Skip to main content

Diversification and Functional Specialization of Human NK Cell Subsets

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 395))

Abstract

Natural killer (NK) cells are lymphocytes that participate in different facets of immunity. They can act as innate sentinels through recognition and eradication of infected or transformed target cells, so-called immunosurveillance. In addition, they can contain immune responses through the killing of other activated immune cells, so-called immunoregulation. Furthermore, they instruct and regulate immune responses by producing pro-inflammatory cytokines such as IFN-γ, either upon direct target cell recognition or by relaying cytokine cues from various cell types. Recent studies in mouse and man have uncovered infection-associated expansions of NK cell subsets with specific receptor repertoires and diverse patterns of intracellular signaling molecule expression. Moreover, distinct attributes of NK cells in tissues, including tissue-resident subsets, are being further elucidated. Findings support an emerging theme of ever-increasing diversification and functional specialization among different NK cell subsets, with a functional dichotomy between subsets involved in immunoregulation or immunosurveillance. The epigenetic landscapes and transcriptional profiles of different NK cell subsets are providing insights into the molecular regulation of effector functions. Here, we review phenotypic, functional, and developmental characteristics of a spectrum of human NK cell subsets. We also discuss the molecular underpinnings of different NK cell subsets and their potential contributions to immunity as well as disease susceptibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aliahmad P, de la Torre B, Kaye J (2010) Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 11:945–952

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22

    Article  PubMed  CAS  Google Scholar 

  • Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342

    Article  PubMed  CAS  Google Scholar 

  • Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326

    Article  PubMed  CAS  Google Scholar 

  • Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301

    Article  PubMed  CAS  Google Scholar 

  • Ashkar AA, Croy BA (1999) Interferon-gamma contributes to the normalcy of murine pregnancy. Biol Reprod 61:493–502

    Article  PubMed  CAS  Google Scholar 

  • Bachmayer N, Sohlberg E, Sundstrom Y, Hamad RR, Berg L, Bremme K, Sverremark-Ekstrom E (2009) Women with pre-eclampsia have an altered NKG2A and NKG2C receptor expression on peripheral blood natural killer cells. Am J Reprod Immunol 62:147–157

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu AM, Zawislak CL, Nakayama T, Sun JC (2014) The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nat Immunol 15:546–553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N, Buskens CJ, Bemelman WA, Mjosberg JM, Spits H (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229

    Article  PubMed  CAS  Google Scholar 

  • Beziat V, Liu LL, Malmberg JA, Ivarsson MA, Sohlberg E, Bjorklund AT, Retiere C, Sverremark-Ekstrom E, Traherne J, Ljungman P, Schaffer M, Price DA, Trowsdale J, Michaelsson J, Ljunggren HG, Malmberg KJ (2013) NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121:2678–2688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y, Best JA, Goldrath AW, Lanier LL, Gautier EL, Jakubzick C, Randolph GJ, Best AJ, Knell J, Goldrath A, Miller J, Brown B, Merad M, Jojic V, Koller D, Cohen N, Brennan P, Brenner M, Shay T, Regev A, Fletcher A, Elpek K, Bellemare-Pelletier A, Malhotra D, Turley S, Jianu R, Laidlaw D, Collins JJ, Narayan K, Sylvia K, Kang J, Gazit R, Rossi DJ, Kim F, Rao TN, Wagers A, Shinton SA, Hardy RR, Monach P, Heng T, Kreslavsky T, Painter M, Ericson J, Davis S, Mathis D, Benoist C (2012) Molecular definition of the identity and activation of natural killer cells. Nat Immunol 13:1000–1009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320:1731–1735

    Article  PubMed  CAS  Google Scholar 

  • Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT, Flodstrom-Tullberg M, Michaelsson J, Rottenberg ME, Guzman CA, Ljunggren HG, Malmberg KJ (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116:3853–3864

    Article  PubMed  CAS  Google Scholar 

  • Bjorkstrom NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, Michaelsson J, Malmberg KJ, Klingstrom J, Ahlm C, Ljunggren HG (2011) Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med 208:13–21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96

    Article  PubMed  CAS  Google Scholar 

  • Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799

    Article  PubMed  CAS  Google Scholar 

  • Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO (2005) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bryceson YT, March ME, Ljunggren HG, Long EO (2006a) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91

    Article  PubMed  CAS  Google Scholar 

  • Bryceson YT, March ME, Ljunggren HG, Long EO (2006b) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159–166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bryceson YT, Ljunggren HG, Long EO (2009) Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114:2657–2666

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bryceson YT, Fauriat C, Nunes JM, Wood SM, Bjorkstrom NK, Long EO, Ljunggren HG (2010) Functional analysis of human NK cells by flow cytometry. Methods Mol Biol 612:335–352

    Article  PubMed  CAS  Google Scholar 

  • Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B, Graf P, Verschoor A, Schiemann M, Hofer T, Busch DH (2013) Disparate individual fates compose robust CD8+ T cell immunity. Science 340:630–635

    Article  PubMed  CAS  Google Scholar 

  • Burrows TD, King A, Loke YW (1993) Expression of adhesion molecules by human decidual large granular lymphocytes. Cell Immunol 147:81–94

    Article  PubMed  CAS  Google Scholar 

  • Burt BM, Plitas G, Zhao Z, Bamboat ZM, Nguyen HM, Dupont B, DeMatteo RP (2009) The lytic potential of human liver NK cells is restricted by their limited expression of inhibitory killer Ig-like receptors. J Immunol 183:1789–1796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL (2014) Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol 26:454–470

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, Wu L, Butcher EC (2001) Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166:6477–6482

    Article  PubMed  CAS  Google Scholar 

  • Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC, Colonna M (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cerdeira AS, Rajakumar A, Royle CM, Lo A, Husain Z, Thadhani RI, Sukhatme VP, Karumanchi SA, Kopcow HD (2013) Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. J Immunol 190:3939–3948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chan HW, Kurago ZB, Stewart CA, Wilson MJ, Martin MP, Mace BE, Carrington M, Trowsdale J, Lutz CT (2003) DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J Exp Med 197:245–255

    Google Scholar 

  • Chiang SC, Theorell J, Entesarian M, Meeths M, Mastafa M, Al-Herz W, Frisk P, Gilmour KC, Ifversen M, Langenskiold C, Machaczka M, Naqvi A, Payne J, Perez-Martinez A, Sabel M, Unal E, Unal S, Winiarski J, Nordenskjold M, Ljunggren HG, Henter JI, Bryceson YT (2013) Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood 121:1345–1356

    Article  PubMed  CAS  Google Scholar 

  • Cichocki F, Miller JS, Anderson SK, Bryceson YT (2013) Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol 4:55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cichocki F, Schlums H, Li H, Stache V, Holmes T, Lenvik TR, Chiang SC, Miller JS, Meeths M, Anderson SK, Bryceson YT (2014a) Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency. J Exp Med 211:1079–1091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cichocki F, Sitnicka E, Bryceson YT (2014b) NK cell development and function–plasticity and redundancy unleashed. Semin Immunol 26:114–126

    Article  PubMed  CAS  Google Scholar 

  • Constantinides MG, McDonald BD, Verhoef PA, Bendelac A (2014) A committed precursor to innate lymphoid cells. Nature 508:397–401

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Constantinides MG, Gudjonson H, McDonald BD, Ishizuka IE, Verhoef PA, Dinner AR, Bendelac A (2015) PLZF expression maps the early stages of ILC1 lineage development. Proc Natl Acad Sci USA 112:5123–5128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    Article  PubMed  CAS  Google Scholar 

  • Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H (2010) Human NKp44+ IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med 207:281–290

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crouse J, Bedenikovic G, Wiesel M, Ibberson M, Xenarios I, Von Laer D, Kalinke U, Vivier E, Jonjic S, Oxenius A (2014) Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity 40:961–973

    Article  PubMed  CAS  Google Scholar 

  • Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, Marvel J, Yoh K, Takahashi S, Prinz I, de Bernard S, Buffat L, Walzer T (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211:563–577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Saint Basile G, Menasche G, Fischer A (2010) Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol 10:568–579

    Article  PubMed  CAS  Google Scholar 

  • de Vries E, Koene HR, Vossen JM, Gratama JW, von dem Borne AE, Waaijer JL, Haraldsson A, de Haas M, van Tol MJ (1996) Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood 88:3022–3027

    PubMed  Google Scholar 

  • Denning SM, Jones DM, Ware RE, Weinhold KJ, Brenner MB, Haynes BF (1991) Analysis of clones derived from human CD7+ CD4-CD8-CD3-thymocytes. Int Immunol 3:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RE, Milne P, Jardine L, Zandi S, Swierczek SI, McGovern N, Cookson S, Ferozepurwalla Z, Langridge A, Pagan S, Gennery A, Heiskanen-Kosma T, Hamalainen S, Seppanen M, Helbert M, Tholouli E, Gambineri E, Reykdal S, Gottfreethsson M, Thaventhiran JE, Morris E, Hirschfield G, Richter AG, Jolles S, Bacon CM, Hambleton S, Haniffa M, Bryceson Y, Allen C, Prchal JT, Dick JE, Bigley V, Collin M (2014) The evolution of cellular deficiency in GATA2 mutation. Blood 123:863–874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, Das A, Lopes AR, Borrow P, Williams K, Humphreys E, Afford S, Adams DH, Bertoletti A, Maini MK (2007) Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 204:667–680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eidson M, Wahlstrom J, Beaulieu AM, Zaidi B, Carsons SE, Crow PK, Yuan J, Wolchok JD, Horsthemke B, Wieczorek D, Sant’Angelo DB (2011) Altered development of NKT cells, gammadelta T cells, CD8 T cells and NK cells in a PLZF deficient patient. PLoS ONE 6:e24441

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Elmaagacli AH, Steckel NK, Koldehoff M, Hegerfeldt Y, Trenschel R, Ditschkowski M, Christoph S, Gromke T, Kordelas L, Ottinger HD, Ross RS, Horn PA, Schnittger S, Beelen DW (2011) Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 118:1402–1412

    Article  PubMed  CAS  Google Scholar 

  • Enqvist M, Ask EH, Forslund E, Carlsten M, Abrahamsen G, Beziat V, Andersson S, Schaffer M, Spurkland A, Bryceson Y, Onfelt B, Malmberg KJ (2015) Coordinated expression of DNAM-1 and LFA-1 in educated NK cells. J Immunol 194:4518–4527

    Article  PubMed  CAS  Google Scholar 

  • Fauriat C, Long EO, Ljunggren HG, Bryceson YT (2010) Regulation of human NK cell cytokine and chemokine production by target cell recognition. Blood 115:2167–2176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fehniger TA, Shah MH, Turner MJ, VanDeusen JB, Whitman SP, Cooper MA, Suzuki K, Wechser M, Goodsaid F, Caligiuri MA (1999) Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J Immunol 162:4511–4520

    PubMed  CAS  Google Scholar 

  • Finke D (2005) Fate and function of lymphoid tissue inducer cells. Curr Opin Immunol 17:144–150

    Article  PubMed  CAS  Google Scholar 

  • Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, Schluns KS, Kubo M, Rothman PB, Vivier E, Sun JC (2013) Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 210:2981–2990

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, Lopez-Verges S, Lanier LL, Weisdorf D, Miller JS (2012) Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119:2665–2674

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJ, Onengut-Gumuscu S, Kidd BA, Maecker HT, Concannon P, Dekker CL, Thomas PG, Davis MM (2015) Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 7:243–281

    Article  Google Scholar 

  • Galy A, Travis M, Cen D, Chen B (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3:459–473

    Article  PubMed  CAS  Google Scholar 

  • Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B, Coles M, Kioussis D, Brady HJ (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10:1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Geiger TL, Abt MC, Gasteiger G, Firth MA, O’Connor MH, Geary CD, O’Sullivan TE, van den Brink MR, Pamer EG, Hanash AM, Sun JC (2014) Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med 211:1723–1731

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Geiselhart A, Dietl J, Marzusch K, Ruck P, Ruck M, Horny HP, Kaiserling E, Handgretinger R (1995) Comparative analysis of the immunophenotypes of decidual and peripheral blood large granular lymphocytes and T cells during early human pregnancy. Am J Reprod Immunol 33:315–322

    Article  PubMed  CAS  Google Scholar 

  • Gerlach C, Rohr JC, Perie L, van Rooij N, van Heijst JW, Velds A, Urbanus J, Naik SH, Jacobs H, Beltman JB, de Boer RJ, Schumacher TN (2013) Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340:635–639

    Article  PubMed  CAS  Google Scholar 

  • Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, Picard C, Trouillet C, Eidenschenk C, Aoufouchi S, Alcais A, Smith O, Geissmann F, Feighery C, Abel L, Smogorzewska A, Stillman B, Vivier E, Casanova JL, Jouanguy E (2012) Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122:821–832

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gleimer M, von Boehmer H, Kreslavsky T (2012) PLZF controls the expression of a limited number of genes essential for NKT cell function. Front Immunol 3:374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goodier MR, White MJ, Darboe A, Nielsen CM, Goncalves A, Bottomley C, Moore SE, Riley EM (2014) Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions. Blood 124:2213–2222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Green ML, Leisenring WM, Xie H, Walter RB, Mielcarek M, Sandmaier BM, Riddell SR, Boeckh M (2013) CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia. Blood 122:1316–1324

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gregoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, Walzer T (2007) The trafficking of natural killer cells. Immunol Rev 220:169–182

    Article  PubMed  CAS  Google Scholar 

  • Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C, Pandey R, Campbell KS, Orange JS (2012) Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest 122:3769–3780

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grzywacz B, Kataria N, Blazar BR, Miller JS, Verneris MR (2011) Natural killer-cell differentiation by myeloid progenitors. Blood 117:3548–3558

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N, Lopez-Botet M (2004) Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104:3664–3671

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Hendricks DW, Balfour HH Jr, Dunmire SK, Schmeling DO, Hogquist KA, Lanier LL (2014) Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J Immunol 192:4492–4496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Herberman RB, Nunn ME, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16:216–229

    Article  PubMed  CAS  Google Scholar 

  • Hercend T, Takvorian T, Nowill A, Tantravahi R, Moingeon P, Anderson KC, Murray C, Bohuon C, Ythier A, Ritz J (1986) Characterization of natural killer cells with antileukemia activity following allogeneic bone marrow transplantation. Blood 67:722–728

    PubMed  CAS  Google Scholar 

  • Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A, Claas FH, Walker JJ, Redman CW, Morgan L, Tower C, Regan L, Moore GE, Carrington M, Moffett A (2010) Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 120:4102–4110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hiby SE, Apps R, Chazara O, Farrell LE, Magnus P, Trogstad L, Gjessing HK, Carrington M, Moffett A (2014) Maternal KIR in combination with paternal HLA-C2 regulate human birth weight. J Immunol 192:5069–5073

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hori T, Phillips JH, Duncan B, Lanier LL, Spits H (1992) Human fetal liver-derived CD7+ CD2lowCD3-CD56-clones that express CD3 gamma, delta, and epsilon and proliferate in response to interleukin-2 (IL-2), IL-3, IL-4, or IL-7: implications for the relationship between T and natural killer cells. Blood 80:1270–1278

    PubMed  CAS  Google Scholar 

  • Hughes T, Briercheck EL, Freud AG, Trotta R, McClory S, Scoville SD, Keller K, Deng Y, Cole J, Harrison N, Mao C, Zhang J, Benson DM, Yu J, Caligiuri MA (2014) The transcription factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep 8:150–162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ito S, Pophali P, Co W, Koklanaris EK, Superata J, Fahle GA, Childs R, Battiwalla M, Barrett AJ (2013) CMV reactivation is associated with a lower incidence of relapse after allo-SCT for CML. Bone Marrow Transplant 48:1313–1316

    Article  PubMed  CAS  Google Scholar 

  • Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T (1996) Natural killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol 103:408–413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jost S, Altfeld M (2013) Control of human viral infections by natural killer cells. Annu Rev Immunol 31:163–194

    Article  PubMed  CAS  Google Scholar 

  • Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, Ferlazzo G, Thiel A, Schmitt-Knosalla I, Romagnani C (2010) CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116:1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G, Akashi K, Lind EF, Haight JP, Ohashi PS, Look AT, Mak TW (2009) Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206:2977–2986

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaplan MH, Sun YL, Hoey T, Grusby MJ (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382:174–177

    Article  PubMed  CAS  Google Scholar 

  • Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD, Koopman LA, Strominger JL (2007) TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA 104:3378–3383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khakoo SI, Rajalingam R, Shum BP, Weidenbach K, Flodin L, Muir DG, Canavez F, Cooper SL, Valiante NM, Lanier LL, Parham P (2000) Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 12:687–698

    Article  PubMed  CAS  Google Scholar 

  • Kiessling R, Klein E, Wigzell H (1975) Natural killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH, Yokoyama WM (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:709–713

    Article  PubMed  CAS  Google Scholar 

  • Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, Diefenbach A (2011) Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334:1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672

    Article  PubMed  CAS  Google Scholar 

  • Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, Masch R, Lockwood CJ, Schachter AD, Park PJ, Strominger JL (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198:1201–1212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kopcow HD, Allan DS, Chen X, Rybalov B, Andzelm MM, Ge B, Strominger JL (2005) Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci USA 102:15563–15568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, Kim HJ, Im JS, Pandolfi PP, Sant’Angelo DB (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol 9:1055–1064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kreslavsky T, Savage AK, Hobbs R, Gounari F, Bronson R, Pereira P, Pandolfi PP, Bendelac A, von Boehmer H (2009) TCR-inducible PLZF transcription factor required for innate phenotype of a subset of gammadelta T cells with restricted TCR diversity. Proc Natl Acad Sci USA 106:12453–12458

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kuijpers TW, Baars PA, Dantin C, van den Burg M, van Lier RA, Roosnek E (2008) Human NK cells can control CMV infection in the absence of T cells. Blood 112:914–915

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni S, Martin MP, Carrington M (2008) The Yin and Yang of HLA and KIR in human disease. Semin Immunol 20:343–352

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lang PA, Lang KS, Xu HC, Grusdat M, Parish IA, Recher M, Elford AR, Dhanji S, Shaabani N, Tran CW, Dissanayake D, Rahbar R, Ghazarian M, Brustle A, Fine J, Chen P, Weaver CT, Klose C, Diefenbach A, Haussinger D, Carlyle JR, Kaech SM, Mak TW, Ohashi PS (2012) Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci USA 109:1210–1215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lanier LL (2008a) Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 8:259–268

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lanier LL (2008b) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lanier LL, Phillips JH, Hackett J Jr, Tutt M, Kumar V (1986) Natural killer cells: definition of a cell type rather than a function. J Immunol 137:2735–2739

    PubMed  CAS  Google Scholar 

  • Lanier LL, Chang C, Spits H, Phillips JH (1992) Expression of cytoplasmic CD3 epsilon proteins in activated human adult natural killer (NK) cells and CD3 gamma, delta, epsilon complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes. J Immunol 149:1876–1880

    PubMed  CAS  Google Scholar 

  • Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD, Colonna M (2012) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13:144–151

    Article  CAS  Google Scholar 

  • Lee J, Zhang T, Hwang I, Kim A, Nitschke L, Kim M, Scott JM, Kamimura Y, Lanier LL, Kim S (2015) Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42:431–442

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  PubMed  CAS  Google Scholar 

  • Long EO (2008) Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 224:70–84

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116:3865–3874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lopez-Verges S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA, Houchins JP, Miller S, Kang SM, Norris PJ, Nixon DF, Lanier LL (2011) Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci USA 108:14725–14732

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luetke-Eversloh M, Cicek BB, Siracusa F, Thom JT, Hamann A, Frischbutter S, Baumgrass R, Chang HD, Thiel A, Dong J, Romagnani C (2014a) NK cells gain higher IFN-gamma competence during terminal differentiation. Eur J Immunol 44:2074–2084

    Article  PubMed  CAS  Google Scholar 

  • Luetke-Eversloh M, Hammer Q, Durek P, Nordstrom K, Gasparoni G, Pink M, Hamann A, Walter J, Chang HD, Dong J, Romagnani C (2014b) Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog 10:e1004441

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mace EM, Hsu AP, Monaco-Shawver L, Makedonas G, Rosen JB, Dropulic L, Cohen JI, Frenkel EP, Bagwell JC, Sullivan JL, Biron CA, Spalding C, Zerbe CS, Uzel G, Holland SM, Orange JS (2013) Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset. Blood 121:2669–2677

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, Vega-Ramos J, Lauzurica P, Mueller SN, Stefanovic T, Tscharke DC, Heath WR, Inouye M, Carbone FR, Gebhardt T (2013) The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol 14:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Male V, Nisoli I, Kostrzewski T, Allan DS, Carlyle JR, Lord GM, Wack A, Brady HJ (2014) The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 211:635–642

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marquardt N, Beziat V, Nystrom S, Hengst J, Ivarsson MA, Kekalainen E, Johansson H, Mjosberg J, Westgren M, Lankisch TO, Wedemeyer H, Ellis EC, Ljunggren HG, Michaelsson J, Bjorkstrom NK (2015) Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol 194:2467–2471

    Article  PubMed  CAS  Google Scholar 

  • Meeths M, Chiang SC, Lofstedt A, Muller ML, Tesi B, Henter JI, Bryceson YT (2014) Pathophysiology and spectrum of diseases caused by defects in lymphocyte cytotoxicity. Exp Cell Res 325:10–17

    Article  PubMed  CAS  Google Scholar 

  • Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, Kubota M, Turner D, Diamond JM, Goldrath AW, Farber DL, Collman RG, Wherry EJ, Artis D (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12:1045–1054

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    Article  PubMed  CAS  Google Scholar 

  • Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544

    Article  PubMed  CAS  Google Scholar 

  • Murphy SP, Fast LD, Hanna NN, Sharma S (2005) Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice. J Immunol 175:4084–4090

    Article  PubMed  CAS  Google Scholar 

  • Narni-Mancinelli E, Vivier E, Kerdiles YM (2011) The ‘T-cell-ness’ of NK cells: unexpected similarities between NK cells and T cells. Int Immunol 23:427–431

    Article  PubMed  CAS  Google Scholar 

  • Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Netea MG, Latz E, Mills KH, O’Neill LA (2015) Innate immune memory: a paradigm shift in understanding host defense. Nat Immunol 16:675–679

    Article  PubMed  CAS  Google Scholar 

  • O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7:507–516

    Article  PubMed  CAS  Google Scholar 

  • Orange JS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132:515–525; quiz 526

    Google Scholar 

  • Orr MT, Murphy WJ, Lanier LL (2010) ‘Unlicensed’ natural killer cells dominate the response to cytomegalovirus infection. Nat Immunol 11:321–327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Sullivan A, Chang HC, Yu Q, Kaplan MH (2004) STAT4 is required for interleukin-12-induced chromatin remodeling of the CD25 locus. J Biol Chem 279:7339–7345

    Article  PubMed  CAS  Google Scholar 

  • Parham P, Moffett A (2013) Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol 13:133–144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA, Senman B, Szczepanik M, Telenti A, Askenase PW, Compans RW, von Andrian UH (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 11:1127–1135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM, Tian Z (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123:1444–1456

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petitdemange C, Becquart P, Wauquier N, Beziat V, Debre P, Leroy EM, Vieillard V (2011) Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog 7:e1002268

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ponte M, Cantoni C, Biassoni R, Tradori-Cappai A, Bentivoglio G, Vitale C, Bertone S, Moretta A, Moretta L, Mingari MC (1999) Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proc Natl Acad Sci USA 96:5674–5679

    Google Scholar 

  • Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX, Zhou L (2012) The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36:92–104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reeves RK, Li H, Jost S, Blass E, Li H, Schafer JL, Varner V, Manickam C, Eslamizar L, Altfeld M, von Andrian UH, Barouch DH (2015) Antigen-specific NK cell memory in rhesus macaques. Nat Immunol

    Google Scholar 

  • Reynders A, Yessaad N, Vu Manh TP, Dalod M, Fenis A, Aubry C, Nikitas G, Escaliere B, Renauld JC, Dussurget O, Cossart P, Lecuit M, Vivier E, Tomasello E (2011) Identity, regulation and in vivo function of gut NKp46+ RORgammat+ and NKp46+ RORgammat-lymphoid cells. EMBO J 30:2934–2947

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ritz J, Campen TJ, Schmidt RE, Royer HD, Hercend T, Hussey RE, Reinherz EL (1985) Analysis of T-cell receptor gene rearrangement and expression in human natural killer clones. Science 228:1540–1543

    Article  PubMed  CAS  Google Scholar 

  • Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Munz C, Thiel A, Moretta L, Ferlazzo G (2007) CD56brightCD16-killer Ig-like receptor-NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178:4947–4955

    Article  PubMed  CAS  Google Scholar 

  • Rydyznski C, Daniels KA, Karmele EP, Brooks TR, Mahl SE, Moran MT, Li C, Sutiwisesak R, Welsh RM, Waggoner SN (2015) Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells. Nat Commun 6:6375

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saez-Borderias A, Romo N, Magri G, Guma M, Angulo A, Lopez-Botet M (2009) IL-12-dependent inducible expression of the CD94/NKG2A inhibitory receptor regulates CD94/NKG2C+ NK cell function. J Immunol 182:829–836

    Article  PubMed  CAS  Google Scholar 

  • Saghafian-Hedengren S, Sohlberg E, Theorell J, Carvalho-Queiroz C, Nagy N, Persson JO, Nilsson C, Bryceson YT, Sverremark-Ekstrom E (2013) Epstein-Barr virus coinfection in children boosts cytomegalovirus-induced differentiation of natural killer cells. J Virol 87:13446–13455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sanchez MJ, Spits H, Lanier LL, Phillips JH (1993) Human natural killer cell committed thymocytes and their relation to the T cell lineage. J Exp Med 178:1857–1866

    Article  PubMed  CAS  Google Scholar 

  • Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, Diefenbach A (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10:83–91

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970

    Article  PubMed  CAS  Google Scholar 

  • Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T, Ludewig B (2008) Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol 9:667–675

    Article  PubMed  CAS  Google Scholar 

  • Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD, Han H, Chiang SC, Foley B, Mattsson K, Larsson S, Schaffer M, Malmberg KJ, Ljunggren HG, Miller JS, Bryceson YT (2015) Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42:443–456

    Article  PubMed  CAS  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189

    Article  PubMed  CAS  Google Scholar 

  • Sedger LM, McDermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev 25:453–472

    Article  PubMed  CAS  Google Scholar 

  • Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L, Funari VA, Kaye J (2015) The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol 16:599–608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seillet C, Huntington ND, Gangatirkar P, Axelsson E, Minnich M, Brady HJ, Busslinger M, Smyth MJ, Belz GT, Carotta S (2014) Differential requirement for Nfil3 during NK Cell development. J Immunol 192:2667–2676

    Article  PubMed  CAS  Google Scholar 

  • Sepulveda FE, Maschalidi S, Vosshenrich CA, Garrigue A, Kurowska M, Menasche G, Fischer A, Di Santo JP, de Saint Basile G (2015) A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice. Blood 125:1427–1434

    Article  PubMed  CAS  Google Scholar 

  • Sharkey AM, Gardner L, Hiby S, Farrell L, Apps R, Masters L, Goodridge J, Lathbury L, Stewart CA, Verma S, Moffett A (2008) Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J Immunol 181:39–46

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  • Shi FD, Ljunggren HG, La Cava A, Van Kaer L (2011) Organ-specific features of natural killer cells. Nat Rev Immunol 11:658–671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soderquest K, Walzer T, Zafirova B, Klavinskis LS, Polic B, Vivier E, Lord GM, Martin-Fontecha A (2011) Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J Immunol 186:3304–3308

    Article  PubMed  CAS  Google Scholar 

  • Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, Riley JK, Zhu J, Tian Z, Yokoyama WM (2014) Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3:e01659

    Article  PubMed Central  PubMed  Google Scholar 

  • Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, Arthur DC, Gu W, Gould CM, Brewer CC, Cowen EW, Freeman AF, Olivier KN, Uzel G, Zelazny AM, Daub JR, Spalding CD, Claypool RJ, Giri NK, Alter BP, Mace EM, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM (2014) GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123:809–821

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H, Busch DH (2007) A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27:985–997

    Article  PubMed  CAS  Google Scholar 

  • Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 11:645–657

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL (2012) Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J Exp Med 209:947–954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR, O’Shea JJ (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206:35–41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tayade C, Fang Y, Black GP, Paffaro VA, Erlebacher A, Croy BA (2005) Differential transcription of Eomes and T-bet during maturation of mouse uterine natural killer cells. J Leukoc Biol 78:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380

    Article  PubMed  CAS  Google Scholar 

  • Thomson KJ, Mackinnon S, Peggs KS (2012) CMV-specific cellular therapy for acute myeloid leukemia? Blood 119:1088–1090

    Google Scholar 

  • Trotta R, Chen L, Ciarlariello D, Josyula S, Mao C, Costinean S, Yu L, Butchar JP, Tridandapani S, Croce CM, Caligiuri MA (2012) miR-155 regulates IFN-gamma production in natural killer cells. Blood 119:3478–3485

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andrea A, Phillips JH, Lanier LL, Parham P (1997) Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7:739–751

    Article  PubMed  CAS  Google Scholar 

  • Verma S, King A, Loke YW (1997) Expression of killer cell inhibitory receptors on human uterine natural killer cells. Eur J Immunol 27:979–983

    Article  PubMed  CAS  Google Scholar 

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Holscher C, Honig M, Pannicke U, Schwarz K, Ware CF, Finke D, Diefenbach A (2010) Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33:736–751

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol

    Google Scholar 

  • Waggoner SN, Cornberg M, Selin LK, Welsh RM (2012) Natural killer cells act as rheostats modulating antiviral T cells. Nature 481:394–398

    PubMed Central  CAS  Google Scholar 

  • Wilkens J, Male V, Ghazal P, Forster T, Gibson DA, Williams AR, Brito-Mutunayagam SL, Craigon M, Lourenco P, Cameron IT, Chwalisz K, Moffett A, Critchley HO (2013) Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J Immunol 191:2226–2235

    Article  PubMed  CAS  Google Scholar 

  • Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, Radtke F, Hardman CS, Hwang YY, Fallon PG, McKenzie AN (2012) Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 13:229–236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wood SM, Ljunggren HG, Bryceson YT (2011) Insights into NK cell biology from human genetics and disease associations. Cell Mol Life Sci 68:3479–3493

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Li B, Lu R, Koelle SJ, Yang Y, Jares A, Krouse AE, Metzger M, Liang F, Lore K, Wu CO, Donahue RE, Chen IS, Weissman I, Dunbar CE (2014) Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 14:486–499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu HC, Grusdat M, Pandyra AA, Polz R, Huang J, Sharma P, Deenen R, Kohrer K, Rahbar R, Diefenbach A, Gibbert K, Lohning M, Hocker L, Waibler Z, Haussinger D, Mak TW, Ohashi PS, Lang KS, Lang PA (2014) Type I interferon protects antiviral CD8(+) T cells from NK cell cytotoxicity. Immunity 40:949–960

    Article  PubMed  CAS  Google Scholar 

  • Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, Liu S, McClory S, Marcucci G, Trotta R, Caligiuri MA (2010) Blood 115:274–281

    Google Scholar 

  • Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, Bezman NA, Lanier LL, Rudensky AY, Sun JC (2013) Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci USA 110:6967–6972

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang F, Boothby M (2006) T helper type 1-specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-gamma promoter are Stat4 dependent. J Exp Med 203:1493–1505

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang T, Scott JM, Hwang I, Kim S (2013) Cutting edge: antibody-dependent memory-like NK cells distinguished by FcRgamma deficiency. J Immunol 190:1402–1406

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

F.C. is an Amy Strelzer Manasevit Research Program Scholar and is supported by a National Marrow Donor Program Award (CON000000052310). Y.T.B. is supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 311335, Swedish Research Council, Norwegian Research Council, Swedish Foundation for Strategic Research, Wallenberg Foundation, Swedish Cancer Foundation, Swedish Childhood Cancer Foundation, Stockholm County Council (ALF project), and Histiocytosis Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yenan T. Bryceson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cichocki, F. et al. (2015). Diversification and Functional Specialization of Human NK Cell Subsets. In: Vivier, E., Di Santo, J., Moretta, A. (eds) Natural Killer Cells. Current Topics in Microbiology and Immunology, vol 395. Springer, Cham. https://doi.org/10.1007/82_2015_487

Download citation

Publish with us

Policies and ethics