Fidelity Variants and RNA Quasispecies

  • Antonio V. Bordería
  • Kathryn Rozen-Gagnon
  • Marco VignuzziEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 392)


By now, it is well established that the error rate of the RNA-dependent RNA polymerase (RdRp) that replicates RNA virus genomes is a primary driver of the mutation frequencies observed in RNA virus populations—the basis for the RNA quasispecies. Over the last 10 years, a considerable amount of work has uncovered the molecular determinants of replication fidelity in this enzyme. The isolation of high- and low-fidelity variants for several RNA viruses, in an expanding number of viral families, provides evidence that nature has optimized the fidelity to facilitate genetic diversity and adaptation, while maintaining genetic integrity and infectivity. This chapter will provide an overview of what fidelity variants tell us about RNA virus biology and how they may be used in antiviral approaches.


West Nile Virus Mutation Frequency Coxsackie Virus Chikungunya Virus Phosphoryl Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agudo R, Ferrer-Orta C, Arias A, la Higuera de I, Perales C, Pérez-Luque R, Verdaguer N, Domingo E (2010) A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape. Plos Pathogens 6:e1001072Google Scholar
  2. Appleby TC, Luecke H, Shim JH, Wu JZ, Cheney IW, Zhong W, Vogeley L, Hong Z, Yao N (2005) Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer. J Virol 79:277–288CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arias A, Arnold JJ, Sierra M, Smidansky ED, Domingo E, Cameron CE (2008) Determinants of RNA-dependent RNA polymerase (in) fidelity revealed by kinetic analysis of the polymerase encoded by a foot-and-mouth disease virus mutant with reduced sensitivity to ribavirin. J Virol 82:12346–12355CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arnold JJ, Cameron CE (2000) Poliovirus RNA-dependent RNA polymerase (3D(pol)). Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub). J Biol Chem 275:5329–5336CrossRefPubMedGoogle Scholar
  5. Arnold JJ, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3D pol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+. Biochemistry 43:5126–5137CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arnold JJ, Ghosh SKB, Cameron CE (1999) Poliovirus RNA-dependent RNA Polymerase (3Dpol) divalent cation modulation of primer, template, and nucleotide selection. J Biol Chem 274:37060–37069CrossRefPubMedGoogle Scholar
  7. Arnold JJ, Gohara DW, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3D pol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+. Biochemistry 43:5138–5148CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arnold JJ, Vignuzzi M, Stone JK, Andino R, Cameron CE (2005) Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J Biol Chem 280:25706–25716CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bakhanashvili M, Avidan O, Hizi A (1996) Mutational studies of human immunodeficiency virus type 1 reverse transcriptase: the involvement of residues 183 and 184 in the fidelity of DNA synthesis. FEBS Lett 391:257–262Google Scholar
  10. Beaucourt S2P, Border 237 AAV, Coffey LL, Gn 228 Dig NF, Sanz-Ramos M, Beeharry Y, Vignuzzi M (2011) Isolation of fidelity variants of RNA viruses and characterization of virus mutation frequency. J Vis Exp 52Google Scholar
  11. Bressanelli S, Tomei L, Roussel A, Incitti I, Vitale RL, Mathieu M, De Francesco R, Rey FA (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci 96:13034–13039CrossRefPubMedPubMedCentralGoogle Scholar
  12. Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DI (2001) A mechanism for initiating RNA-dependent RNA polymerization. Nature 410:235–240CrossRefPubMedGoogle Scholar
  13. Cameron CE, Moustafa IM, Arnold JJ (2009) Dynamics: the missing link between structure and function of the viral RNA-dependent RNA polymerase? Curr Opin Struct Biol 19:768–774Google Scholar
  14. Cann AJ, Stanway G, Hughes PJ, Minor PD, Evans DMA, Schild GT, Almond JW (1984) Reversion to neurovirulence of the live-attenuated Sabin type 3 oral poliovirus vaccine. Nucleic Acids Res 12:7787–7792Google Scholar
  15. Castro C, Smidansky E, Maksimchuk KR, Arnold JJ, Korneeva VS, Götte M, Konigsberg W, Cameron CE (2007) Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Proc Natl Acad Sci 104:4267–4272CrossRefPubMedPubMedCentralGoogle Scholar
  16. Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I, Uchida A, Götte M, Konigsberg W, Cameron CE (2009) Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat Struct Mol Biol 16:212–218CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen C, Wang Y, Shan C, Sun Y, Xu P, Zhou H, Yang C, Shi P-Y, Rao Z, Zhang B et al (2013) Crystal structure of enterovirus 71 RNA-dependent RNA polymerase complexed with its protein primer VPg: implication for a trans mechanism of VPg uridylylation. J Virol 87:5755–5768Google Scholar
  18. Cheung PPH, Watson SJ, Choy K-T, Fun Sia S, Wong DDY, Poon LLM, Kellam P, Guan Y, Malik Peiris JS, Yen H-L (2014) Generation and characterization of influenza A viruses with altered polymerase fidelity. Nat Commun 5:4794CrossRefPubMedPubMedCentralGoogle Scholar
  19. Choi KH, Groarke JM, Young DC, Kuhn RJ, Smith JL, Pevear DC, Rossmann MG (2004) The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc Nat Acad Sci USA 101:4425–4430Google Scholar
  20. Coffey LL, Beeharry Y, Bordería AV, Blanc H, Vignuzzi M (2011) Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci USA 108:16038–16043CrossRefPubMedPubMedCentralGoogle Scholar
  21. Combe M, Sanjuan R (2014) Variation in RNA virus mutation rates across host cells. PLoS Pathog 10:e1003855Google Scholar
  22. Dapp MJ, Heineman RH, Mansky LM (2013) Interrelationship between HIV-1 fitness and mutation rate. J Mol Biol 425:41–53Google Scholar
  23. Domingo E, Escarmís C, Lázaro E, Manrubia SC (2005) Quasispecies dynamics and RNA virus extinction. Virus Res 107:129–139CrossRefPubMedGoogle Scholar
  24. Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci 96:13910–13913CrossRefPubMedPubMedCentralGoogle Scholar
  25. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686PubMedPubMedCentralGoogle Scholar
  26. Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR (2007) High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol 81:12135–12144CrossRefPubMedPubMedCentralGoogle Scholar
  27. Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL, Baric RS, Stockwell T et al (2010) Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 6:e1000896Google Scholar
  28. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523CrossRefPubMedGoogle Scholar
  29. Ferrer-Orta C (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem 279:47212–47221CrossRefPubMedGoogle Scholar
  30. Ferrer-Orta C, Arias A, Escarmis C, Verdaguer N (2006) A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol 16:27–34Google Scholar
  31. Ferrer-Orta C, Arias A, Pérez-Luque R, Escarmís C, Domingo E, Verdaguer N (2007) Sequential structures provide insights into the fidelity of RNA replication. Proc Nat Acad Sci 104:9463–9468Google Scholar
  32. Ferrer-Orta C, Sierra M, Agudo R, la Higuera de I, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2010) Structure of foot-and-mouth disease virus mutant polymerases with reduced sensitivity to ribavirin. J Virol 84:6188–6199Google Scholar
  33. Flury F, Von Borstel RC, Williamson DH (1976) Mutator activity of petite strains of Saccharomyces cerevisiae. Genetics 83:645–653Google Scholar
  34. Fullerton SWB, Blaschke M, Coutard B, Gebhardt J, Gorbalenya A, Canard B, Tucker PA, Rohayem J (2007) Structural and functional characterization of sapovirus RNA-dependent RNA polymerase. J Virol 81:1858–1871Google Scholar
  35. Furió V, Moya A, Sanjuán R (2005) The cost of replication fidelity in an RNA virus. Proc Natl Acad Sci 102:10233–10237CrossRefPubMedPubMedCentralGoogle Scholar
  36. Furió V, Moya A, Sanjuán R (2007) The cost of replication fidelity in human immunodeficiency virus type 1. Proc Biol Sci 274:225–230CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gillin FD, Nossal NG (1976) Control of mutation frequency by bacteriophage T4 DNA polymerase. I. The CB120 antimutator DNA polymerase is defective in strand displacement. J Biol Chem 251:5219–5224Google Scholar
  38. Gnädig NF, Beaucourt S, Campagnola G, Bordería AV, Sanz-Ramos M, Gong P, Blanc H, Peersen OB, Vignuzzi M (2012) Coxsackievirus B3 mutator strains are attenuated in vivo. Proc Natl Acad Sci USA 109:E2294–E2303Google Scholar
  39. Gohara DW, Crotty S, Arnold JJ, Yoder JD, Andino R, Cameron CE (2000) Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B. J Biol Chem 275:25523–25532CrossRefPubMedGoogle Scholar
  40. Gohara DW, Arnold JJ, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3D pol): kinetic, thermodynamic, and structural analysis of ribonucleotide selection. Biochemistry 43:5149–5158CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gong P, Peersen OB (2010) Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci 107:22505–22510CrossRefPubMedPubMedCentralGoogle Scholar
  42. Graci JD, Gnädig NF, Galarraga JE, Castro C, Vignuzzi M, Cameron CE (2012) Mutational robustness of an RNA virus influences sensitivity to lethal mutagenesis. J Virol 86:2869–2873CrossRefPubMedPubMedCentralGoogle Scholar
  43. Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS (2012) A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18:1820–1826CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gross MD, Siegel EC (1981) Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat Res Lett 91:107–110Google Scholar
  45. Gruez A, Selisko B, Roberts M, Bricogne G, Bussetta C, Jabafi I, Coutard B, De Palma AM, Neyts J, Canard B (2008) The crystal structure of coxsackievirus B3 RNA-dependent rna polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on picornaviridae polymerases. J Virol 82:9577–9590CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hall JD, Coen DM, Fisher BL, Weisslitz M, Randall S, Almy RE, Gelep PT, Schaffer PA (1984) Generation of genetic diversity in herpes simplex virus: an antimutator phenotype maps to the DNA polymerase locus. Virology 132:26–37Google Scholar
  47. Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122CrossRefPubMedGoogle Scholar
  48. Harrison DN, Gazina EV, Purcell DF, Anderson DA, Petrou S (2008) Amiloride derivatives inhibit coxsackievirus B3 RNA replication. J Virol 82:1465–1473CrossRefPubMedPubMedCentralGoogle Scholar
  49. He X, Zhou J, Bartlam M, Zhang R, Ma J, Lou Z, Li X, Li J, Joachimiak A, Zeng Z et al (2008) Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature 454:1123–1126Google Scholar
  50. Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Nat Acad Sci 71:4135–4139Google Scholar
  51. Jyssum K (1960) Observations on two types of genetic instability in Escherichia coli. Acta Pathologica Microbiol Scand 48:113–120Google Scholar
  52. Keulen W, van Wijk A, Schuurman R, Berkhout B, Boucher Charles AB (1999) Increased polymerase fidelity of lamivudine-resistant HIV-1 variants does not limit their evolutionary potential. Aids 13:1343–1349Google Scholar
  53. Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72(Pt 9):2197–2206CrossRefPubMedGoogle Scholar
  54. Korneeva VS, Cameron CE (2007) Structure-function relationships of the viral RNA-dependent RNA polymerase: fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket. J Biol Chem 282:16135–16145CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lauring AS, Jones JO, Andino R (2010) Rationalizing the development of live attenuated virus vaccines. Nat Biotechnol 28:573–579CrossRefPubMedPubMedCentralGoogle Scholar
  56. LeClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211Google Scholar
  57. Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF, Weber PC (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6:937–943CrossRefPubMedGoogle Scholar
  58. Levi LI, Gnädig NF, Beaucourt S, McPherson MJ, Baron B, Arnold JJ, Vignuzzi M (2010) Fidelity Variants of RNA Dependent RNA Polymerases Uncover an Indirect, Mutagenic Activity of Amiloride Compounds 6:e1001163Google Scholar
  59. Levi LI, Gnädig NF, Beaucourt S, McPherson MJ, Baron B, Arnold JJ, Vignuzzi M (2010b) Fidelity variants of RNA dependent RNA polymerases uncover an indirect, mutagenic activity of amiloride compounds. PLoS Pathog 6:e1001163CrossRefPubMedPubMedCentralGoogle Scholar
  60. Liu X, Yang X, Lee CA, Moustafa IM, Smidansky ED, Lum D, Arnold JJ, Cameron CE, Boehr DD (2013) Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. J Biol Chem 288:32753–32765CrossRefPubMedPubMedCentralGoogle Scholar
  61. Love RA, Maegley KA, Yu X, Ferre RA, Lingardo LK, Diehl W, Parge HE, Dragovich PS, Fuhrman SA (2004) The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus. Structure 12:1533–1544CrossRefPubMedGoogle Scholar
  62. Lu G, Gong P (2013) Crystal structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9:e1003549Google Scholar
  63. Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ, Roberts M, Gruez A, Sulzenbacher G, Vonrhein C, Bricogne G et al (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282:10678–10689Google Scholar
  64. Mansky LM, Bernard LC (2000) 3′-Azido-3′-deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1. J Virol 74:9532–9539Google Scholar
  65. Marcotte LL, Wass AB, Gohara DW, Pathak HB, Arnold JJ, Filman DJ, Cameron CE, Hogle JM (2007) Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. J Virol 81:3583–3596CrossRefPubMedPubMedCentralGoogle Scholar
  66. Martin-Hernandez AM, Domingo E, Menendez-Arias L (1996) Human immunodeficiency virus type 1 reverse transcriptase: role of Tyr115 in deoxynucleotide binding and misinsertion fidelity of DNA synthesis. EMBO J 15:4434–4442Google Scholar
  67. Meng T, Kwang J (2014) Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J Virol 88:5803–5815CrossRefPubMedPubMedCentralGoogle Scholar
  68. Muzyczka N, Poland RL, Bessman MJ (1972) Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. J Biol Chem 247:7116–7122Google Scholar
  69. Ng K, Cherney MM, Vázquez AL (2002) Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 277:1381–1387Google Scholar
  70. Ng K, Pendás-Franco N, Rojo J, Boga JA (2004) Crystal structure of Norwalk virus polymerase reveals the carboxyl terminus in the active site cleft. J Biol Chem 279:16638–16645Google Scholar
  71. Ng KKS, Arnold JJ, Cameron CE (2008) Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol 320:137–156PubMedPubMedCentralGoogle Scholar
  72. O’Farrell D, Trowbridge R, Rowlands D, Jäger J (2003) Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. J Mol Biol 326:1025–1035Google Scholar
  73. Pan J, Vakharia VN, Tao YJ (2007) The structure of a birnavirus polymerase reveals a distinct active site topology. Proc Nat Acad Sci 104:7385–7390Google Scholar
  74. Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 100:7289–7294CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pfeiffer JK, Kirkegaard K (2005) Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog 1:e11CrossRefPubMedPubMedCentralGoogle Scholar
  76. Reha-Krantz LJ, Stocki S, Nonay RL, Dimayuga E, Goodrich LD, Konigsberg WH, Spicer EK (1991) DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies. Proc Natl Acad Sci 88:2417–2421CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rozen-Gagnon K, Stapleford KA, Mongelli V, Blanc H, Failloux A-B, Saleh M-C, Vignuzzi M (2014) Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog 10:e1003877CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sadeghipour S, McMinn PC (2013) A study of the virulence in mice of high copying fidelity variants of human enterovirus 71. Virus Res 176:265–272CrossRefPubMedGoogle Scholar
  79. Sadeghipour S, Bek EJ, McMinn PC (2013) Ribavirin-resistant mutants of human enterovirus 71 express a high replication fidelity phenotype during growth in cell culture. J Virol 87:1759–1769CrossRefPubMedPubMedCentralGoogle Scholar
  80. Salgado PS, Makeyev EV, Butcher SJ, Bamford DH, Stuart DI, Grimes JM (2004) The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase. Structure 12:307–316PubMedGoogle Scholar
  81. Schaaper RM (1993) Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 268:23762–23765Google Scholar
  82. Sierra M, Airaksinen A, Gonzalez-Lopez C, Agudo R, Arias A, Domingo E (2007) Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe. J Virol 81:2012–2024CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–705CrossRefPubMedGoogle Scholar
  84. Steitz TA (1998) Structural biology: a mechanism for all polymerases. Nature 391:231–232Google Scholar
  85. Suárez P, Valcárcel J, Ortín J (1992) Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants. J Virol 66:2491–2494PubMedPubMedCentralGoogle Scholar
  86. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B (1997) Role of mutator alleles in adaptive evolution. Nature 387:700–702Google Scholar
  87. Tao Y, Farsetta DL, Nibert ML, Harrison SC (2002) RNA synthesis in a cage–structural studies of reovirus polymerase lambda3. Cell 111:733–745Google Scholar
  88. Thompson AA, Peersen OB (2004) Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23:3462–3471CrossRefPubMedPubMedCentralGoogle Scholar
  89. Van Slyke GA, Arnold JJ, Lugo AJ, Griesemer SB, Moustafa IM, Kramer LD, Cameron CE, Ciota AT (2015) Sequence-specific fidelity alterations associated with west nile virus attenuation in mosquitoes. PLoS Pathog 11:e1005009CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vignuzzi M, Wendt E, Andino R (2008) Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 14:154–161CrossRefPubMedGoogle Scholar
  92. Vives-Adrian L, Lujan C, Oliva B, van der Linden L, Selisko B, Coutard B, Canard B, van Kuppeveld FJM, Ferrer-Orta C, Verdaguer N (2014) The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site. J Virol 88:5595–5607Google Scholar
  93. Wainberg MA, Drosopoulos WC, Salomon H, Hsu M, Borkow G, Parniak MA, Gu Z, Song Q, Manne J, Islam S et al (1996) Enhanced fidelity of 3TC-selected mutant HIV-1 reverse transcriptase. Science 271:1282–1285Google Scholar
  94. Xie X, Wang H, Zeng J, Li C, Zhou G, Yang D, Yu L (2014) Foot-and-mouth disease virus low-fidelity polymerase mutants are attenuated. Arch Virol 159:2641–2650Google Scholar
  95. Yang X, Welch JL, Arnold JJ, Boehr DD (2010) Long-range interaction networks in the function and fidelity of poliovirus RNA-dependent RNA polymerase studied by nuclear magnetic resonance. Biochemistry 49:9361–9371CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yang X, Smidansky ED, Maksimchuk KR, Lum D, Welch JL, Arnold JJ, Cameron CE, Boehr DD (2012) Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition. Structure 20:1519–1527CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yap TL, Xu T, Chen Y-L, Malet H, Egloff M-P, Canard B, Vasudevan SG, Lescar J (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81:4753–4765Google Scholar
  98. Zeng J, Wang H, Xie X, Yang D, Zhou G, Yu L (2013) An increased replication fidelity mutant of foot-and-mouth disease virus retains fitness in vitro and virulence in vivo. Antiviral Res 100:1–7CrossRefPubMedGoogle Scholar
  99. Zeng J, Wang H, Xie X, Li C, Zhou G, Yang D, Yu L (2014) Ribavirin-resistant variants of foot-and-mouth disease virus: the effect of restricted quasispecies diversity on viral virulence. J Virol 88:4008–4020Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Antonio V. Bordería
    • 1
  • Kathryn Rozen-Gagnon
    • 1
  • Marco Vignuzzi
    • 1
    Email author
  1. 1.Institut PasteurParis cedex 15France

Personalised recommendations