Aarestrup FM, Seyfarth AM, Emborg HD et al (2001) Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 45:2054–2059
Google Scholar
Accountability NUSG (2011) Antibiotic resistanste: agencies have made limited progress addressing antibiotic use in animals
Google Scholar
Aloisio I, Mazzola G, Corvaglia LT et al (2014) Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifidobacterium strains. Appl Microbiol Biotechnol 98:6051–6060
Google Scholar
Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134
Google Scholar
Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158
Google Scholar
Archbald-Pannone LR, Boone JH, Carman RJ et al (2014) Clostridium difficile ribotype 027 is most prevalent among inpatients admitted from long-term care facilities. J Hosp Infect 88:218–221
Google Scholar
Arutyunov D, Frost LS (2013) F conjugation: back to the beginning. Plasmid 70:18–32
Google Scholar
Bertrand S, Weill F-X, Cloeckaert A et al (2006) Clonal emergence of extended-spectrum beta-lactamase (CTX-M-2)-producing Salmonella enterica serovar Virchow isolates with reduced susceptibilities to ciprofloxacin among poultry and humans in Belgium and France (2000 to 2003). J Clin Microbiol 44:2897–2903
Google Scholar
Best EL, Freeman J, Wilcox MH (2012) Models for the study of Clostridium difficile infection. Gut Microbes 3:145–167
Google Scholar
Bohnhoff M, Miller CP (1962) Enhanced susceptibility to Salmonella infection in streptomycin-treated mice. J Infect Dis 111:117–127
Google Scholar
Brandl K, Plitas G, Mihu CN et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807
Google Scholar
Brandt LJ, Aroniadis OC, Mellow M et al (2012) Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol 107:1079–1087
Google Scholar
Broaders E, Gahan CGM, Marchesi JR (2013) Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes 4:271–280
Google Scholar
Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801
Google Scholar
Buffie CG, Jarchum I, Equinda M et al (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80:62–73
Google Scholar
Buffie CG, Bucci V, Stein RR et al (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–208
Google Scholar
Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838
Google Scholar
Bushman FD, Minot S, Sinha R et al (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625
Google Scholar
Caballero S, Carter R, Ke X et al (2015) Distinct but spatially overlapping intestinal niches for vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae. PLoS Pathog 11:e1005132
Google Scholar
Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144
Google Scholar
Chandler MS (1992) The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc Natl Acad Sci USA 89:1626–1630
Google Scholar
Chen X, Katchar K, Goldsmith JD et al (2008) A mouse model of Clostridium difficile-associated disease. Gastroenterology 135:1984–1992
Google Scholar
Choi K-H, Kim K-J (2009) Applications of transposon-based gene delivery system in bacteria. J Microbiol Biotechnol 19:217–228
Google Scholar
Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184
Google Scholar
Clemente JC, Pehrsson EC, Blaser MJ et al (2015) The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183–e1500183
Google Scholar
Cohen SH, Gerding DN, Johnson S et al (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455
Google Scholar
Conlan S, Thomas PJ, Deming C, et al (2014) Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 6:254ra126–254ra126. doi:10.1126/scitranslmed.3009845
Google Scholar
Cox LM, Blaser MJ (2015) Antibiotics in early life and obesity. Nat Rev Endocrinol 11:182–190
Google Scholar
Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10:479–489
Google Scholar
D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477:457–461
Google Scholar
de Boer P, Wagenaar JA, Achterberg RP et al (2002) Generation of Campylobacter jejuni genetic diversity in vivo. Mol Microbiol 44:351–359
Google Scholar
De La Cochetière MF, Durand T, Lepage P et al (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43:5588–5592
Google Scholar
Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108 Suppl 1:4554–4561
Google Scholar
Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280
Google Scholar
Dobrindt U, Chowdary MG, Krumbholz G, Hacker J (2010) Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol 199:145–154
Google Scholar
Doron S, Hibberd PL, Goldin B et al (2015) Effect of Lactobacillus rhamnosus GG administration on vancomycin-resistant Enterococcus colonization in adults with comorbidities. Antimicrob Agents Chemother 59:4593–4599
Google Scholar
Endtz HP, Ruijs GJ, van Klingeren B et al (1991) Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 27:199–208
Google Scholar
Ferreira RBR, Gill N, Willing BP et al (2011) The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS ONE 6:e20338
Google Scholar
Finkel SE, Kolter R (2001) DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183:6288–6293
Google Scholar
Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology (Reading, Engl) 155:1749–1757
Google Scholar
Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. World Health Organization
Google Scholar
Forsberg KJ, Reyes A, Wang B et al (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111
Google Scholar
Forslund K, Sunagawa S, Kultima JR et al (2013) Country-specific antibiotic use practices impact the human gut resistome. Genome Res 23:1163–1169
Google Scholar
Fouhy F, Guinane CM, Hussey S et al (2012) High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 56:5811–5820
Google Scholar
Frye JG, Lindsey RL, Meinersmann RJ et al (2011) Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. Foodborne Pathog Dis 8:663–679
Google Scholar
Garnier F, Taourit S, Glaser P et al (2000) Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology (Reading, Engl) 146 (Pt 6):1481–1489
Google Scholar
Gevers D, Huys G, Swings J (2003) In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol Lett 225:125–130
Google Scholar
Ghosh TS, Gupta SS, Nair GB, Mande SS (2013) In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geographies and age-groups. PLoS ONE 8:e83823
Google Scholar
Gilmore MS, Clewell DB, Ike Y et al (2014) Enterococcus diversity, origins in nature, and gut colonization. Massachusetts Eye and Ear Infirmary, Boston
Google Scholar
Gorbach SL (2001) Antimicrobial use in animal feed—time to stop. N Engl J Med 345:1202–1203
Google Scholar
Gosalbes MJ, Valles Y, Jimenez-Hernandez N et al (2016) High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. J Dev Orig Health Dis 7:35–44
Google Scholar
Goto Y, Obata T, Kunisawa J et al (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345:1254009–1254009
Google Scholar
Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002
Google Scholar
Gueimonde M, Salminen S, Isolauri E (2006) Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol Med Microbiol 48:21–25
Google Scholar
Hachler H, Berger-bachi B, Kayser FH (1987) Genetic characterization of a Clostridium difficile erythromycin- clindamycin resistance determinant that is transferable to Staphylococcus aureus. Microbiology 31:1039–1045
Google Scholar
Hall IC, O’Toole E (1935) Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Child 49:390–402
Google Scholar
Harrison E, Brockhurst MA (2012) Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 20:262–267
Google Scholar
Hasegawa M, Kamada N, Jiao Y et al (2012) Protective role of commensals against Clostridium difficile infection via an IL-1β-mediated positive-feedback loop. J Immunol 189:3085–3091
Google Scholar
Hecht G, Pothoulakis C, LaMont JT, Madara JL (1988) Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 82:1516–1524
Google Scholar
Hentges DJ, Freter R (1962) In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. I. Correlation between various tests. J Infect Dis 110:30–37
Google Scholar
Hidron AI, Edwards JR, Patel J et al (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011
Google Scholar
Howells CH, Joynson DH (1975) Possible role of animal feeding-stuffs in spread of antibiotic-resistant intestinal coliforms. 1:156–157
Google Scholar
Hu Y, Yang X, Qin J et al (2013) Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4:2151
Google Scholar
Huddleston JR (2014) Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 7:167–176
Google Scholar
Huddleston JR, Brokaw JM, Zak JC, Jeter RM (2013) Natural transformation as a mechanism of horizontal gene transfer among environmental Aeromonas species. Syst Appl Microbiol 36:224–234
Google Scholar
Hurd EA, Holmén JM, Hansson GC, Domino SE (2005) Gastrointestinal mucins of Fut2-null mice lack terminal fucosylation without affecting colonization by Candida albicans. Glycobiology 15:1002–1007
Google Scholar
Husain F, Veeranagouda Y, Boente R et al (2014) The Ellis Island Effect: A novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mobile Genetic Elements 4:e29801
Google Scholar
Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498
Google Scholar
Jarchum I, Liu M, Lipuma L, Pamer EG (2011) Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect Immun 79:1498–1503
Google Scholar
Jarchum I, Liu M, Shi C et al (2012) Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect Immun 80:2989–2996
Google Scholar
Jeffery IB, Lynch DB, O’Toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10:170–182
Google Scholar
Jeon B, Muraoka W, Sahin O, Zhang Q (2008) Role of Cj1211 in natural transformation and transfer of antibiotic resistance determinants in Campylobacter jejuni. Antimicrob Agents Chemother 52:2699–2708
Google Scholar
Jernberg C, Löfmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66
Google Scholar
Johansson MEV, Phillipson M, Petersson J, et al (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069
Google Scholar
Johansson MEV, Larsson JMH, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108 Suppl 1:4659–4665
Google Scholar
Johansson MEV, Jakobsson HE, Holmén-Larsson J et al (2015) Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18:582–592
Google Scholar
Johnning A, Kristiansson E, Angelin M et al (2015) Quinolone resistance mutations in the faecal microbiota of Swedish travellers to India. BMC Microbiol 15:235
Google Scholar
Just I, Richter HP, Prepens U et al (1994) Probing the action of Clostridium difficile toxin B in Xenopus laevis oocytes. J Cell Sci 107 (Pt 6):1653–1659
Google Scholar
Kelly CR, de Leon L, Jasutkar N (2012) Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. J Clin Gastroenterol 46:145–149
Google Scholar
Khanna S, Gupta A, Baddour LM, Pardi DS (2015) Epidemiology, outcomes, and predictors of mortality in hospitalized adults with Clostridium difficile infection. Intern Emerg Med 1–9
Google Scholar
Kinnebrew MA, Ubeda C, Zenewicz LA et al (2010) Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 201:534–543
Google Scholar
Korpela K, Salonen A, Virta LJ et al (2016) Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 7:10410.0
Google Scholar
Landy J, Al-Hassi HO, McLaughlin SD et al (2011) Review article: faecal transplantation therapy for gastrointestinal disease. Aliment Pharmacol Ther 34:409–415
Google Scholar
Larentis DZ, Rosa RG, Santos Dos RP, Goldani LZ (2015) Outcomes and risk factors associated with Clostridium difficile diarrhea in hospitalized adult patients. Gastroenterol Res Pract 2015:346341–6
Google Scholar
Lau HY, Huffnagle GB, Moore TA (2008) Host and microbiota factors that control Klebsiella pneumoniae mucosal colonization in mice. Microbes Infect 10:1283–1290
Google Scholar
Lautenbach E, Marsicano R, Tolomeo P et al (2009) Epidemiology of antimicrobial resistance among gram-negative organisms recovered from patients in a multistate network of long-term care facilities. Infect Control Hosp Epidemiol 30:790–793
Google Scholar
Lawley TD, Clare S, Walker AW et al (2012) Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8:e1002995
Google Scholar
Le Lay C, Dridi L, Bergeron MG et al (2016) Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J Med Microbiol 65:169–175
Google Scholar
Lessa FC, Mu Y, Bamberg WM et al (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834
Google Scholar
Levy SB, FitzGerald GB, Macone AB (1976) Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature 260:40–42
Google Scholar
Lewis BB, Buffie CG, Carter RA et al (2015) Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. J Infect Dis jiv256
Google Scholar
Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. doi:10.1126/science.1155725
Google Scholar
Li H, Limenitakis JP, Fuhrer T et al (2015) The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun 6:8292
Google Scholar
Loo VG, Poirier L, Miller MA et al (2005) A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449
Google Scholar
Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230
Google Scholar
Machado AMD, Sommer MOA (2014) Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates. PLoS ONE 9:e100739–5
Google Scholar
Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105:281–295
Google Scholar
Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50
Google Scholar
Michod RE, Wojciechowski MF, Hoelzer MA (1988) DNA repair and the evolution of transformation in the bacterium Bacillus subtilis. Genetics 118:31–39
Google Scholar
Milazzo I, Speciale A, Musumeci R et al (2006) Identification and antibiotic susceptibility of bacterial isolates from probiotic products available in Italy. New Microbiol 29:281–291. doi:10.1016/S0168-1605(02)00162-9
Google Scholar
Mullany P, Pallen M, Wilks M et al (1996) A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene 174:145–150
Google Scholar
Mullany P, Allan E, Roberts AP (2015) Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol 166:361–367
Google Scholar
Neuhauser MM, Weinstein RA, Rzdman R (2003) Antibiotic resistance among gram-negative bacilli in us intensive care units: implications for fluoroquinolone use. JAMA 289:885–888
Google Scholar
Niess JH, Brand S, Gu X et al (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258
Google Scholar
Nigro SJ, Holt KE, Pickard D, Hall RM (2015) Carbapenem and amikacin resistance on a large conjugative Acinetobacter baumannii plasmid. J Antimicrob Chemother 70:1259–1261
Google Scholar
Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing enterobacteriaceae. Emerging Infect Dis 17:1791–1798
Google Scholar
O’Connor JR, Johnson S, Gerding DN (2009) Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136:1913–1924
Google Scholar
Oethinger M, Kern WV, Jellen-Ritter AS et al (2000) Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother 44:10–13
Google Scholar
Orenstein R, Dubberke E, Hardi R et al (2016) Safety and durability of RBX2660 (Microbiota Suspension) for recurrent Clostridium difficile infection: results of the PUNCH CD study. Clin Infect Dis 62:596–602
Google Scholar
Paltansing S, Vlot JA, Kraakman MEM et al (2013) Extended-spectrum β-lactamase-producing enterobacteriaceae among travelers from the Netherlands. Emerging Infect Dis 19:1206–1213
Google Scholar
Pantosti A, Del Grosso M, Tagliabue S et al (1999) Decrease of vancomycin-resistant enterococci in poultry meat after avoparcin ban. Lancet 354:741–742
Google Scholar
Paramsothy S, Borody TJ, Lin E et al (2015) Donor recruitment for fecal microbiota transplantation. Inflamm Bowel Dis 21:1600–1606
Google Scholar
Petersson J, Schreiber O, Hansson GC et al (2011) Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 300:G327–33
Google Scholar
Petrof EO, Gloor GB, Vanner SJ et al (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection: “RePOOPulating” the gut. Microbiome 1:3
Google Scholar
Pham TAN, Clare S, Goulding D et al (2014) Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16:504–516
Google Scholar
Pickard JM, Maurice CF, Kinnebrew MA et al (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–641
Google Scholar
Pokharel BM, Koirala J, Dahal RK et al (2006) Multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing Salmonella enterica (serotypes Typhi and Paratyphi A) from blood isolates in Nepal: surveillance of resistance and a search for newer alternatives. Int J Infect Dis 10:434–438
Google Scholar
Ramirez MS, Traglia GM, Lin DL et al (2014) Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol Spectr 2:1–15
Google Scholar
Raymond F, Ouameur AA, Déraspe M et al (2016) The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J 10:707–720
Google Scholar
Redelings MD, Sorvillo F, Mascola L (2007) Increase in Clostridium difficile-related mortality rates, United States, 1999–2004. Emerging Infect Dis 13:1417–1419
Google Scholar
Reeves AE, Theriot CM, Bergin IL et al (2011) The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2:145–158
Google Scholar
Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB (2012) Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun 80:3786–3794
Google Scholar
Ruppe E, Armand-Lefevre L, Estellat C et al (2014) Acquisition of carbapenemase-producing enterobacteriaceae by healthy travellers to India, France, February 2012 to March 2013. Eurosurveillance 19:20768–4
Google Scholar
Rutten NBMM, Rijkers GT, Meijssen CB et al (2015) Intestinal microbiota composition after antibiotic treatment in early life: the INCA study. BMC Pediatr 15:204
Google Scholar
Saari A, Virta LJ, Sankilampi U et al (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135:617–626
Google Scholar
Saleeby J, Ducea M, Clemens-Knott D (2003) Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics 22:n/a–n/a
Google Scholar
Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416
Google Scholar
Schmieger H, Schicklmaier P (1999) Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett 170:251–256
Google Scholar
Searle LEJ, Best A, Nunez A et al (2009) A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar typhimurium infection in mice. J Med Microbiol 58:37–48
Google Scholar
Sebaihia M, Wren BW, Mullany P et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786
Google Scholar
Sekirov I, Tam NM, Jogova M et al (2008) Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76:4726–4736
Google Scholar
Sghir A, Gramet G, Suau A et al (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266
Google Scholar
Sievert DM, Ricks P, Edwards JR et al (2013) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34:1–14
Google Scholar
Singh R, Schroeder CM, Meng J et al (2005) Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals. J Antimicrob Chemother 56:216–219
Google Scholar
Sommer MOA, Church GM, Dantas G et al (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131
Google Scholar
Sorg JA, Sonenshein AL (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190:2505–2512
Google Scholar
Stecher B, Denzler R, Maier L et al (2012) Gut inflammation can boost horizontal gene transfer between pathogenic and commensal enterobacteriaceae. Proc Natl Acad Sci USA 109:1269–1274
Google Scholar
Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67:1992–2000
Google Scholar
Tanaka S, Kobayashi T, Songjinda P, et al (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87
Google Scholar
Taylor DE, Chau AS (1997) Cloning and nucleotide sequence of the gyrA gene from Campylobacter fetus subsp. fetus ATCC 27374 and characterization of ciprofloxacin-resistant laboratory and clinical isolates. Antimicrob Agents Chemother 41:665–671
Google Scholar
Threlfall EJ (2000) Epidemic Salmonella Typhimurium DT 104—a truly international multiresistant clone. J Antimicrob Chemother 46:7–10
Google Scholar
Tolmasky ME, Chamorro RM, Crosa JH, Marini PM (1988) Transposon-Mediated Amikacin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 32:1416–1420
Google Scholar
Tvede M, Rask-Madsen J (1989) Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1:1156–1160
Google Scholar
Ubeda C, Taur Y, Jenq RR et al (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341
Google Scholar
Ubeda C, Bucci V, Caballero S et al (2013) Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81:965–973
Google Scholar
Uttley AH, Collins CH, Naidoo J, George RC (1988) Vancomycin-resistant enterococci. Lancet 1:57–58
Google Scholar
Vaishnava S, Behrendt CL, Ismail AS et al (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105:20858–20863
Google Scholar
Wani KA, Thakur MA, Fayaz AS et al (2009) Extended spectrum B-Lactamase mediated resistance in Escherichia coli in a tertiary care hospital. Int J Health Sci 3:155–163
Google Scholar
Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11
Google Scholar
Wenzel RP (2002) The antibiotic paradox: how the misuse of antibiotics destroys their curative powers (Book review), second edn. By Stuart B. Levy. 353 pp., illustrated. Cambridge, Mass., Perseus Publishing, 2002. $17.50. 0-7382-0440-4. N Engl J Med 347:1213–1213
Google Scholar
Willing BP, Vacharaksa A, Croxen M et al (2011) Altering host resistance to infections through microbial transplantation. PLoS ONE 6:e26988
Google Scholar
Wilson KH (1983) Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 18:1017–1019
Google Scholar
Wlodarska M, Willing B, Keeney KM et al (2011) Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 79:1536–1545
Google Scholar
Woloj M, Tolmasky ME, Roberts MC, Crosa JH (1986) Plasmid-encoded amikacin resistance in multiresistant strains of Klebsiella pneumoniae isolated from neonates with meningitis. Antimicrob Agents Chemother 29:315–319
Google Scholar
Zaura E, Brandt BW, Teixeira de Mattos MJ et al (2015) Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio 6:e01693–15
Google Scholar
Zhang L, Kinkelaar D, Huang Y et al (2011) Acquired antibiotic resistance: are we born with it? Appl Environ Microbiol 77:7134–7141
Google Scholar
Zoch B, Karch A, Dreesman J et al (2015) Feasibility of a birth cohort study dedicated to assessing acute infections using symptom diaries and parental collection of biomaterials. BMC Infect Dis 15:436
Google Scholar