanue ER (1987) A T cell-independent mechanism of macrophage activation by interferon-gamma. J Immunol 139(4):1104–1107Google Scholar
  6. Barenfanger J, MacDonald AB (1974) The role of immunoglobulin in the neutralization of trachoma infectivity. J Immunol 113(5):1607–1617Google Scholar
  7. Bastidas RJ, Elwell CA, Engel JN, Valdivia RH (2013) Chlamydial intracellular survival strategies. Cold Spring Harbor Perspect Med 3(5):a010256. doi: 10.1101/cshperspect.a010256 CrossRefGoogle Scholar
  8. Batteiger BE, Xu F, Johnson RE, Rekart ML (2010) Protective immunity to Chlamydia trachomatis genital infection: evidence from human studies. J Infect Dis 201(Suppl 2):S178–189Google Scholar
  9. Beatty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI (1994) Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 62(9):3705–3711Google Scholar
  10. Belay T, Eko FO, Ananaba GA, Bowers S, Moore T, Lyn D, Igietseme JU (2002) Chemokine and chemokine receptor dynamics during genital chlamydial infection. Infect Immun 70(2):844–850Google Scholar
  11. Brady LJ (2005) Antibody-mediated immunomodulation: a strategy to improve host responses against microbial antigens. Infect Immun 73(2):671–678. doi: 10.1128/IAI.73.2.671-678.2005 CrossRefGoogle Scholar
  12. Brunham RC, Rekart ML (2008) The arrested immunity hypothesis and the epidemiology of chlamydia control. Sex Transm Dis 35(1):53–54. doi: 10.1097/OLQ.0b013e31815e41a3 CrossRefGoogle Scholar
  13. Brunham RC, Rey-Ladino J (2005) Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5(2):149–161. doi: 10.1038/nri1551 CrossRefGoogle Scholar
  14. Buchmann P, Dembek C, Kuklick L, Jager C, Tedjokusumo R, von Freyend MJ, Drebber U, Janowicz Z, Melber K, Protzer U (2013) A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice. Vaccine 31(8):1197–1203. doi: 10.1016/j.vaccine.2012.12.074 CrossRefGoogle Scholar
  15. Burton MJ, Bailey RL, Jeffries D, Mabey DC, Holland MJ (2004) Cytokine and fibrogenic gene expression in the conjunctivas of subjects from a Gambian community where trachoma is endemic. Infect Immun 72(12):7352–7356. doi: 10.1128/IAI.72.12.7352-7356.2004 CrossRefGoogle Scholar
  16. Byrne GI, Stephens RS, Ada G, Caldwell HD, Su H, Morrison RP, Van der Pol B, Bavoil P, Bobo L, Everson S et al (1993) Workshop on in vitro neutralization of Chlamydia trachomatis: summary of proceedings. J Infect Dis 168(2):415–420Google Scholar
  17. Cheng C, Bettahi I, Cruz-Fisher MI, Pal S, Jain P, Jia Z, Holmgren J, Harandi AM, de la Maza LM (2009) Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin. Vaccine 27(44):6239–6246. doi: 10.1016/j.vaccine.2009.07.108 CrossRefGoogle Scholar
  18. Cheng C, Pal S, Bettahi I, Oxford KL, Barry PA, de la Maza LM (2011) Immunogenicity of a vaccine formulated with the Chlamydia trachomatis serovar F, native major outer membrane protein in a nonhuman primate model. Vaccine 29(18):3456–3464. doi: 10.1016/j.vaccine.2011.02.057 CrossRefGoogle Scholar
  19. Cheroutre H, Husain MM (2013) CD4 CTL: living up to the challenge. Semin Immunol 25(4):273–281. doi: 10.1016/j.smim.2013.10.022 CrossRefGoogle Scholar
  20. Clark RA (2015) Resident memory T cells in human health and disease. Sci Transl Med 7(269):269rv261. doi: 10.1126/scitranslmed.3010641 CrossRefGoogle Scholar
  21. Conant CG, Stephens RS (2007) Chlamydia attachment to mammalian cells requires protein disulfide isomerase. Cell Microbiol 9(1):222–232. doi: 10.1111/j.1462-5822.2006.00783.x CrossRefGoogle Scholar
  22. Darville T, Andrews CW Jr, Laffoon KK, Shymasani W, Kishen LR, Rank RG (1997) Mouse strain-dependent variation in the course and outcome of chlamydial genital tract infection is associated with differences in host response. Infect Immun 65(8):3065–3073Google Scholar
  23. Dautry-Varsat A, Subtil A, Hackstadt T (2005) Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol 7(12):1714–1722. doi: 10.1111/j.1462-5822.2005.00627.x CrossRefGoogle Scholar
  24. Davila SJ, Olive AJ, Starnbach MN (2014) Integrin alpha4beta1 is necessary for CD4+ T cell-mediated protection against genital Chlamydia trachomatis infection. J Immunol 192(9):4284–4293. doi: 10.4049/jimmunol.1303238 CrossRefGoogle Scholar
  25. Davis CH, Raulston JE, Wyrick PB (2002) Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect Immun 70(7):3413–3418Google Scholar
  26. De Magistris MT (2006) Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev 58(1):52–67. doi: 10.1016/j.addr.2006.01.002 CrossRefGoogle Scholar
  27. Derrick T, Roberts C, Last AR, Burr SE, Holland MJ (2015) Trachoma and ocular chlamydial infection in the era of genomics. Mediat Inflamm 2015:791847. doi: 10.1155/2015/791847 CrossRefGoogle Scholar
  28. Detmer A, Glenting J (2006) Live bacterial vaccines–a review and identification of potential hazards. Microb Cell Fact 5:23. doi: 10.1186/1475-2859-5-23 CrossRefGoogle Scholar
  29. Dong-Ji Z, Yang X, Shen C, Lu H, Murdin A, Brunham RC (2000) Priming with Chlamydia trachomatis major outer membrane protein (MOMP) DNA followed by MOMP ISCOM boosting enhances protection and is associated with increased immunoglobulin A and Th1 cellular immune responses. Infect Immun 68(6):3074–3078Google Scholar
  30. Eko FO, Lubitz W, McMillan L, Ramey K, Moore TT, Ananaba GA, Lyn D, Black CM, Igietseme JU (2003) Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21(15):1694–1703Google Scholar
  31. Fadel S, Eley A (2007) Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin. J Med Microbiol 56(Pt 1):15–22. doi: 10.1099/jmm.0.46801-0 CrossRefGoogle Scholar
  32. Fankhauser SC, Starnbach MN (2014) PD-L1 limits the mucosal CD8+ T cell response to Chlamydia trachomatis. J Immunol 192(3):1079–1090. doi: 10.4049/jimmunol.1301657 CrossRefGoogle Scholar
  33. Farris CM, Morrison SG, Morrison RP (2010) CD4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect Immun 78(10):4374–4383. doi: 10.1128/IAI.00622-10 CrossRefGoogle Scholar
  34. Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB (2011) Clinical applications of DNA vaccines: current progress. Clin Infect Dis 53(3):296–302. doi: 10.1093/cid/cir334 (an official publication of the Infectious Diseases Society of America)CrossRefGoogle Scholar
  35. Finco O, Frigimelica E, Buricchi F, Petracca R, Galli G, Faenzi E, Meoni E, Bonci A, Agnusdei M, Nardelli F, Bartolini E, Scarselli M, Caproni E, Laera D, Zedda L, Skibinski D, Giovinazzi S, Bastone R, Ianni E, Cevenini R, Grandi G, Grifantini R (2011) Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc Natl Acad Sci USA 108(24):9969–9974. doi: 10.1073/pnas.1101756108 CrossRefGoogle Scholar
  36. Frazer LC, Scurlock AM, Zurenski MA, Riley MM, Mintus M, Pociask DA, Sullivan JE, Andrews CW Jr, Darville T (2013) IL-23 induces IL-22 and IL-17 production in response to Chlamydia muridarum genital tract infection, but the absence of these cytokines does not influence disease pathogenesis. Am J Reprod Immunol 70(6):472–484. doi: 10.1111/aji.12171 CrossRefGoogle Scholar
  37. Geisler WM, Lensing SY, Press CG, Hook EW 3rd (2013) Spontaneous resolution of genital Chlamydia trachomatis infection in women and protection from reinfection. J Infect Dis 207(12):1850–1856. doi: 10.1093/infdis/jit094 CrossRefGoogle Scholar
  38. Gonzales GF, Munoz G, Sanchez R, Henkel R, Gallegos-Avila G, Diaz-Gutierrez O, Vigil P, Vasquez F, Kortebani G, Mazzolli A, Bustos-Obregon E (2004) Update on the impact of Chlamydia trachomatis infection on male fertility. Andrologia 36(1):1–23Google Scholar
  39. Gray RT, Beagley KW, Timms P, Wilson DP (2009) Modeling the impact of potential vaccines on epidemics of sexually transmitted Chlamydia trachomatis infection. J Infect Dis 199(11):1680–1688. doi: 10.1086/598983 CrossRefGoogle Scholar
  40. Grayston JT, Wang SP (1978) The potential for vaccine against infection of the genital tract with Chlamydia trachomatis. Sex Transm Dis 5(2):73–77Google Scholar
  41. Grayston JT, Woolridge RL, Wang SP, Yen CH, Yang CY, Cheng KH, Chang IH (1963) Field studies of protection from infection by experimental trachoma virus vaccine in preschool-aged children on Taiwan. Proc Soc Exp Biol Med 112:589–595Google Scholar
  42. Grubaugh D, Flechtner JB, Higgins DE (2013) Proteins as T cell antigens: methods for high-throughput identification. Vaccine 31(37):3805–3810. doi: 10.1016/j.vaccine.2013.06.046 CrossRefGoogle Scholar
  43. Grunwald T, Ulbert S (2015) Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases. Clin Exp Vaccine Res 4(1):1–10. doi: 10.7774/cevr.2015.4.1.1 CrossRefGoogle Scholar
  44. Hall JV, Schell M, Dessus-Babus S, Moore CG, Whittimore JD, Sal M, Dill BD, Wyrick PB (2011) The multifaceted role of oestrogen in enhancing Chlamydia trachomatis infection in polarized human endometrial epithelial cells. Cell Microbiol 13(8):1183–1199. doi: 10.1111/j.1462-5822.2011.01608.x CrossRefGoogle Scholar
  45. Hawkins RA, Rank RG, Kelly KA (2002) A Chlamydia trachomatis-specific Th2 clone does not provide protection against a genital infection and displays reduced trafficking to the infected genital mucosa. Infect Immun 70(9):5132–5139Google Scholar
  46. Holland MJ, Bailey RL, Conway DJ, Culley F, Miranpuri G, Byrne GI, Whittle HC, Mabey DC (1996) T helper type-1 (Th1)/Th2 profiles of peripheral blood mononuclear cells (PBMC); responses to antigens of Chlamydia trachomatis in subjects with severe trachomatous scarring. Clin Exp Immunol 105(3):429–435Google Scholar
  47. Hu VH, Weiss HA, Ramadhani AM, Tolbert SB, Massae P, Mabey DC, Holland MJ, Bailey RL, Burton MJ (2012) Innate immune responses and modified extracellular matrix regulation characterize bacterial infection and cellular/connective tissue changes in scarring trachoma. Infect Immun 80(1):121–130. doi: 10.1128/IAI.05965-11 CrossRefGoogle Scholar
  48. Hvid M, Baczynska A, Deleuran B, Fedder J, Knudsen HJ, Christiansen G, Birkelund S (2007) Interleukin-1 is the initiator of Fallopian tube destruction during Chlamydia trachomatis infection. Cell Microbiol 9(12):2795–2803. doi: 10.1111/j.1462-5822.2007.00996.x CrossRefGoogle Scholar
  49. Ifere GO, He Q, Igietseme JU, Ananaba GA, Lyn D, Lubitz W, Kellar KL, Black CM, Eko FO (2007) Immunogenicity and protection against genital Chlamydia infection and its complications by a multisubunit candidate vaccine. J Microbiol Immunol Infect (Wei mian yu gan ran za zhi) 40(3):188–200Google Scholar
  50. Igietseme JU, Murdin A (2000) Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun 68(12):6798–6806Google Scholar
  51. Igietseme JU, Rank RG (1991) Susceptibility to reinfection after a primary chlamydial genital infection is associated with a decrease of antigen-specific T cells in the genital tract. Infect Immun 59(4):1346–1351Google Scholar
  52. Igietseme JU, Magee DM, Williams DM, Rank RG (1994) Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun 62(11):5195–5197Google Scholar
  53. Iijima N, Iwasaki A (2014) T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346(6205):93–98. doi: 10.1126/science.1257530 CrossRefGoogle Scholar
  54. Imtiaz MT, Distelhorst JT, Schripsema JH, Sigar IM, Kasimos JN, Lacy SR, Ramsey KH (2007) A role for matrix metalloproteinase-9 in pathogenesis of urogenital Chlamydia muridarum infection in mice. Microbes Infect 9:1561–1566Google Scholar
  55. Jawetz E, Rose L, Hanna L, Thygeson P (1965) Experimental inclusion conjunctivitis in man: measurements of infectivity and resistance. JAMA 194(6):620–632Google Scholar
  56. Johansson M, Schon K, Ward M, Lycke N (1997) Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect Immun 65(3):1032–1044Google Scholar
  57. Johnson RM, Kerr MS, Slaven JE (2012) Plac8-dependent and inducible NO synthase-dependent mechanisms clear Chlamydia muridarum infections from the genital tract. J Immunol 188(4):1896–1904. doi: 10.4049/jimmunol.1102764 CrossRefGoogle Scholar
  58. Kalbina I, Wallin A, Lindh I, Engstrom P, Andersson S, Strid K (2011) A novel chimeric MOMP antigen expressed in Escherichia coli, Arabidopsis thaliana, and Daucus carota as a potential Chlamydia trachomatis vaccine candidate. Protein Expr Purif 80(2):194–202. doi: 10.1016/j.pep.2011.08.010 CrossRefGoogle Scholar
  59. Kari L, Whitmire WM, Olivares-Zavaleta N, Goheen MM, Taylor LD, Carlson JH, Sturdevant GL, Lu C, Bakios LE, Randall LB, Parnell MJ, Zhong G, Caldwell HD (2011) A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates. J Exp Med 208(11):2217–2223. doi: 10.1084/jem.20111266 CrossRefGoogle Scholar
  60. Karunakaran KP, Rey-Ladino J, Stoynov N, Berg K, Shen C, Jiang X, Gabel BR, Yu H, Foster LJ, Brunham RC (2008) Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia. J Immunol 180(4):2459–2465Google Scholar
  61. Kelly KA, Rank RG (1997) Identification of homing receptors that mediate the recruitment of CD4 T cells to the genital tract following intravaginal infection with Chlamydia trachomatis. Infect Immun 65(12):5198–5208Google Scholar
  62. Kelly KA, Wiley D, Wiesmeier E, Briskin M, Butch A, Darville T (2009) The combination of the gastrointestinal integrin (alpha4beta7) and selectin ligand enhances T-Cell migration to the reproductive tract during infection with Chlamydia trachomatis. Am J Reprod Immunol 61(6):446–452. doi: 10.1111/j.1600-0897.2009.00705.x CrossRefGoogle Scholar
  63. Kimani J, Maclean IW, Bwayo JJ, MacDonald K, Oyugi J, Maitha GM, Peeling RW, Cheang M, Nagelkerke NJ, Plummer FA, Brunham RC (1996) Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis 173(6):1437–1444Google Scholar
  64. Kiviat NB, Wolner-Hanssen P, Eschenbach DA, Wasserheit JN, Paavonen JA, Bell TA, Critchlow CW, Stamm WE, Moore DE, Holmes KK (1990) Endometrial histopathology in patients with culture-proved upper genital tract infection and laparoscopically diagnosed acute salpingitis. Am J Surg Pathol 14(2):167–175Google Scholar
  65. Lacy HM, Bowlin AK, Hennings L, Scurlock AM, Nagarajan UM, Rank RG (2011) Essential role for neutrophils in pathogenesis and adaptive immunity in Chlamydia caviae ocular infections. Infect Immun 79(5):1889–1897. doi: 10.1128/IAI.01257-10 CrossRefGoogle Scholar
  66. Li LX, McSorley SJ (2013) B cells enhance antigen-specific CD4 T cell priming and prevent bacteria dissemination following Chlamydia muridarum genital tract infection. PLoS Pathog 9(10):e1003707. doi: 10.1371/journal.ppat.1003707 CrossRefGoogle Scholar
  67. Li LX, McSorley SJ (2015) A re-evaluation of the role of B cells in protective immunity to Chlamydia infection. Immunol Lett 164(2):88–93. doi: 10.1016/j.imlet.2015.02.004 CrossRefGoogle Scholar
  68. Li W, Murthy AK, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP (2008) Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. J Immunol 180(5):3375–3382Google Scholar
  69. Manam S, Thomas JD, Li W, Maladore A, Schripsema JH, Ramsey KH, Murthy AK (2015) Tumor necrosis factor (TNF) receptor superfamily member 1b on CD8+ T Cells and TNF receptor superfamily member 1a on Non-CD8+ T Cells contribute significantly to upper genital tract pathology following chlamydial infection. J Infect Dis 211(12):2014–2022. doi: 10.1093/infdis/jiu839 CrossRefGoogle Scholar
  70. Mbow ML, De Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22(3):411–416. doi: 10.1016/j.coi.2010.04.004 CrossRefGoogle Scholar
  71. Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, Cohen MS, Harris KM, Udry JR (2004) Prevalence of chlamydial and gonococcal infections among young adults in the United States. JAMA 291(18):2229–2236. doi: 10.1001/jama.291.18.2229 CrossRefGoogle Scholar
  72. Molano M, Meijer CJ, Weiderpass E, Arslan A, Posso H, Franceschi S, Ronderos M, Munoz N, van den Brule AJ (2005) The natural course of Chlamydia trachomatis infection in asymptomatic Colombian women: a 5-year follow-up study. J Infect Dis 191(6):907–916. doi: 10.1086/428287 CrossRefGoogle Scholar
  73. Morrison SG, Morrison RP (2000) In situ analysis of the evolution of the primary immune response in murine Chlamydia trachomatis genital tract infection. Infect Immun 68(5):2870–2879Google Scholar
  74. Morrison SG, Morrison RP (2001) Resolution of secondary Chlamydia trachomatis genital tract infection in immune mice with depletion of both CD4+ and CD8+ T cells. Infect Immun 69(4):2643–2649. doi: 10.1128/IAI.69.4.2643-2649.2001 CrossRefGoogle Scholar
  75. Morrison SG, Morrison RP (2005) A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J Immunol 175(11):7536–7542Google Scholar
  76. Morrison RP, Feilzer K, Tumas DB (1995) Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun 63(12):4661–4668Google Scholar
  77. Morrison SG, Su H, Caldwell HD, Morrison RP (2000) Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T cells. Infect Immun 68(12):6979–6987Google Scholar
  78. Murthy AK, Chambers JP, Meier PA, Zhong G, Arulanandam BP (2007) Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect Immun 75(2):666–676. doi: 10.1128/IAI.01280-06 CrossRefGoogle Scholar
  79. Murthy AK, Li W, Chaganty BK, Kamalakaran S, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP (2011a) Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infect Immun 79(7):2928–2935. doi: 10.1128/IAI.05022-11 CrossRefGoogle Scholar
  80. Murthy AK, Li W, Guentzel MN, Zhong G, Arulanandam BP (2011b) Vaccination with the defined chlamydial secreted protein CPAF induces robust protection against female infertility following repeated genital chlamydial challenge. Vaccine 29(14):2519–2522. doi: 10.1016/j.vaccine.2011.01.074 CrossRefGoogle Scholar
  81. Nagarajan UM, Sikes JD, Yeruva L, Prantner D (2012) Significant role of IL-1 signaling, but limited role of inflammasome activation, in oviduct pathology during Chlamydia muridarum genital infection. J Immunol 188(6):2866–2875. doi: 10.4049/jimmunol.1103461 CrossRefGoogle Scholar
  82. Nelson DE, Virok DP, Wood H, Roshick C, Johnson RM, Whitmire WM, Crane DD, Steele-Mortimer O, Kari L, McClarty G, Caldwell HD (2005) Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci USA 102(30):10658–10663. doi: 10.1073/pnas.0504198102 CrossRefGoogle Scholar
  83. O’Connell CM, Ingalls RR, Andrews CW Jr, Scurlock AM, Darville T (2007) Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J Immunol 179(6):4027–4034Google Scholar
  84. O’Hagan DT, Fox CB (2015) New generation adjuvants–from empiricism to rational design. Vaccine 33(Suppl 2):B14–B20. doi: 10.1016/j.vaccine.2015.01.088 CrossRefGoogle Scholar
  85. Olivares-Zavaleta N, Whitmire W, Gardner D, Caldwell HD (2010) Immunization with the attenuated plasmidless Chlamydia trachomatis L2(25667R) strain provides partial protection in a murine model of female genitourinary tract infection. Vaccine 28(6):1454–1462. doi: 10.1016/j.vaccine.2009.11.073 CrossRefGoogle Scholar
  86. Olive AJ, Gondek DC, Starnbach MN (2011) CXCR3 and CCR5 are both required for T cell-mediated protection against C. trachomatis infection in the murine genital mucosa. Mucosal Immunol 4(2):208–216. doi: 10.1038/mi.2010.58 CrossRefGoogle Scholar
  87. Olsen AW, Follmann F, Erneholm K, Rosenkrands I, Andersen P (2015) Protection against Chlamydia trachomatis infection and upper genital tract pathological changes by vaccine-promoted neutralizing antibodies directed to the VD4 of the major outer membrane protein. J Infect Dis 212(6):978–989. doi: 10.1093/infdis/jiv137 CrossRefGoogle Scholar
  88. O’Meara CP, Armitage CW, Kollipara A, Andrew DW, Trim L, Plenderleith MB, Beagley KW (2015) Induction of partial immunity in both males and females is sufficient to protect females against sexual transmission of Chlamydia. Mucosal Immunol. doi: 10.1038/mi.2015.125 CrossRefGoogle Scholar
  89. Owusu-Edusei K Jr, Chesson HW, Gift TL, Brunham RC, Bolan G (2015) Cost-effectiveness of chlamydia vaccination programs for young women. Emerg Infect Dis 21(6):960–968. doi: 10.3201/eid2106.141270 CrossRefGoogle Scholar
  90. Pal S, Barnhart KM, Wei Q, Abai AM, Peterson EM, de la Maza LM (1999) Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against a genital challenge. Vaccine 17(5):459–465Google Scholar
  91. Pal S, Theodor I, Peterson EM, de la Maza LM (2001) Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune response against a genital challenge. Infect Immun 69(10):6240–6247. doi: 10.1128/IAI.69.10.6240-6247.2001 CrossRefGoogle Scholar
  92. Perry LL, Feilzer K, Caldwell HD (1997) Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J Immunol 158(7):3344–3352Google Scholar
  93. Perry LL, Feilzer K, Portis JL, Caldwell HD (1998) Distinct homing pathways direct T lymphocytes to the genital and intestinal mucosae in Chlamydia-infected mice. J Immunol 160(6):2905–2914Google Scholar
  94. Picard MD, Cohane KP, Gierahn TM, Higgins DE, Flechtner JB (2012) High-throughput proteomic screening identifies Chlamydia trachomatis antigens that are capable of eliciting T cell and antibody responses that provide protection against vaginal challenge. Vaccine 30(29):4387–4393. doi: 10.1016/j.vaccine.2012.01.017 CrossRefGoogle Scholar
  95. Picard MD, Bodmer JL, Gierahn TM, Lee A, Price J, Cohane K, Clemens V, DeVault VL, Gurok G, Kohberger R, Higgins DE, Siber GR, Flechtner JB, Geisler WM (2015) Resolution of Chlamydia trachomatis Infection Is Associated with a Distinct T Cell Response Profile. Clin Vaccine Immunol: CVI 22(11):1206–1218. doi: 10.1128/CVI.00247-15 CrossRefGoogle Scholar
  96. Prantner D, Darville T, Sikes JD, Andrews CW Jr, Brade H, Rank RG, Nagarajan UM (2009) Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect Immun 77(12):5334–5346. doi: 10.1128/IAI.00883-09 CrossRefGoogle Scholar
  97. Punnonen R, Terho P, Nikkanen V, Meurman O (1979) Chlamydial serology in infertile women by immunofluorescence. Fertil Steril 31(6):656–659Google Scholar
  98. Qu Y, Frazer LC, O’Connell CM, Tarantal AF, Andrews CW Jr, O’Connor SL, Russell AN, Sullivan JE, Poston TB, Vallejo AN, Darville T (2015) Comparable genital tract infection, pathology, and immunity in rhesus macaques inoculated with wild-type or plasmid-deficient Chlamydia trachomatis serovar D. Infect Immun 83(10):4056–4067. doi: 10.1128/IAI.00841-15 CrossRefGoogle Scholar
  99. Ramsey KH, Soderberg LS, Rank RG (1988) Resolution of chlamydial genital infection in B-cell-deficient mice and immunity to reinfection. Infect Immun 56(5):1320–1325Google Scholar
  100. Ramsey KH, Sigar IM, Rana SV, Gupta J, Holland SM, Byrne GI (2001) Role for inducible nitric oxide synthase in protection from chronic Chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals. Infect Immun 69(12):7374–7379. doi: 10.1128/IAI.69.12.7374-7379.2001 CrossRefGoogle Scholar
  101. Rank RG, Soderberg LS, Barron AL (1985) Chronic chlamydial genital infection in congenitally athymic nude mice. Infect Immun 48(3):847–849Google Scholar
  102. Riley MM, Zurenski MA, Frazer LC, O’Connell CM, Andrews CW Jr, Mintus M, Darville T (2012) The recall response induced by genital challenge with Chlamydia muridarum protects the oviduct from pathology but not from reinfection. Infect Immun 80(6):2194–2203. doi: 10.1128/IAI.00169-12 CrossRefGoogle Scholar
  103. Russell AN, Zheng X, O’Connell CM, Taylor BD, Wiesenfeld HC, Hillier SL, Zhong W, Darville T (2015) Analysis of factors driving incident and ascending infection and the role of serum antibody in Chlamydia trachomatis genital tract infection. J Infect Dis. doi: 10.1093/infdis/jiv438 CrossRefGoogle Scholar
  104. Satterwhite CL, Torrone E, Meites E, Dunne EF, Mahajan R, Ocfemia MC, Su J, Xu F, Weinstock H (2013) Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis 40(3):187–193. doi: 10.1097/OLQ.0b013e318286bb53 CrossRefGoogle Scholar
  105. Schautteet K, De Clercq E, Jonsson Y, Lagae S, Chiers K, Cox E, Vanrompay D (2012) Protection of pigs against genital Chlamydia trachomatis challenge by parenteral or mucosal DNA immunization. Vaccine 30(18):2869–2881. doi: 10.1016/j.vaccine.2012.02.044 CrossRefGoogle Scholar
  106. Schoborg RV (2011) Chlamydia persistence—a tool to dissect chlamydia–host interactions. Microbes Infect/Institut Pasteur 13(7):649–662. doi: 10.1016/j.micinf.2011.03.004 CrossRefGoogle Scholar
  107. Schust DJ, Ibana JA, Buckner LR, Ficarra M, Sugimoto J, Amedee AM, Quayle AJ (2012) Potential mechanisms for increased HIV-1 transmission across the endocervical epithelium during C. trachomatis infection. Curr HIV Res 10(3):218–227Google Scholar
  108. Scidmore MA, Fischer ER, Hackstadt T (2003) Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun 71(2):973–984Google Scholar
  109. Scurlock AM, Frazer LC, Andrews CW Jr, O’Connell CM, Foote IP, Bailey SL, Chandra-Kuntal K, Kolls JK, Darville T (2011) Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect Immun 79(3):1349–1362. doi: 10.1128/IAI.00984-10 CrossRefGoogle Scholar
  110. Shah AA, Schripsema JH, Imtiaz MT, Sigar IM, Kasimos J, Matos PG, Inouye S, Ramsey KH (2005) Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex Transm Dis 32(1):49–56Google Scholar
  111. Shin H, Iwasaki A (2012) A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491(7424):463–467. doi: 10.1038/nature11522 CrossRefGoogle Scholar
  112. Sowa S, Sowa J, Collier LH, Blyth WA (1969) Trachoma vaccine field trials in The Gambia. J Hyg 67(4):699–717Google Scholar
  113. Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, Perro M, Vrbanac VD, Tager AM, Shi J, Yethon JA, Farokhzad OC, Langer R, Starnbach MN, von Andrian UH (2015) VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348(6241):aaa8205. doi: 10.1126/science.aaa8205 CrossRefGoogle Scholar
  114. Stephenson I, Zambon MC, Rudin A, Colegate A, Podda A, Bugarini R, Del Giudice G, Minutello A, Bonnington S, Holmgren J, Mills KH, Nicholson KG (2006) Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. J Virol 80(10):4962–4970. doi: 10.1128/JVI.80.10.4962-4970.2006 CrossRefGoogle Scholar
  115. Su H, Raymond L, Rockey DD, Fischer E, Hackstadt T, Caldwell HD (1996) A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci USA 93(20):11143–11148Google Scholar
  116. Su H, Feilzer K, Caldwell HD, Morrison RP (1997) Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect Immun 65(6):1993–1999Google Scholar
  117. Subbarayal P, Karunakaran K, Winkler AC, Rother M, Gonzalez E, Meyer TF, Rudel T (2015) EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog 11(4):e1004846. doi: 10.1371/journal.ppat.1004846 CrossRefGoogle Scholar
  118. Van Voorhis WC, Barrett LK, Sweeney YT, Kuo CC, Patton DL (1997) Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. Infect Immun 65(6):2175–2182Google Scholar
  119. Wang S, Fan Y, Brunham RC, Yang X (1999) IFN-gamma knockout mice show Th2-associated delayed-type hypersensitivity and the inflammatory cells fail to localize and control chlamydial infection. Eur J Immunol 29(11):3782–3792Google Scholar
  120. Wang J, Zhang Y, Lu C, Lei L, Yu P, Zhong G (2010) A genome-wide profiling of the humoral immune response to Chlamydia trachomatis infection reveals vaccine candidate antigens expressed in humans. J Immunol 185(3):1670–1680. doi: 10.4049/jimmunol.1001240 CrossRefGoogle Scholar
  121. Wizel B, Nystrom-Asklin J, Cortes C, Tvinnereim A (2008) Role of CD8(+)T cells in the host response to Chlamydia. Microbes Infect/Institut Pasteur 10(14–15):1420–1430. doi: 10.1016/j.micinf.2008.08.006 CrossRefGoogle Scholar
  122. Xu W, Liu J, Gong W, Chen J, Zhu S, Zhang L (2011) Protective immunity against Chlamydia trachomatis genital infection induced by a vaccine based on the major outer membrane multi-epitope human papillomavirus major capsid protein L1. Vaccine 29(15):2672–2678. doi: 10.1016/j.vaccine.2010.12.132 CrossRefGoogle Scholar
  123. Yu H, Jiang X, Shen C, Karunakaran KP, Jiang J, Rosin NL, Brunham RC (2010) Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Infect Immun 78(5):2272–2282. doi: 10.1128/IAI.01374-09 CrossRefGoogle Scholar
  124. Yu H, Karunakaran KP, Kelly I, Shen C, Jiang X, Foster LJ, Brunham RC (2011) Immunization with live and dead Chlamydia muridarum induces different levels of protective immunity in a murine genital tract model: correlation with MHC class II peptide presentation and multifunctional Th1 cells. J Immunol 186(6):3615–3621. doi: 10.4049/jimmunol.1002952 CrossRefGoogle Scholar
  125. Zhang YX, Stewart S, Joseph T, Taylor HR, Caldwell HD (1987) Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. J Immunol 138(2):575–581Google Scholar
  126. Zhang H, Zhou Z, Chen J, Wu G, Yang Z, Zhou Z, Baseman J, Zhang J, Reddick RL, Zhong G (2014) Lack of long-lasting hydrosalpinx in A/J mice correlates with rapid but transient chlamydial ascension and neutrophil recruitment in the oviduct following intravaginal inoculation with Chlamydia muridarum. Infect Immun 82(7):2688–2696. doi: 10.1128/IAI.00055-14 CrossRefGoogle Scholar
  127. Zhong G, Berry J, Brunham RC (1994) Antibody recognition of a neutralization epitope on the major outer membrane protein of Chlamydia trachomatis. Infect Immun 62(5):1576–1583Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of North CarolinaChapel HillUSA

Personalised recommendations