Skip to main content

IAPs and Cell Death

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 403))

Abstract

IAPs were named as inhibitors of apoptosis, programmed cell death, but it has become apparent that they are regulators of other types of cell death too. Because they inhibit cell death in cancer cells there has been an intense interest in developing inhibitors of these proteins to induce or sensitise cancer cells to death. In this article, we will discuss the involvement of IAPs in the apoptosis, necroptosis and pyroptosis programmed cell death paradigms. All these types of cell death are intimately involved with causing or repressing inflammation and it should perhaps therefore come as no surprise that IAPs are also involved in regulating inflammation directly. To come full circle, the IAP antagonist drugs that were developed to sensitise cancer cells to apoptosis have led to some of these insights.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andree M, Seeger JM, Schüll S, Coutelle O et al (2014) BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella. EMBO J 33:2171–2187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila Gene Hid is a direct molecular target of ras-dependent survival signaling. Cell 95:331–341

    CAS  PubMed  Google Scholar 

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    CAS  PubMed  Google Scholar 

  • Bertrand MJ, Doiron K, Labbé K, Korneluk RG et al (2009) Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30(6):789–801

    CAS  PubMed  Google Scholar 

  • Bertrand MJ, Lippens S, Staes A, Gilbert B et al (2011) cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4). PLoS ONE 6:e22356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bird FT (1964) On the development of insect polyhedrosis and granulosis virus particles. Can J Microbiol 10:49–52

    CAS  PubMed  Google Scholar 

  • Birnbaum MJ, Clem RJ, Miller LK (1994) An apoptosis inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with cys/his sequence motif. J Virol 68:2521–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackwell K, Zhang L, Workman LM, Ting AT et al (2013) Two coordinated mechanisms underlie tumor necrosis factor alpha-induced immediate and delayed IκB kinase activation. Mol Cell Biol 33:1901–1915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV et al (2009) Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2. Biochem J 417:149–160

    CAS  PubMed  Google Scholar 

  • Boatright KM, Renatus M, Scott FL, Sperandio S et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    CAS  PubMed  Google Scholar 

  • Broemer M, Tenev T, Rigbolt KT, Hempel S et al (2010) Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell 40:810–822

    CAS  PubMed  Google Scholar 

  • Brumatti G, Ma C, Lalaoui N, Nguyen NY et al (2016) The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci Transl Med 8:339ra69

    Google Scholar 

  • Cao L, Wang Z, Yang X, Xie L, Yu L (2008) The evolution of BIR domain and its containing proteins. FEBS Lett 582:3817–3822

    CAS  PubMed  Google Scholar 

  • Chai J, Du C, Wu JW, Kyin S et al (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    CAS  PubMed  Google Scholar 

  • Chai J, Shiozaki E, Srinivasula SM, Wu Q et al (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104:769–780

    CAS  PubMed  Google Scholar 

  • Chen P, Nordstrom W, Gish B, Abrams JM (1996) Grim, a novel cell death gene in Drosophila. Genes Dev 10:1773–1782

    CAS  PubMed  Google Scholar 

  • Chen NJ, Chio II, Lin WJ, Duncan G et al (2008) Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc Natl Acad Sci USA 105:12429–12434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, He WT, Hu L, Li J et al (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26:1007–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen M, Ammann S, Speckmann C, Mogensen TH (2016) XIAP deficiency and MEFV variants resulting in an autoinflammatory lymphoproliferative syndrome. BMJ Case Rep

    Google Scholar 

  • Clem RJ (2015) Viral IAPs, then and now. Semin Cell Dev Biol 39:72–79

    CAS  PubMed  Google Scholar 

  • Conos SA, Lawlor KE, Vaux DL, Vince JE, Lindqvist LM (2016) Cell death is not essential for caspase-1-mediated interleukin-1β activation and secretion. Cell Death Differ 23:1827–1838

    CAS  PubMed  Google Scholar 

  • Crook NE, Clem RJ, Miller LK (1993) An apoptosis inhibiting baculovirus gene with a zinc finger like motif. J Virol 67:2168–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damgaard RB, Nachbur U, Yabal M, Wong WW et al (2012) The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell 46:746–758

    CAS  PubMed  Google Scholar 

  • Dannappel M, Vlantis K, Kumari S, Polykratis A et al (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304

    CAS  PubMed  Google Scholar 

  • Deveraux QL, Roy N, Stennicke HR, Van Arsdale T et al (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deveraux QL, Leo E, Stennicke HR, Welsh K et al (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18:5242–5251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA et al (2012) A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 47:291–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Wang K, Liu W, She Y et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116

    CAS  PubMed  Google Scholar 

  • Ditzel M, Meier P (2002) IAP degradation: decisive blow or altruistic sacrifice? Trends Cell Biol 12:449–452

    CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    CAS  PubMed  Google Scholar 

  • Duckett CS, Nava VE, Gedrich RW, Clem RJ et al (1996) A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 15:2685–2694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dynek JN, Goncharov T, Dueber EC, Fedorova AV et al (2010) c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29:4198–4209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckelman BP, Salvesen GS (2006) The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem 281:3254–3260

    CAS  PubMed  Google Scholar 

  • Ermolaeva MA, Michallet MC, Papadopoulou N, Utermöhlen O et al (2008) Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9:1037–1046

    CAS  PubMed  Google Scholar 

  • Etemadi N, Chopin M, Anderton H, Tanzer MC et al (2015) TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase-1. Elife 4:e10592

    PubMed  PubMed Central  Google Scholar 

  • Feltham R, Moulin M, Vince JE, Mace PD et al (2010) Tumor necrosis factor (TNF) signaling, but not TWEAK (TNF-like weak inducer of apoptosis)-triggered cIAP1 (cellular inhibitor of apoptosis protein 1) degradation, requires cIAP1 RING dimerization and E2 binding. J Biol Chem 285:17525–17536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feltham R, Bettjeman B, Budhidarmo R, Mace PD et al (2011) Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J Biol Chem 286:17015–17028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feoktistova M, Geserick P, Kellert B, Dimitrova DP et al (2011) cIAPs block ripoptosome formation, a RIP1/Caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher AJ, Cruz W, Zoog SJ, Schneider CL, Friesen PD (1999) Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition. EMBO J 18:2031–2039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flygare JA, Fairbrother WJ (2010) Small-molecule pan-IAP antagonists: a patent review. Expert Opin Ther Pat 20:251–267

    CAS  PubMed  Google Scholar 

  • Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815

    CAS  PubMed  Google Scholar 

  • Gaidt MM, Ebert TS, Chauhan D, Schmidt T et al (2016) Human monocytes engage an alternative inflammasome pathway. Immunity 44:833–846

    CAS  PubMed  Google Scholar 

  • Gaither A, Porter D, Yao Y, Borawski J et al (2007) A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 67:11493–11498

    CAS  PubMed  Google Scholar 

  • Gentle IE, Silke J (2011) New perspectives in TNF-R1-induced NF-κB signaling. Adv Exp Med Biol, pp. 79–88 United States

    Google Scholar 

  • Gerlach B, Cordier SM, Schmukle AC, Emmerich CH et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471:591–596

    CAS  PubMed  Google Scholar 

  • Geserick P, Hupe M, Moulin M, Wong WW et al (2009) Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 187:1037–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haas TL, Emmerich CH, Gerlach B, Schmukle AC et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36:831–844

    CAS  PubMed  Google Scholar 

  • Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB (2001) Characterization of XIAP-deficient mice. Mol Cell Biol 21:3604–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83:1253–1262

    CAS  PubMed  Google Scholar 

  • He WT, Wan H, Hu L, Chen P et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25:1285–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heard KN, Bertrand MJ, Barker PA (2015) cIAP2 supports viability of mice lacking cIAP1 and XIAP. EMBO J 34:2393–2395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde R, Srinivasula SM, Zhang Z, Wassell R et al (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438

    CAS  PubMed  Google Scholar 

  • Hegde R, Srinivasula SM, Datta P, Madesh M et al (2003) The polypeptide chain-releasing factor GSPT1/eRF3 is proteolytically processed into an IAP-binding protein. J Biol Chem 278:38699–38706

    CAS  PubMed  Google Scholar 

  • Hrdinka M, Fiil BK, Zucca M, Leske D et al (2016) CYLD limits Lys63- and Met1-linked ubiquitin at receptor complexes to regulate innate immune signaling. Cell Rep 14:2846–2858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Park YC, Rich RL, Segal D et al (2001) Structural basis of caspase inhibition by XIAP. Differential roles of the linker versus the BIR domain. Cell 104:781–790

    CAS  PubMed  Google Scholar 

  • Hughes MA, Powley IR, Jukes-Jones R, Horn S et al (2016) Co-operative and hierarchical binding of c-FLIP and Caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate. Mol Cell 61:834–849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inceoglu AB, Kamita SG, Hammock BD (2006) Genetically modified baculoviruses: a historical overview and future outlook. Adv Virus Res 68:323–360

    CAS  PubMed  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD et al (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2- dependent ubiquitin-protein ligase. Science 286:309–312

    CAS  PubMed  Google Scholar 

  • Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D et al (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang TB, Yang SH, Toth B, Kovalenko A, Wallach D (2013) Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38:27–40

    CAS  PubMed  Google Scholar 

  • Kang S, Fernandes-Alnemri T, Rogers C, Mayes L et al (2015) Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Commun 6:7515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kayagaki N, Warming S, Lamkanfi M, Vande Walle L et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    CAS  PubMed  Google Scholar 

  • Kayagaki N, Wong MT, Stowe IB, Ramani SR et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249

    CAS  PubMed  Google Scholar 

  • Kayagaki N, Stowe IB, Lee BL, O’Rourke K et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671

    CAS  PubMed  Google Scholar 

  • Kenneth NS, Younger JM, Hughes ED, Marcotte D, et al. (2012) An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c-IAP1. Biochem J 443:355–359

    Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    CAS  PubMed  Google Scholar 

  • Krieg A, Correa RG, Garrison JB, Le Negrate G et al (2009) XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci USA 106:14524–14529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kupka S, Reichert M, Draber P, Walczak H (2016a) Formation and removal of poly-ubiquitin chains in the regulation of tumor necrosis factor-induced gene activation and cell death. FEBS J 283:2626–2639

    CAS  PubMed  Google Scholar 

  • Kupka S, De Miguel D, Draber P, Martino L et al (2016b) SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep 16:2271–2280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latour S, Aguilar C (2015) XIAP deficiency syndrome in humans. Semin Cell Dev Biol 39:115–123

    CAS  PubMed  Google Scholar 

  • Lawlor KE, Khan N, Mildenhall A, Gerlic M et al (2015) RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 6:6282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Reichlin A, Santana A, Sokol KA et al (1997) Traf2 is essential for jnk but not nf-kappa-b activation and regulates lymphocyte proliferation and survival. Immunity 7:703–713

    CAS  PubMed  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    CAS  PubMed  Google Scholar 

  • Li L, Thomas RM, Suzuki H, De Brabander JK et al (2004) A small molecule Smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305:1471–1474

    CAS  PubMed  Google Scholar 

  • Liston P, Roy N, Tamai K, Lefebvre C et al (1996) Suppression of apoptosis in mammalian cells by naip and a related family of iap genes. Nature 379:349–353

    CAS  PubMed  Google Scholar 

  • Mace PD, Smits C, Vaux DL, Silke J, Day CL (2010) Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 400:8–15

    CAS  PubMed  Google Scholar 

  • Mahoney DJ, Cheung HH, Mrad RL, Plenchette S et al (2008) Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc Natl Acad Sci USA 105:11778–11783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins LM, Iaccarino I, Tenev T, Gschmeissner S et al (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J Biol Chem 277:439–444

    CAS  PubMed  Google Scholar 

  • Masters SL, Gerlic M, Metcalf D, Preston S et al (2012) NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 37:1009–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • McComb S, Aguadé-Gorgorió J, Harder L, Marovca B et al (2016) Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Sci Transl Med 8:339ra70

    Google Scholar 

  • Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao EA, Leaf IA, Treuting PM, Mao DP et al (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11:1136–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-κB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miura M (2011) Apoptotic and non-apoptotic caspase functions in neural development. Neurochem Res 36:1253–1260

    CAS  PubMed  Google Scholar 

  • Moulin M, Anderton H, Voss AK, Thomas T et al (2012) IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J 31:1679–1691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moulin M, Voss AK, Thomas T, Wong WW et al (2015) Response to Heard et al. EMBO J 34:2396–2397

    Google Scholar 

  • Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL et al (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–1153

    PubMed  PubMed Central  Google Scholar 

  • Nonomura K, Yamaguchi Y, Hamachi M, Koike M et al (2013) Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Dev Cell 27:621–634

    CAS  PubMed  Google Scholar 

  • Oberst A, Dillon CP, Weinlich R, McCormick LL et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olayioye MA, Kaufmann H, Pakusch M, Vaux DL et al (2005) XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death Differ 12:87–90

    CAS  PubMed  Google Scholar 

  • Oppenheim RW, Flavell RA, Vinsant S, Prevette D et al (2001) Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 21:4752–4760

    CAS  PubMed  Google Scholar 

  • Orme MH, Liccardi G, Moderau N, Feltham R et al (2016) The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles. Nat Commun 7:10972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park YC, Burkitt V, Villa AR, Tong L, Wu H (1999) Structural basis for self-association and receptor recognition of human TRAF2. Nature 398:533–538

    CAS  PubMed  Google Scholar 

  • Park YC, Ye H, Hsia C, Segal D et al (2000) A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD-TRAF2 interaction. Cell 101:777–787

    CAS  PubMed  Google Scholar 

  • Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320

    CAS  PubMed  Google Scholar 

  • Peltzer N, Rieser E, Taraborrelli L, Draber P et al (2014) HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 9:153–165

    CAS  PubMed  Google Scholar 

  • Petersen SL, Wang L, Yalcin-Chin A, Li L et al (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12:445–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pobezinskaya YL, Kim YS, Choksi S, Morgan MJ et al (2008) The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol 9:1047–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rickard JA, O’Donnell JA, Evans JM, Lalaoui N et al (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157:1175–1188

    CAS  PubMed  Google Scholar 

  • Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q et al (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104:791–800

    CAS  PubMed  Google Scholar 

  • Rigaud S, Fondanèche MC, Lambert N, Pasquier B et al (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–114

    CAS  PubMed  Google Scholar 

  • Rongvaux A, Jackson R, Harman CC, Li T et al (2014) Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159:1563–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNF-R2-TRAF signaling complex contains two novel proteins related to baculoviral-inhibitor of apoptosis proteins. Cell 83:1243–1252

    CAS  PubMed  Google Scholar 

  • Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-iap-1 and c-iap-2 proteins are direct inhibitors of specific caspases. EMBO J 16:6914–6925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel T, Welsh K, Lober T, Togo SH et al (2006) Distinct BIR domains of cIAP1 mediate binding to and ubiquitination of TRAF2 and Smac. J Biol Chem 281:1080–1090

    CAS  PubMed  Google Scholar 

  • Schile AJ, García-Fernández M, Steller H (2008) Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Dev 22:2256–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segawa K, Nagata S (2015) An apoptotic ‘Eat Me’ signal: phosphatidylserine exposure. Trends Cell Biol 25:639–650

    CAS  PubMed  Google Scholar 

  • Shi J, Zhao Y, Wang K, Shi X et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665

    CAS  PubMed  Google Scholar 

  • Shu HB, Takeuchi M, Goeddel DV (1996) The tumor necrosis factor receptor 2 signal transducers traf2 and c-iap1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA 93:13973–13978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silke J, Brink R (2010) Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ 17:35–45

    CAS  PubMed  Google Scholar 

  • Silke J, Johnstone RW (2016) In the midst of life-cell death: what is it, what is it good for, and how to study it. Cold Spring Harb Protoc 2016:pdb.top070508

    Google Scholar 

  • Silke J, Meier P (2013) Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol 5:2 (United States)

    Google Scholar 

  • Silke J, Vaux D (2014) IAPs and necroptotic cell death. In: Shen HM, Vandenabeele P (eds) Necrotic cell death. Springer, New York, pp 57–77

    Google Scholar 

  • Silke J, Vaux DL (2015) IAP gene deletion and conditional knockout models. Semin Cell Dev Biol 39:97–105

    CAS  PubMed  Google Scholar 

  • Silke J, Verhagen AM, Ekert PG, Vaux DL (2000) Sequence as well as functional similarity for DIABLO/smac and grim, reaper and hid? Cell Death Differ 7:1275

    CAS  PubMed  Google Scholar 

  • Silke J, Ekert PG, Day CL, Hawkins CJ et al (2001) Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J 20:3114–3123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T et al (2000) Molecular determinants of the caspase-promoting activity of smac/DIABLO and its role in the death receptor pathway. J Biol Chem 275:36152–36157

    CAS  PubMed  Google Scholar 

  • Steinhart L, Belz K, Fulda S (2013) Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis 4:e802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinwascher S, Nugues AL, Schoeneberger H, Fulda S (2015) Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Lett 366:32–43

    CAS  PubMed  Google Scholar 

  • Sun C, Cai M, Gunasekera AH, Meadows RP et al (1999) NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401:818–821

    CAS  PubMed  Google Scholar 

  • Sun H, Nikolovska-Coleska Z, Yang CY, Qian D et al (2008) Design of small-molecule peptidic and nonpeptidic Smac mimetics. Acc Chem Res 41:1264–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Imai Y, Nakayama H, Takahashi K et al (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    CAS  PubMed  Google Scholar 

  • Tada K, Okazaki T, Sakon S, Kobarai T et al (2001) Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κ B activation and protection from cell death. J Biol Chem 276:36530–36534

    CAS  PubMed  Google Scholar 

  • Takahashi R, Deveraux Q, Tamm I, Welsh K et al (1998) A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 273:7787–7790

    CAS  PubMed  Google Scholar 

  • Takahashi N, Vereecke L, Bertrand MJM, Duprez L et al (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513:95–99

    CAS  PubMed  Google Scholar 

  • Tenev T, Bianchi K, Darding M, Broemer M et al (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448

    CAS  PubMed  Google Scholar 

  • Ting AT, Bertrand MJ (2016) More to life than NF-κB in TNFR1 signaling. Trends Immunol 37:535–545

    CAS  PubMed  Google Scholar 

  • Uren AG, Pakusch M, Hawkins CJ, Puls KL, Vaux DL (1996) Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind TRAFs. Proc Natl Acad Sci USA 93:4974–4978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varfolomeev E, Wayson SM, Dixit VM, Fairbrother WJ, Vucic D (2006) The inhibitor of apoptosis protein fusion c-IAP2.MALT1 stimulates NF-κB activation independently of TRAF1 and TRAF2. J Biol Chem 281:29022–29029

    CAS  PubMed  Google Scholar 

  • Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV et al (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131:669–681

    CAS  PubMed  Google Scholar 

  • Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN et al (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFα)-induced NF-κB activation. J Biol Chem 283:24295–24299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varfolomeev E, Goncharov T, Maecker H, Zobel K et al (2012) Cellular inhibitors of apoptosis are global regulators of NF-κB and MAPK activation by members of the TNF family of receptors. Sci Signal 5:ra22

    Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:42–53

    Google Scholar 

  • Verhagen AM, Silke J, Ekert PG, Pakusch M et al (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277:445–454

    CAS  PubMed  Google Scholar 

  • Verhagen AM, Kratina TK, Hawkins CJ, Silke J et al (2007) Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death Diff 14:348–357

    CAS  Google Scholar 

  • Vince JE, Wong WW, Khan N, Feltham R et al (2007) IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131:682–693

    CAS  PubMed  Google Scholar 

  • Vince JE, Pantaki D, Feltham R, Mace PD et al (2009) TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-{κ}B and to prevent TNF-induced apoptosis. J Biol Chem 284:35906–35915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vince JE, Wong WW, Gentle I, Lawlor KE et al (2012) Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36:215–227

    CAS  PubMed  Google Scholar 

  • Vucic D, Kaiser WJ, Harvey AJ, Miller LK (1997) Inhibition of reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc Natl Acad Sci USA 94:10183–10188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wada T, Muraoka M, Yokoyama T, Toma T et al (2013) Cytokine profiles in children with primary Epstein-Barr virus infection. Pediatr Blood Cancer 60:E46–E48

    CAS  PubMed  Google Scholar 

  • Wagner SA, Satpathy S, Beli P, Choudhary C (2016) SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes. EMBO J 35:1868–1884

    CAS  PubMed  Google Scholar 

  • White K, Grether ME, Abrams JM, Young L et al (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683

    CAS  PubMed  Google Scholar 

  • White MJ, McArthur K, Metcalf D, Lane RM et al (2014) Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159:1549–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicki S, Gurzeler U, Wei-Lynn Wong W, Jost PJ et al (2016) Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death Dis 7:e2422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ, Din WS et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682

    CAS  PubMed  Google Scholar 

  • Wong WW, Gentle IE, Nachbur U, Anderton H et al (2010) RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death Differ 17:482–487

    CAS  PubMed  Google Scholar 

  • Wong WW, Vince JE, Lalaoui N, Lawlor KE et al (2014) cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood 123:2562–2572

    CAS  PubMed  Google Scholar 

  • Wu G, Chai JJ, Suber TL, Wu JW et al (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    CAS  PubMed  Google Scholar 

  • Yabal M, Müller N, Adler H, Knies N et al (2014) XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep 7:1796–1808

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Miura M (2015) Programmed cell death in neurodevelopment. Dev Cell 32:478–490

    CAS  PubMed  Google Scholar 

  • Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–877

    CAS  PubMed  Google Scholar 

  • Ye H, Park YC, Kreishman M, Kieff E, Wu H (1999) The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell 4:321–330

    CAS  PubMed  Google Scholar 

  • Yeh WC, Shahinian A, Speiser D, Kraunus J et al (1997) Early lethality, functional nf-kb activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7:715–725

    CAS  PubMed  Google Scholar 

  • Zanoni I, Tan Y, Di Gioia M, Broggi A et al (2016) An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352:1232–1236

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhou X, McQuade T, Li J et al (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:373–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Blackwell K, Workman LM, Gibson-Corley KN et al (2016) TRAF2 exerts opposing effects on basal and TNFα-induced activation of the classic IKK complex in hematopoietic cells in mice. J Cell Sci 129:1455–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng TS, Hunot S, Kuida K, Flavell RA (1999) Caspase knockouts: matters of life and death. Cell Death Differ 6:1043–1053

    CAS  PubMed  Google Scholar 

  • Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H (2010) Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 38:101–113

    PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Krebs JF, Snipas SJ, Price A et al (1998) Interaction of the baculovirus anti-apoptotic protein p35 with caspases—specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37:10757–10765

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Silke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Silke, J., Vince, J. (2016). IAPs and Cell Death. In: Nagata, S., Nakano, H. (eds) Apoptotic and Non-apoptotic Cell Death. Current Topics in Microbiology and Immunology, vol 403. Springer, Cham. https://doi.org/10.1007/82_2016_507

Download citation

Publish with us

Policies and ethics