Abstract
Actin cross-linking toxins are produced by Gram-negative bacteria from Vibrio and Aeromonas genera. The toxins were named actin cross-linking domains (ACD), since the first and most of the subsequently discovered ACDs were found as effector domains in larger MARTX and VgrG toxins. Among recognized human pathogens, ACD is produced by Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Upon delivery to the cytoplasm of a host cell, ACD covalently cross-links actin monomers into non-polymerizable actin oligomers of various lengths. Provided sufficient doses of toxin are delivered, most or all actin can be promptly cross-linked into non-functional oligomers, leading to cell rounding, detachment from the substrate and, in many cases, cell death. Recently, a deeper layer of ACD toxicity with a less obvious but more potent mechanism was discovered. According to this finding, low doses of the ACD-produced actin oligomers can actively disrupt the actin cytoskeleton by potently inhibiting essential actin assembly proteins, formins. The first layer of toxicity is direct (as actin is the immediate and the only target), passive (since ACD-cross-linked actin oligomers are toxic only because they are non-functional), and less potent (as bulk quantities of one of the most abundant cytoplasmic proteins, actin, have to be modified). The second mechanism is indirect (as major targets, formins, are not affected by ACD directly), active (because actin oligomers act as “secondary” toxins), and highly potent [as it affects scarce and essential actin-binding proteins (ABPs)].
Keywords
- Glutamine Synthetase
- Actin Polymerization
- Effector Domain
- Monomeric Actin
- Cholerae Strain
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abbott SL, Janda JM (1994) Severe gastroenteritis associated with Vibrio hollisae infection: report of two cases and review. Clin Infect Dis 18(3):310–312
Akram A, Stevens RP, Konecny P (2015) Photobacterium damselae and Vibrio harveyi hand infection from marine exposure. Med J Aust 203(5):224–225
Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278(23):4526–4543. doi:10.1111/j.1742-4658.2011.08113.x
Amaro C, Sanjuan E, Fouz B, Pajuelo D, Lee CT, Hor LI, Barrera R (2015) The fish pathogen Vibrio vulnificus biotype 2: epidemiology, phylogeny, and virulence factors involved in warm-water vibriosis. Microbiol Spectr 3(3). doi:10.1128/microbiolspec.VE-0005-2014
Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43(2):119–124. doi:10.1111/j.1472-765X.2006.01989.x
Balcer HI, Goodman AL, Rodal AA, Smith E, Kugler J, Heuser JE, Goode BL (2003) Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr Biol 13(24):2159–2169
Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20(4):187–195. doi:10.1016/j.tcb.2010.01.001
Bryan J (1988) Gelsolin has three actin-binding sites. J Cell Biol 106(5):1553–1562
Choi A, Kim KM, Kang I, Youn SH, Suh YS, Lee Y, Cho JC (2012) Grimontia marina sp. nov., a marine bacterium isolated from the Yellow Sea. J Microbiol 50(1):170–174. doi:10.1007/s12275-012-1615-6
Chow KH, Ng TK, Yuen KY, Yam WC (2001) Detection of RTX toxin gene in Vibrio cholerae by PCR. J Clin Microbiol 39(7):2594–2597. doi:10.1128/JCM.39.7.2594-2597.2001
Colucci-Guyon E, Niedergang F, Wallar BJ, Peng J, Alberts AS, Chavrier P (2005) A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Curr Biol 15(22):2007–2012. doi:10.1016/j.cub.2005.09.051
Cordero CL, Kudryashov DS, Reisler E, Satchell KJ (2006) The actin cross-linking domain of the Vibrio cholerae RTX toxin directly catalyzes the covalent cross-linking of actin. J Biol Chem 281(43):32366–32374. doi:10.1074/jbc.M605275200
Cordero CL, Sozhamannan S, Satchell KJ (2007) RTX toxin actin cross-linking activity in clinical and environmental isolates of Vibrio cholerae. J Clin Microbiol 45(7):2289–2292. doi:10.1128/JCM.00349-07
Daniels NA, Shafaie A (2000) A review of pathogenic Vibrio infections for clinicians. Infect Med 17(10):665–685
Defoirdt T, Verstraete W, Bossier P (2008) Luminescence, virulence and quorum sensing signal production by pathogenic Vibrio campbellii and Vibrio harveyi isolates. J Appl Microbiol 104(5):1480–1487. doi:10.1111/j.1365-2672.2007.03672.x
Dolores J, Satchell KJ (2013) Analysis of Vibrio cholerae genome sequences reveals unique rtxA variants in environmental strains and an rtxA-null mutation in recent altered El Tor isolates. MBio 4(2):e00624. doi:10.1128/mBio.00624-12
Dolores JS, Agarwal S, Egerer M, Satchell KJ (2015) Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol 95(4):590–604. doi:10.1111/mmi.12879
Durand E, Derrez E, Audoly G, Spinelli S, Ortiz-Lombardia M, Raoult D, Cascales E, Cambillau C (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J Biol Chem 287(45):38190–38199. doi:10.1074/jbc.M112.390153
Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477(1–2):122–145
Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H (2011) Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis 34(9):643–661. doi:10.1111/j.1365-2761.2011.01279.x
Fullner KJ, Mekalanos JJ (2000) In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J 19(20):5213–5323
Fullner KJ, Lencer WI, Mekalanos JJ (2001) Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect Immun 69(10):6310–6317. doi:10.1128/IAI.69.10.6310-6317.2001
Fullner KJ, Boucher JC, Hanes MA, Haines GK 3rd, Meehan BM, Walchle C, Sansonetti PJ, Mekalanos JJ (2002) The contribution of accessory toxins of Vibrio cholerae O1 El Tor to the proinflammatory response in a murine pulmonary cholera model. J Exp Med 195(11):1455–1462
Galkin VE, Orlova A, Vos MR, Schroder GF, Egelman EH (2015) Near-atomic resolution for one state of F-actin. Structure 23(1):173–182. doi:10.1016/j.str.2014.11.006
Gavin HE, Satchell KJ (2015) MARTX toxins as effector delivery platforms. Pathog Dis 73(9):ftv092. doi:10.1093/femspd/ftv092
Geissler B, Bonebrake A, Sheahan KL, Walker ME, Satchell KJ (2009) Genetic determination of essential residues of the Vibrio cholerae actin cross-linking domain reveals functional similarity with glutamine synthetases. Mol Microbiol 73(5):858–868. doi:10.1111/j.1365-2958.2009.06810.x
Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46(1):86–94
Grikscheit K, Grosse R (2016) Formins at the junction. Trends Biochem Sci 41(2):148–159. doi:10.1016/j.tibs.2015.12.002
Hachani A, Wood TE, Filloux A (2016) Type VI secretion and anti-host effectors. Curr Opin Microbiol 29:81–93. doi:10.1016/j.mib.2015.11.006
Hada HS, Stemmler J, Grossbard ML, West PA, Potrikus CJ, Hastings JW, Colwell RR (1985) Characterization of non-O1 serovar Vibrio cholerae (Vibrio albensis). Syst Appl Microbiol 6(2):203–209
Haines GK 3rd, Sayed BA, Rohrer MS, Olivier V, Satchell KJ (2005) Role of toll-like receptor 4 in the proinflammatory response to Vibrio cholerae O1 El tor strains deficient in production of cholera toxin and accessory toxins. Infect Immun 73(9):6157–6164. doi:10.1128/IAI.73.9.6157-6164.2005
Heisler DB, Kudryashova E, Grinevich DO, Suarez C, Winkelman JD, Birukov KG, Kotha SR, Parinandi NL, Vavylonis D, Kovar DR, Kudryashov DS (2015) ACD toxin-produced actin oligomers poison formin-controlled actin polymerization. Science 349(6247):535–539
Hinestrosa F, Madeira RG, Bourbeau PP (2007) Severe gastroenteritis and hypovolemic shock caused by Grimontia (Vibrio) hollisae infection. J Clin Microbiol 45(10):3462–3463. doi:10.1128/JCM.01205-07
Hundenborn J, Thurig S, Kommerell M, Haag H, Nolte O (2013) Severe wound infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: a case report and review of the literature. Case Rep Med, 610632. doi:10.1155/2013/610632
Huys G, Denys R, Swings J (2002) DNA-DNA reassociation and phenotypic data indicate synonymy between Aeromonas enteropelogenes Schubert et al. 1990 and Aeromonas trota Carnahan et al. 1991. Int J Syst Evol Microbiol 52(Pt 6):1969–1972. doi:10.1099/00207713-52-6-1969
Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344(Pt 3):633–642
Igbinosa EO, Okoh AI (2008) Emerging Vibrio species: an unending threat to public health in developing countries. Res Microbiol 159(7–8):495–506. doi:10.1016/j.resmic.2008.07.001
Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23(1):35–73. doi:10.1128/CMR.00039-09
Kim HJ, Park S, Lee JM, Park S, Jung W, Kang JS, Joo HM, Seo KW, Kang SH (2008) Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean. Int J Syst Evol Microbiol 58(Pt 4):817–820. doi:10.1099/ijs.0.65501-0
Kim BS, Gavin HE, Satchell KJ (2015) Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. MBio 6(2). doi:10.1128/mBio.00324-15
Kovar DR (2006) Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 18(1):11–17. doi:10.1016/j.ceb.2005.12.011
Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD (2006) Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124(2):423–435. doi:10.1016/j.cell.2005.11.038
Kudryashov DS, Reisler E (2003) Solution properties of tetramethylrhodamine-modified G-actin. Biophys J 85(4):2466–2475. doi:10.1016/S0006-3495(03)74669-4
Kudryashov DS, Cordero CL, Reisler E, Satchell KJ (2008a) Characterization of the enzymatic activity of the actin cross-linking domain from the Vibrio cholerae MARTX Vc toxin. J Biol Chem 283(1):445–452. doi:10.1074/jbc.M703910200
Kudryashov DS, Durer ZA, Ytterberg AJ, Sawaya MR, Pashkov I, Prochazkova K, Yeates TO, Loo RR, Loo JA, Satchell KJ, Reisler E (2008b) Connecting actin monomers by iso-peptide bond is a toxicity mechanism of the Vibrio cholerae MARTX toxin. Proc Natl Acad Sci USA 105(47):18537–18542. doi:10.1073/pnas.0808082105
Kudryashova E, Kalda C, Kudryashov DS (2012) Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD) toxin. PLoS ONE 7(9):e45721. doi:10.1371/journal.pone.0045721
Kudryashova E, Heisler D, Zywiec A, Kudryashov DS (2014a) Thermodynamic properties of the effector domains of MARTX toxins suggest their unfolding for translocation across the host membrane. Mol Microbiol. doi:10.1111/mmi.12615
Kudryashova E, Quintyn R, Seveau S, Lu W, Wysocki Vicki H, Kudryashov Dmitri S (2014b) Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins. Immunity 41(5):709–721. doi:10.1016/j.immuni.2014.10.018
Kudryashova E, Seveau S, Lu W, Kudryashov DS (2015) Retrocyclins neutralize bacterial toxins by potentiating their unfolding. Biochem J 467(2):311–320. doi:10.1042/BJ20150049
Kwak JS, Jeong HG, Satchell KJ (2011) Vibrio vulnificus rtxA1 gene recombination generates toxin variants with altered potency during intestinal infection. Proc Natl Acad Sci USA 108(4):1645–1650. doi:10.1073/pnas.1014339108
Lacoste A, Jalabert F, Malham S, Cueff A, Gelebart F, Cordevant C, Lange M, Poulet SA (2001) A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis Aquat Organ 46(2):139–145. doi:10.3354/dao046139
Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, Chang CH, Hor LI (2008) A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. J Bacteriol 190(5):1638–1648. doi:10.1128/JB.01484-07
Lee CT, Pajuelo D, Llorens A, Chen YH, Leiro JM, Padros F, Hor LI, Amaro C (2013) MARTX of Vibrio vulnificus biotype 2 is a virulence and survival factor. Environ Microbiol 15(2):419–432. doi:10.1111/j.1462-2920.2012.02854.x
Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319(15):2329–2336. doi:10.1016/j.yexcr.2013.04.021
Lerat S, Simao-Beaunoir AM, Beaulieu C (2009) Genetic and physiological determinants of Streptomyces scabies pathogenicity. Mol Plant Pathol 10(5):579–585. doi:10.1111/j.1364-3703.2009.00561.x
Levine MM, Kaper JB, Herrington D, Losonsky G, Morris JG, Clements ML, Black RE, Tall B, Hall R (1988) Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques. Infect Immun 56(1):161–167
Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Claderwood SB, Fraser C, Mekalanos JJ (1999) Indentification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci 96:1071–1076
Ma AT, Mekalanos JJ (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci USA 107(9):4365–4370. doi:10.1073/pnas.0915156107
Ma AT, McAuley S, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5(3):234–243. doi:10.1016/j.chom.2009.02.005
Midelfort CF, Rose IA (1976) A stereochemical method for detection of ATP terminal phosphate transfer in enzymatic reactions. Glutamine synthetase. J Biol Chem 251(19):5881–5887
Morris JG Jr (2003) Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell. Clin Infect Dis 37(2):272–280. doi:10.1086/375600
Morris JG Jr, Black RE (1985) Cholera and other vibrioses in the United States. N Engl J Med 312(6):343–350. doi:10.1056/NEJM198502073120604
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–745. doi:10.1093/nar/gkv1189
Olivier V, Haines GK 3rd, Tan Y, Satchell KJ (2007a) Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect Immun 75(10):5035–5042. doi:10.1128/IAI.00506-07
Olivier V, Salzman NH, Satchell KJ (2007b) Prolonged colonization of mice by Vibrio cholerae El Tor O1 depends on accessory toxins. Infect Immun 75(10):5043–5051. doi:10.1128/IAI.00508-07
Olivier V, Queen J, Satchell KJ (2009) Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS ONE 4(10):e7352. doi:10.1371/journal.pone.0007352
Orlowski M, Meister A (1971) Partial reactions catalyzed by-glutamylcysteine synthetase and evidence for an activated glutamate intermediate. J Biol Chem 246(23):7095–7105
Paavilainen VO, Bertling E, Falck S, Lappalainen P (2004) Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 14(7):386–394. doi:10.1016/j.tcb.2004.05.002
Paavilainen VO, Oksanen E, Goldman A, Lappalainen P (2008) Structure of the actin-depolymerizing factor homology domain in complex with actin. J Cell Biol 182(1):51–59. doi:10.1083/jcb.200803100
Paul AK, Banerjee AK (1983) A new antifungal antibiotic produced by Streptomyces galbus. Folia Microbiol (Praha) 28(5):386–396
Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576. doi:10.1146/annurev.biophys.29.1.545
Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103(5):1528–1533. doi:10.1073/pnas.0510322103
Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104(39):15508–15513. doi:10.1073/pnas.0706532104
Queen J, Satchell KJ (2012) Neutrophils are essential for containment of Vibrio cholerae to the intestine during the proinflammatory phase of infection. Infect Immun 80(8):2905–2913. doi:10.1128/IAI.00356-12
Queen J, Agarwal S, Dolores JS, Stehlik C, Satchell KJ (2015) Mechanisms of inflammasome activation by Vibrio cholerae secreted toxins vary with strain biotype. Infect Immun 83(6):2496–2506. doi:10.1128/IAI.02461-14
Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM (2008) Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 27(7):347–355. doi:10.1089/dna.2008.0737
Roig FJ, Gonzalez-Candelas F, Amaro C (2011) Domain organization and evolution of multifunctional autoprocessing repeats-in-toxin (MARTX) toxin in Vibrio vulnificus. Appl Environ Microbiol 77(2):657–668. doi:10.1128/AEM.01806-10
Salomon D, Kinch LN, Trudgian DC, Guo X, Klimko JA, Grishin NV, Mirzaei H, Orth K (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci USA 111(25):9271–9276. doi:10.1073/pnas.1406110111
Satchell KJ (2007) MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75(11):5079–5084. doi:10.1128/IAI.00525-07
Satchell KJ (2009) Actin crosslinking toxins of gram-negative bacteria. Toxins (Basel) 1(2):123–133. doi:10.3390/toxins1020123
Satchell KJ (2011) Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol 65:71–90. doi:10.1146/annurev-micro-090110-102943
Satchell KJ (2015) Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins of vibrios. Microbiol Spectr 3(3). doi:10.1128/microbiolspec.VE-0002-2014
Schiewe MH, Trust TJ, Crosa JH (1981) Vibrio ordalii sp. nov.: a causative agent of vibriosis in fish. Curr Microbiol 6(6):343–348
Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U (1993) The structure of crystalline profilin-beta-actin. Nature 365(6449):810–816. doi:10.1038/365810a0
Sheahan KL, Cordero CL, Satchell KJ (2004) Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proc Natl Acad Sci USA 101(26):9798–9803. doi:10.1073/pnas.0401104101
Simossis VA, Heringa J (2005) PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 33(Web Server issue):W289–294. doi:10.1093/nar/gki390
Srinivas TN, Vijaya Bhaskar Y, Bhumika V, Anil Kumar P (2013) Photobacterium marinum sp. nov., a marine bacterium isolated from a sediment sample from Palk Bay, India. Syst Appl Microbiol 36(3):160–165. doi:10.1016/j.syapm.2012.12.002
Strom MS, Paranjpye RN (2000) Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2(2):177–188
Suarez G, Khajanchi BK, Sierra JC, Erova TE, Sha J, Chopra AK (2012) Actin cross-linking domain of Aeromonas hydrophila repeat in toxin A (RtxA) induces host cell rounding and apoptosis. Gene 506(2):369–376. doi:10.1016/j.gene.2012.07.012
Tam PJ, Lingwood CA (2007) Membrane cytosolic translocation of verotoxin A1 subunit in target cells. Microbiology 153(Pt 8):2700–2710. doi:10.1099/mic.0.2007/006858-0
Tholey G, Bloch S, Ledig M, Mandel P, Wedler F (1987) Chick brain glutamine synthetase and Mn2+–Mg2+ interactions. Neurochem Res 12(11):1041–1047
Thompson FL, Hoste B, Vandemeulebroecke K, Swings J (2003) Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 53(Pt 5):1615–1617. doi:10.1099/ijs.0.02660-0
Toma C, Higa N, Koizumi Y, Nakasone N, Ogura Y, McCoy AJ, Franchi L, Uematsu S, Sagara J, Taniguchi S, Tsutsui H, Akira S, Tschopp J, Nunez G, Suzuki T (2010) Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling. J Immunol 184(9):5287–5297. doi:10.4049/jimmunol.0903536
Valiente E, Lee CT, Lamas J, Hor L, Amaro C (2008) Role of the virulence plasmid pR99 and the metalloprotease Vvp in resistance of Vibrio vulnificus serovar E to eel innate immunity. Fish Shellfish Immunol 24(1):134–141. doi:10.1016/j.fsi.2007.10.007
Vezzulli L, Colwell RR, Pruzzo C (2013) Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb Ecol 65(4):817–825. doi:10.1007/s00248-012-0163-2
Wedler FC, Denman RB, Roby WG (1982) Glutamine synthetase from ovine brain is a manganese(II) enzyme. Biochemistry 21(25):6389–6396
Xue B, Leyrat C, Grimes JM, Robinson RC (2014) Structural basis of thymosin-beta4/profilin exchange leading to actin filament polymerization. Proc Natl Acad Sci USA 111(43):E4596–4605. doi:10.1073/pnas.1412271111
Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15(1):245–250
Yamamoto H, Konno H, Yamamoto T, Ito K, Mizugaki M, Iwasaki Y (1987) Glutamine synthetase of the human brain: purification and characterization. J Neurochem 49(2):603–609
Yu LC (2015) Commensal bacterial internalization by epithelial cells: an alternative portal for gut leakiness. Tissue Barriers 3(3):e1008895. doi:10.1080/21688370.2015.1008895
Acknowledegements
Research reported in this chapter was supported by the National Institute of General Medical Sciences of the NIH under award number R01GM114666 (to D.S.K.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kudryashova, E., Heisler, D.B., Kudryashov, D.S. (2016). Pathogenic Mechanisms of Actin Cross-Linking Toxins: Peeling Away the Layers. In: Mannherz, H. (eds) The Actin Cytoskeleton and Bacterial Infection. Current Topics in Microbiology and Immunology, vol 399. Springer, Cham. https://doi.org/10.1007/82_2016_22
Download citation
DOI: https://doi.org/10.1007/82_2016_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50046-1
Online ISBN: 978-3-319-50047-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)