Skip to main content

History of Antibiotics Research

  • Chapter
  • First Online:
How to Overcome the Antibiotic Crisis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 398))

Abstract

For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question “What is the nature of infectious diseases?” that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time—e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10–12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms. Whenever a new antibiotic reached the market it did not take long until scientists observed the first resistant germs. Since the marketing of the first antibiotic there is a neck-on-neck race between scientists who discover natural or develop semisynthetic and synthetic bioactive molecules and bacteria, which have developed resistance mechanisms. The emphasis of this chapter is to give an overview of the history of antibiotics research. The situation within the pre-antibiotic era as well as in the early antibiotic era will be described until the Golden Age of Antibiotics will conclude this time travel. The most important antibiotic classes, information about their discovery, activity spectrum, mode of action, resistance mechanisms, and current application will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This deviates from the modern definition of antibiotics, but is a literal citation of Waksman’s concept.

References

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146:837

    Article  CAS  Google Scholar 

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Baltz RH (1998) Genetic manipulation of antibiotic producing Streptomyces. Trends Microbiol 2:76–83

    Article  Google Scholar 

  • Bange F-C, Fille M (2012) Antimykobakterielle therapie chapter 105. In: Suerbaum S, Hahn H, Burchard G-D, Kaufmann SHE, Schulz TF (eds) Medizinische Mikrobiologie und Infektiologie 7 Auflage Springer, Berlin

    Google Scholar 

  • Bange F-C, Hahn H, Kaufmann SHE, Ulrichs T (2012) Mykobakterien. Chapter 41. In: Suerbaum S, Hahn H, Burchard G-D, Kaufmann SHE, Schulz TF (eds) Medizinische Mikrobiologie und Infektiologie 7 Auflage. Springer, Berlin

    Google Scholar 

  • Barber M (1961) Methicillin-resistant staphylococci. J Clin Pathol 14:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Hüttel S, Harmrolfs K, Stadler M, Müller R (2014) Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew Chem Int Ed 53:1–6

    Article  Google Scholar 

  • Béchamp MA (1863) De l’action de la chaleur sur l’arseniate d’analine et de la formation d’un anilide de l’acide arsenique. Compt Rend 56:1172–1175

    Google Scholar 

  • Bennett JW (2015) What is an antibiotic? In: Sánchez S, Demain AL (eds) Antibiotics-current innovations and future trends. Caister Academic Press

    Google Scholar 

  • Bentley R (2000) Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 100:3801–3826

    Article  CAS  PubMed  Google Scholar 

  • Bentley R, Bennett JW (2003) What is an antibiotic? Revisited. Adv Appl Microbiol 52:303–331

    Article  CAS  PubMed  Google Scholar 

  • Bentley R (2009) Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence b-lactams). J Ind Microbiol Biotechnol 36:775–786

    Article  CAS  PubMed  Google Scholar 

  • Berger A, Fingerle V, Sing A (2012) Treponemen. Chapter 43. In: Suerbaum S, Hahn H, Burchard G-D, Kaufmann SHE, Schulz TF (2012) Medizinische Mikrobiologie und Infektiologie. 7. Auflage. Springer, Berlin

    Google Scholar 

  • Binda E, Marinelli F, Marcone GL (2014) Old and new glycopeptide antibiotics: action and resistance. Antibiotics 3:572–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch RG, Patil SS (1985) Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli. J Gen Microbiol 131:1069–1075

    CAS  PubMed  Google Scholar 

  • Bisacchi GS (2015) Origins of the Quinolone class of antibacterials: an expanded “Discovery Story”. J Med Chem 58:4874–4882

    Article  CAS  PubMed  Google Scholar 

  • Bloemendal S, Kück U (2014) Cephalosporins. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 43–64

    Chapter  Google Scholar 

  • Bosch F, Rosich L (2008) The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology 82:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer GA, Johnson MJ (1953) Activity and properties of para-aminobenzyl penicillin. Appl Microbiol 1:163–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulst N (1977) Der Schwarze Tod. Demographische, wirtschaftliche und kulturgeschichtliche Aspekte der Pestkatastrophe von 1347–1352. Bilanz der neueren Forschung. Antrittsvorlesung an der Universität Heidelberg

    Google Scholar 

  • Burris RH, Baumann A, Potter VR (1990) Conrad Arnold Elvehjem. Biographical memoir, Nat Acad Sc

    Google Scholar 

  • Carter GT (2009) Natural products in drug discovery. In: Stromgaard K, Krogsgaard-Larsen P, Madsen U (eds.) Textbook of drug design and discovery, 4th edn. CRC Press Boca Raton, pp 89–106

    Google Scholar 

  • Cha JY, Ishiwata A, Mobashery S (2004) A novel β-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem 279:14917–14921

    Article  CAS  PubMed  Google Scholar 

  • Chain E, Florey HW, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing J, Sanders AG (1940) Penicillin as a chemotherapeutic agent. Lancet ii: 226–228

    Google Scholar 

  • Charlebois A, Jalbert LA, Harel J, Masson L, Archambault M (2012) Characterization of genes encoding for acquired bacitracin resistance. Clostridium perfringens PloS One 7(9). doi:10.1371

    Google Scholar 

  • Charney J, Fisher WP, Curran C, Machlowitz RA, Tytell AA (1953) Streptogramin, a new antibiotic Antibiot Chemother 3: 1283–1286

    Google Scholar 

  • Chellat MF, Raguz L, Riedl R (2016) Antibiotikaresistenzen gezielt überwinden. Angew Chem 128:2–32

    Article  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole ST (2014) Who will develop new antibacterial agents? Phil Trans R Soc B 369:20130430

    Article  PubMed  PubMed Central  Google Scholar 

  • Collin F, Karkare S, Maxwell A (2011) Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 92:479–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Controulis J, Rebstock MC, Crooks HM (1949) Chloramphenicol (Chloromycetin). V. Synthesis. J Am Chem Soc 71:2463–2468

    Google Scholar 

  • Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–240

    Article  CAS  PubMed  Google Scholar 

  • Davies J (2006) Where have all the antibiotics gone? Can J Infect Dis Med Microbiol 17:287–290

    Google Scholar 

  • De la Bédoyère G (2005) The discovery of penicillin (milestones in modern science). Evans Brothers Ltd

    Google Scholar 

  • Di Giambattista M, Chinali G, Cocito C (1989) The molecular basis of the inhibitory activities of type A and type B synergimycins and related antibiotics on ribosomes. J Antimicrob Chemother 24:485–507

    Article  PubMed  Google Scholar 

  • Domagk G (1935) Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Deutsch Med Wochenschrift 61:250–253

    Article  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: A historical perspective. Science 287:1960–1964

    Article  CAS  PubMed  Google Scholar 

  • Dubos RJ, Hotchkiss RD (1942) Origin, nature and property of gramicidin and tyrocidine. Trans Studies Coll Phys Phila 4(10):11–19

    Google Scholar 

  • Dubos RJ, Hotchkiss RD, Coburn AF (1942) The effect of gramicidin and tyrocidine on bacterial metabolism. J Biol Chem 146:421–426

    CAS  Google Scholar 

  • Duchesne E (1897) Contribution à l’etude de la concurrence vitale chez les microorganismes. Antagonisme entre les moisissures et le microbes. Thèse. Lyon: Faculté de Médecine et de Pharmacie de Lyon

    Google Scholar 

  • Duckett S (1999) Ernest Duchesne and the concept of fungal antibiotic therapy. Lancet 11(354):2068–2071

    Article  Google Scholar 

  • Duggar BM (1948) Aureomycin; a product of the continuing search for new antibiotics. Ann N Y Acad Sci 30:177–181

    Article  Google Scholar 

  • Ehrlich P (1910) Die Behandlung der Syphilis mit dem Ehrlichschen Präparat 606. Deutsche medizinische Wochenschrift: 1893–1896

    Google Scholar 

  • Ehrlich P, Hata S (1910) Die Experimentelle Chemotherapie der Spirillosen. Springer, Berlin

    Book  Google Scholar 

  • Ehrlich P, Bertheim A (1912): Über das salzsaure 3.3-Diamino-4.4-dioxy-arsenobenzol und seine nächsten Verwandten. Berichte der deutschen chemischen Gesellschaft Bd 45(1):756–766

    Google Scholar 

  • Ehrlich J, Bartz QR, Smith RM, Joslyn DA, Burkholder PR (1947) Chloromycetin, a new antibiotic from a soil actinomycete. Science 31:417

    Article  Google Scholar 

  • Ehrlich J, Gottlieb D, Burkholder PR, Anderson LE, Pridham TG (1948) Streptomyces venezuelae, N. sp., The source of chloromycetin. J Bacteriol 56:467–477

    PubMed Central  Google Scholar 

  • Falkow S (1975) Infectious multiple drug resistance. Pion Ltd London United Kingdom

    Google Scholar 

  • Ferber D (2003) Triple-threat microbe gained powers from another bug. Science 302:1488

    Article  CAS  PubMed  Google Scholar 

  • Finlay AC, Hobby GL, P’an SY, Regna PP, Routien JB, Seeley DB, Shull GM, Sobin BA, Vinson IAJW, Kane JH (1950) Terramycin, a new antibiotic. Science 27:85

    Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10(3):226–236

    CAS  PubMed Central  Google Scholar 

  • Gause GF, Brazhnikova MG (1944) Gramicidin S and its use in the treatment of infected wounds. Nature 154:703

    Article  Google Scholar 

  • Gellert M, Mizuuchi K, O’Dea MH, Nash HA (1976) DNA gyrase: an enzymethat introduces superhelical turns into DNA. Proc Natl Acad Sci USA 73:3872–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelmo P (1908) Über Sulfamide der p-Amidobenzolsulfonsäure. J prak Chem 77:369–382

    Article  CAS  Google Scholar 

  • Goldstein FW, Kitzis MD, Acar JF (1994) N, N-Dimethylglycylamido derivative of minocycline and 6-demethyl-6-deoxytetracycline, two new glycylcyclines highly effective against tetracycline-resistant Gram positive cocci. Antimicrob Agents Chemother 38: 2218–2220

    Google Scholar 

  • Gosio B (1893) Contributo all’etiologia della pellagra; ricerche chimiche e batteriologische sulle alterazioni del mais. Giornale della Reale Accademia di Medicina di Torino 61:484–487

    Google Scholar 

  • Gosio B (1896) Ricerdre batteriologische chirmide sulle alterazioni del mais. Rivista d’Ingienne e Sanita Publica 7:825–868

    Google Scholar 

  • Gottlieb D, Bhattacharyya PK, Anderson HW, Carter HE (1948) Some properties of an antibiotic from a species of Streptomyces. J Bact 55:409–417

    CAS  PubMed Central  Google Scholar 

  • Griesgraber G, Or YS, Chu DTW, Nilius AM, Johnson PM, Flamm RK, Henry RF, Plattner JJ (1996) 3-Keto-11, 12-carbazate Derivatives of 6-O-Methylerythromycin A synthesis and in vitro activity. J Antibiot 49:465–477

    Article  CAS  PubMed  Google Scholar 

  • Grohe K, Heitzer H (1987) Cycloaracylierung von Enaminen, I Synthese von 4-Chinolon-3-carbonsauren. Lieb Ann Chem 1:29–37

    Article  Google Scholar 

  • Grohe K, Zeiler HJ, Metzger K (1981) 1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-7-piperazino-chinolin-3-carbonsaeuren, Verfahren zu ihrer Herstellung sowie diese enthaltende antibakterielle Mittel. DE 3142854:A1

    Google Scholar 

  • Grundy WE, Sinclair AC, Theriault RJ, Goldstein AW, Rickher CJ, Warren HB Jr, Oliver TJ, Sylvester JC (1956–1957) Ristocetin, microbiologic properties. Antibiot Annu 687–692

    Google Scholar 

  • Guttmann P, Ehrlich P (1891) Über die Wirkung des Methylenblau bei Malaria. Berl Klin Wochenschr 28:953–956

    Google Scholar 

  • Haensch S, Bianucci R, Signoli M et al (2010) Distinct clones of yersinia pestis caused the black death. Ed Nora J Besansky PLoS Pathogens 6(10):e1001134

    Article  CAS  Google Scholar 

  • Hart GD (2001) Descriptions of blood and blood disorders before the advent of laboratory studies. Histl Rev Brit J Haem 115:719–728

    Article  CAS  Google Scholar 

  • Harris DA, Reagan MA, Ruger M, Wallick H, Woodruff HB (1955) Discovery and antimicrobial properties of cathomycin, a new antibiotic produced by Streptomyces spheroides n. sp. Antibiot Annu 3:909–917

    PubMed  Google Scholar 

  • Hawgood BJ (2008) Alexandre Yersin (1863–1943): discoverer of the plague bacillus, explorer and agronomist. J Med Biog 16:167–172

    Article  Google Scholar 

  • Heide L (2014) New aminocoumarin antibiotics as gyrase inhibitors. Int J Med Microbiol 304:31–36

    Article  CAS  PubMed  Google Scholar 

  • Herrmann J, Lukežič T, Kling A, Baumann S, Hüttel S, Petković H, Müller R (2016) Strategies for the discovery and development of new antibiotics from natural products: three case studies. Curr Top Microbiol Immunol Springer EBook

    Google Scholar 

  • Hesterkamp T (2015) Antibiotics clinical development and pipeline. Curr Top Microbiol Immunol. (Springer EBook). doi:10.1007/82_2015_451

    Google Scholar 

  • Höck M (2012a) Glycopeptidantibiotika. Chapter 98. Suerbaum S, Hahn H, Burchard G-D, Kaufmann SHE, Schulz TF (eds) Medizinische Mikrobiologie und Infektiologie 7 Auflage. Springer, Berlin

    Google Scholar 

  • Höck M (2012b) Makrolide. Chapter 102. Suerbaum S, Hahn H, Burchard G-D, Kaufmann SHE, Schulz TF (eds) Medizinische Mikrobiologie und Infektiologie 7. Auflage. Springer, Berlin

    Google Scholar 

  • Hollstein U (1973) Actinomycin. chemistry and mechanism of action. Chem Rev 6:625–652

    Google Scholar 

  • Hotchkiss RD, Dubos RJ (1940a) Fractionation of bactericidal agent from cultures of a soil bacillus. J Biol Chem 132:791–792

    CAS  Google Scholar 

  • Hotchkiss RD, Dubos RJ (1940b) Chemical properties of bactericidal substances isolated from cultures of a soil bacillus. J Biol Chem 132:793–794

    CAS  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2011) Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2(1):87–95

    Google Scholar 

  • Hughes VM, Datta N (1983) Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302:725–726

    Article  CAS  PubMed  Google Scholar 

  • Husain MA (2004) Bacitracin, glycopeptide antibiotics, and the polymyxins. In: Craig CR, Stitzel RE (eds) Modern pharmacology with clinical applications 48:552

    Google Scholar 

  • Inglesby TV, Dennis DT, Henderson DA et al (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense JAMA 283:2281–2290

    CAS  PubMed  Google Scholar 

  • Jacoby GA (2005) Mechanisms of resistance to quinolones. Clin Inf Dis 41:120–126

    Article  Google Scholar 

  • Jacoby GA, Bush K (2005) Beta-lactam resistance in the 21st century. In: White DG, Alekshun MN, McDermott PF (eds) Frontiers in antimicrobial resistance. ASM Press, Washington, DC, pp 53–65

    Chapter  Google Scholar 

  • Jäger H (2011) Cinchona pubescens. In: Roloff, A., Weisgerber, H., Lang, U., Stimm, B. (Hrsg.): Enzyklopädie der Holzgewächse, Wiley-VCH, Weinheim, 58:1–14

    Google Scholar 

  • Johnson BA, Anker H, Meleney FL (1945) Bacitracin: A new antibiotic produced by a member of the B. subtilis group. Science 12:376–377

    Article  Google Scholar 

  • Jovetic S, Zhu Y, Marcone GL, Marinelli F, Tramper J (2010) β-Lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 28:596–604

    Article  CAS  PubMed  Google Scholar 

  • Kahne, D Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448

    Google Scholar 

  • Karwehl S, Stadler M (2016) Exploitation of fungal biodiversity for discovery of novel antibiotics. In: Curr Top Microbiol Immunol, in press. doi:10.1007/82_2016_496

    Google Scholar 

  • Khosla R, Verma DD, Kapur A, Aruna RV, Khanna N (1999) Streptogramins: a new class of antibiotics. Indian J Med Sci 53:111–119

    CAS  PubMed  Google Scholar 

  • Klein P, Falke D, Hahn H (2012) Ursprung der medizinischen Mikrobiologie. Chapter 2. In: Suerbaum S, Hahn H, Burchard G-D, Kaufmann SHE, Schulz TF (eds) Medizinische Mikrobiologie und Infektiologie. 7. Auflage. Springer, Berlin

    Google Scholar 

  • Kool JL (2005) Risk of person-to-person transmission of pneumonic plague. Clin Infect Dis 40(8):1166–1172

    Article  PubMed  Google Scholar 

  • Kretz J, Kerwat D, Schubert V, Grätz S, Pesic A, Semsary S, Cociancich S, Royer M, Süssmuth RD (2015) Total synthesis of albicidin: A lead structure from Xanthomonas albilineans for potent antibacterial gyrase inhibitors. Angew Chem Int Ed 54:1969–1973

    Article  CAS  Google Scholar 

  • Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq R (2002) Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34:482–492

    Article  CAS  PubMed  Google Scholar 

  • Lesher GY, Froelich EJ, Gurett MD, Baily JH, Brundage RP (1962) 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J Med Pharm Chem 91:1063–1065

    Article  CAS  PubMed  Google Scholar 

  • Lešnik U, Lukežič T, Podgoršek A, Horvat J, Polak T, Šala M, Jenko B, Harmrolfs K, Ocampo-Sosa A, Martínez-Martínez L, Herron PR, Fujs S, Kosec G, Hunter IS, Müller R (2015) Construction of a new class of tetracycline lead structures with potent antibacterial activity through biosynthetic engineering. Angew Chem Int Ed 54:3937–3940

    Article  CAS  Google Scholar 

  • Levy SB (1984) Resistance to the tetracyclines. In Bryan LE (ed) Antimicrobial drug resistance. Academic Press, pp 191–240

    Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discovery 12:371–387

    Article  CAS  PubMed  Google Scholar 

  • Lewis C, Clapp HW, Grady JE (1962) In vitro and in vivo evaluation of lincomycin, a new antibiotic. Antimicrob Agents Chemother 2:570

    Google Scholar 

  • Lippi D, Conti AA (2002) Plague, policy, saints and terrorists: a historical survey. J Infect 44(4):226–228

    Article  PubMed  Google Scholar 

  • Lloyd NC, Morgan HW, Nicholson BK, Ronimus RS (2005) The composition of Ehrlich’s Salvarsan: resolution of a century-old debate. Angew Chem Int Ed 44:941–944

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Brock Mikrobiologie. Spektrum Akademischer Verlag

    Google Scholar 

  • Majno G, Joris I (1979) Billroth and Penicillium. Rev Infect Dis 5:880–884

    Article  Google Scholar 

  • Mason DJ, Dietz A, Deboer C (1962) Lincomycin-a new antibiotic. I. Discovery and biological properties AAC 2:554–559

    Google Scholar 

  • McCormick MH, McGuire JM, Pittenger GE, Pittenger RC, Stark WM (1955–1956) Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot Annu 3:606–611

    Google Scholar 

  • McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, Smith JW (1952) Ilotycin, a new antibiotic. Antibiot Chemother 2:281–283

    CAS  Google Scholar 

  • McMurry LM, Levy SB (2000) Tetracycline resistance in Gram positive bacteria. 660–677. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, and Rood JI (eds) Gram positive pathogens. American Society for Microbiology, Washington DC

    Google Scholar 

  • Meyers BR, Kaplan K, Weinstein L (1969) Micro- biological and pharmacological behaviour of 7-chloro- lincomycin. Appl Microbiol 17:653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. AAC 43:727–737

    CAS  Google Scholar 

  • Mitscher LA, Juvarkar JV, Rosenbrook W, Andres WW, Schenck JR, Egan RS (1970) Structure of chelocardin, a novel tetracycline antibiotic. J Am Chem Soc 92:6070–6071

    Article  CAS  PubMed  Google Scholar 

  • Morar M, Bhullar K, Hughes DW, Junop M, Wright GD (2009) Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB. Structure 17:1649–1659

    Article  CAS  PubMed  Google Scholar 

  • Nelson ML, Park BH, Andrew JS, Georgian VA, Thomas BC, Levy SB (1993) Inhibition of the tetracycline efflux antiport protein by 13-thio-substituted 5-hydroxy-6-deoxytetracyclines. J Med Chem 36:370–377

    Article  CAS  PubMed  Google Scholar 

  • Nelson ML, Levy SB (1999) Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother 43:1719–1724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson RRS (1999) Intrinsically vancomycin-resistant Gram-positive organisms: clinical relevance and implications for infection control. J Hosp Inf 42:275–282

    Google Scholar 

  • Neufeldt S (2003) Chronologie Chemie: Entdecker und Entdeckungen Ed. Neufeldt S. 3. Auflage Wiley VCH

    Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  • Newton GGF, Abraham EP (1955) Cephalosporin C, a new antibiotic containing sulphur and D-aminoadipic acid. Nature 175:548

    Article  CAS  PubMed  Google Scholar 

  • Nielsen ED, Hamilton PB, David Rosi D, Peruzzotti GP (1963) Microbiological oxidation of 7-methyl-1, 8-naphthyridines to 7-hydroxymethyl-1, 8-naphthyridines. US 3317401 A Sterling Drug Inc

    Google Scholar 

  • No authors listed (1967) Gentamicin. Br Med J 21:158–159

    Google Scholar 

  • Nord C (2010) Mycophenolic Acid—The road from an early antibiotic to a modern drug. Biologiskt aktiva naturprodukter I läkemedelsutvecklingen, pp 1–11

    Google Scholar 

  • Oliva B, Gordon G, McNicholas P, Ellestad G, Chopra I (1992) Evidence that tetracycline analogs whose primary target is not the bacterial ribosome cause lysis of Escherichia coli. Antimicrob Agents Chemother 36:913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver TJ, Ptokop JF, Bower RR, Otto RH (1962) Chelocardin, a new broad spectrum antibiotic. I. Discovery and biological properties. Antimicrob Agents Chemother 583–591

    Google Scholar 

  • Oppolzer W, Prelog V, Sensi P (1964) Experientia 20:336–339

    Article  CAS  PubMed  Google Scholar 

  • Pandit N, Singla RK, Shrivastava B (2012) Current updates on oxazolidinone and its significance. Int J Med Chem. doi:10.1155/2012/159285

    PubMed  PubMed Central  Google Scholar 

  • Parenti F, Beretta G, Berti M, Arioli V (1978) Teicomycins, new antibiotics from Actinoplanes teicomyceticus nov. sp. I. Description of the producer strain, fermentation studies and biological properties. J Antibiot 31:276–283

    Article  CAS  PubMed  Google Scholar 

  • Rezende L (2006) Chronology of science. Checkmark, New York

    Google Scholar 

  • Rollo IM, Williamson J, Plackett RL (1952) Acquired resistance to penicillin and to neoarsphenamine in Spirochaeta recurrentis. Br J Pharmacol Chemother 7:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin RP (2007) A brief history of great discoveries in pharmacology. In celebration of the centennial anniversary of the founding of the american society of pharmacology and experimental therapeutics. Pharmacol Rev 59:289–359

    Article  PubMed  Google Scholar 

  • Schatz A, Bugie E, Waksman S (1944) Streptomycin: A substance exhibiting antibiotic activity against gram positive and gram negative bacteria. Proc Exp Biol Med 55:66–69

    Article  CAS  Google Scholar 

  • Sensi P, Greco AM, Ballotta R (1960) Rifomycins. I. Isolation and properties of rifomycin B and rifomycin complex. Antibiot Annu 262–270

    Google Scholar 

  • Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silver LL (2012) Chapter 2 Rational Approaches to antibacterial discovery: pre-genomic directed and phenotypic screening, 33–75. In: Dougherty TJ, Pucci MJ (eds) Antibiotic discovery and development, Springer, Berlin

    Google Scholar 

  • Sköld O (2000) Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 3(3):155–160

    Google Scholar 

  • Smith RM, Joslyn DA, Gruhzit OM, McLean W, Penner MA, Ehrlich J (1947) Chloromycetin: biological studies

    Google Scholar 

  • Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrob Agents Chemother 26:917–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoerer M, Streb J (2013) Neue deutsche Wirtschaftsgeschichte des 20. Walter de Gruyter, Jahrhunderts

    Book  Google Scholar 

  • Stahlmann R, Riecke K (2004) Die Infektiologie. 5.3.14.1 Editors: Adam D, Doerr HW, Link H, Lode H (Hrsg.), Springer

    Google Scholar 

  • Sydenstricker VP (1958) The History of Pellagra. Its Recognition as a Disorder of Nutrition and Its Conquest. Am J Clin Nutr 6(4):409–414

    CAS  PubMed  Google Scholar 

  • Takeuchi T, Hikiji T, Nitta K, Yamazaki S, Abe S, Takayama H, Umezawa H (1957) Biological studies on kanamycin. J Antibiot (Tokyo) 10:107–114

    CAS  Google Scholar 

  • Thomas HW (1905) Some experiments in the treatment of trypanosomiasis. Brit Med J 1140

    Google Scholar 

  • Tréfouël J and T, Nitti F, Bovet D (1935) Activité du p-aminophénylsulfamide sur l’infection streptococcique expérimentale de la souris et du lapin. C R Soc Biol 120(23):756

    Google Scholar 

  • Tymiak AA, Aklonis C, Bolgar MS et al (1993) Novel tetracycline glycosides active against tetracycline-resistant bacteria. J Org Chem 58:535–537

    Article  CAS  Google Scholar 

  • Tyndall J (1877) The optical deportment of the atmosphere in relation to the phenomena of putrefaction and infection. Philos Trans R Soc Lond 166:27–74

    Article  Google Scholar 

  • Waksman SA, Woodruff HB (1940) Bacteriostatic and bacteriocidal substances produced by soil actinomycetes. Proc Soc Exp Biol 45:609–614

    Article  CAS  Google Scholar 

  • Waksman S, Woodruff HB (1941) Actinomyces Antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 42:231–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waksman SA (1947) What is an antibiotic or an antibiotic substance? Mycologia 39:565–569

    Article  CAS  PubMed  Google Scholar 

  • Waksman SA, Lechevalier HA, Harris DA (1949) Neomycin-production and antibiotic properties. J Clin Invest 28:934–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waksman SA, Lechevalier HA (1949) Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 25:305–307

    Article  Google Scholar 

  • Weber T, Welzel K, Pelzer S, Vente A, Wohlleben W (2003) Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol 106:221–232

    Article  CAS  PubMed  Google Scholar 

  • Weiss HJ, Rogers J, Brand H (1973) Defective ristocetin-induced platelet aggregation in von Willebrand’s disease and its correction by factor VIII. J Clin Invest 52:2697–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2009) Treatment of tuberculosis: guidelines for national programmes

    Google Scholar 

  • Williams KJ (2009) The introduction of ‘chemotherapy’ using arsphenamine—The first magic bullet. J R Soc Med 102(8):343–348

    Google Scholar 

  • Williams C (2013) Medicinal plants in Australia Vol 4: An antipodean apothecary. Rosenberg Publishing

    Google Scholar 

  • Woodward RB, Doering WE (1945) The total synthesis of quinine. J. Amer Chem Soc 67:860–874

    Article  CAS  Google Scholar 

  • Würth I (2012) Geißler in Thüringen: Die Entstehung einer spätmittelalterlichen Häresie (Hallische Beiträge zur Geschichte des Mittelalters und der Frühen Neuzeit, Band 10

    Google Scholar 

  • Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A, Embil JM, Gin AS, Douthwaite S, Hoban DJ (2002) The ketolides: a critical review. Drugs 62:1771–1804

    Article  CAS  PubMed  Google Scholar 

  • Zimdahl RL (2015) Six chemicals that changed agriculture. 1st edn. Academic Press Elsevier

    Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Dr. Christoph Friedrich, Bildarchiv des Instituts für Geschichte der Pharmazie der Universität Marburg (Germany), Prof. Dr. Ulrich Kück and Dr. Julia Böhm, Ruhr-University Bochum, Dr. Heinke Jäger, Restoration Ecologist Charles Darwin Foundation Puerta Ayora, Galápagos (Ecuador), and PD Dr. Joachim Wink for providing the nice pictures and Dr. Rolf Jansen for examination of the chemical structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin I. Mohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Mohr, K.I. (2016). History of Antibiotics Research. In: Stadler, M., Dersch, P. (eds) How to Overcome the Antibiotic Crisis . Current Topics in Microbiology and Immunology, vol 398. Springer, Cham. https://doi.org/10.1007/82_2016_499

Download citation

Publish with us

Policies and ethics