Skip to main content

Quasispecies on Fitness Landscapes

  • Chapter
  • First Online:
Book cover Quasispecies: From Theory to Experimental Systems

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 392))

Abstract

Selection–mutation dynamics is studied as adaptation and neutral drift on abstract fitness landscapes. Various models of fitness landscapes are introduced and analyzed with respect to the stationary mutant distributions adopted by populations upon them. The concept of quasispecies is introduced, and the error threshold phenomenon is analyzed. Complex fitness landscapes with large scatter of fitness values are shown to sustain error thresholds. The phenomenological theory of the quasispecies introduced in 1971 by Eigen is compared to approximation-free numerical computations. The concept of strong quasispecies understood as mutant distributions, which are especially stable against changes in mutations rates, is presented. The role of fitness neutral genotypes in quasispecies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The expression hypersurface points at the fact that fitness landscapes are surfaces in high-dimensional space. Since we shall be dealing here almost exclusively with such high-dimensional objects, we drop the prefix ‘hyper.’

  2. 2.

    The genotype space in Wright’s seminal paper (Wright 1932) is a space of genes, whereas we use virus genomes as elements of genotypes space. Accordingly, genotype space is identical with the space of DNA or RNA sequences of the chain length of virus genomes.

  3. 3.

    Here, ‘aa’ stands for ‘amino acid residue.’

  4. 4.

    Considering single nucleotides as sites in structural RNA elements requires complementarity of the nucleobase at another locus for the formation of a base pair, and accordingly, the two sites are strongly coupled epistasis (see Sect. 2).

  5. 5.

    Standard software packages are available for RNA secondary structure computation, for example, mfold (Zuker 1989) or the Vienna RNA package (Hofacker et al. 1994; Lorenz et al. 2011).

  6. 6.

    A matrix W is primitive if (i) all the elements of matrix W are nonnegative and (ii) some finite power W m is a positive matrix, which means that all entries of W m are strictly positive.

  7. 7.

    We remark that autocatalytic steps play the key role in models of theoretical epidemiology. Features of the mechanism (8a8g) for autocatalysis in the flow reactor remind, for example, of dynamical properties of models for infectious diseases (see, e.g., Mollison 1995).

  8. 8.

    By the notion ‘exact,’ we mean here ‘without approximations.’ In order to make clear that numerical computations can never be exact in the strict sense, we put exact between apostrophes.

  9. 9.

    The use of binary sequences (\( \kappa = 2 \)) facilitates several operations and implies no loss of generality. Natural four-letter sequences \( (\kappa = 4 ) \) can be encoded by binary sequences of twice the chain length.

  10. 10.

    For sufficiently long sequences, the particular choice ϑ = 0.01, 0.001 or 0.0001 is unimportant because the results for small values are very similar and converge to a limit (see Fig. 9), but for short chains, the concentration values of the uniform distribution \( \mathcal{U} \) set a lower limit for \( \bar{x}_{m} (p) \). For example, in case of \( l = 10 \), the value \( \bar{x}_{m} (\frac{1}{2}) = 1/2^{l} = 1/1024 \) is compatible only with the choice \( \vartheta = 1/100 \) because \( \vartheta = 1/1000 \) is too close to \( \bar{x}_{m} (\frac{1}{2}) \).

  11. 11.

    The stationary concentrations of the phenomenological approach are denoted by the ‘hat’ symbol: \( \hat{x}_{m}^{(0)} ,\;\hat{x}_{j}^{(0)} ,\;\hat{y}_{k}^{(0)} ,\;\hat{c}^{(0)} \), etc.

  12. 12.

    This agreement is not accidental as a simple consideration shows: The lowest mutation rate for merging two classes is \( (p_{{{\text{m}}g}}^{(\theta )} )_{0} \), the p-value where \( \varDelta_{0} = |\bar{y}_{0} - \bar{y}_{l} | = |\bar{x}_{m} - \bar{x}_{ - m} | = \theta \). Since the concentration of the complementary sequence of the master sequence with \( {\text{d}}_{{{\mathsf{X}}_{m} {\mathsf{X}}_{ - m} }}^{\text{H}} = l \) is commonly very small, \( \bar{x}_{ - m} \ll \bar{x}_{m} \), we find for \( \vartheta = \theta \): \( \varDelta_{0} \approx \bar{x}_{m} \) and \( p_{\text{tr}}^{(\vartheta )} \approx \hbox{min} (p_{{{\text{m}}g}}^{(\theta )} )_{k} = (p_{{{\text{m}}g}}^{(\theta )} )_{0} \).

  13. 13.

    The single-peak linear landscape with \( h = 1 \) is identical with the single peak fitness landscape. The error threshold for h = 5 extends almost to \( p = \frac{1}{2} \), and landscapes with \( h > 5 \) do not support error thresholds at all.

  14. 14.

    Numerical computations of eigenvalues and eigenvectors become highly demanding with respect to CPU time and memory above \( l = 10 \). For \( l = 20 \), the diagonalization of the W-matrix with about the size \( 10^{6} \times 10^{6} \) requires certain tricks (Niederbrucker and Gansterer 2011), and for \( l = 50 \), the dimension of W is more than \( 10^{15} \times 10^{15} \) and diagonalization is far beyond current technical capacities.

  15. 15.

    Thirteen years after this publication, the phenomenon has been observed in quasispecies of digital organisms (Wilke et al. 2001) and was called survival of the flattest.

  16. 16.

    Naïvely, we would expect a band of one-error sequences at higher concentration than the two-error sequence.

  17. 17.

    For class k = 1, we omit the master sequence \( {\mathsf X}_{m} \), which trivially is the fittest sequence in the one-error neighborhood, and search only in class \( k = 2 \).

  18. 18.

    The adjacency matrix of a graph, A, is a symmetric square matrix that has an entry \( a_{jk} = a_{kj} = 1 \) whenever the graph has an edge between the nodes for \( {\mathsf X}_{j} \) and \( {\mathsf X}_{k} \) and zero entries everywhere else.

References

  • Altenberg L (1997) NK fitness landscapes. In: Bäck T, Fogel DB, Michalevicz Z (eds) Handbook of evlutionary computation, chapter B 2.7.2. Oxford University Press, Oxford, UK, pp 2.7.5–2.7.10

    Google Scholar 

  • Arslan E, Laurenzi IJ (2008) Kinetics of autocatalysis in small systems. J Chem Phys 128:e015101

    Article  CAS  Google Scholar 

  • Athavale SS, Spicer B, Chen IA (2014) Experimental fitness landscapes to understand the molecular evolution of RNA-based life. Curr Opin Chem Biol 22:35–39

    Article  CAS  PubMed  Google Scholar 

  • Baake E, Baake M, Wagner H (1997) Ising quantum chain is equivalent to a model of biological evolution. Phys Rev Lett 78:559–562

    Article  CAS  Google Scholar 

  • Baake E, Gabriel W (1999) Biological evolution through mutation, selection, and drift: an introductory review. In: Stauffer D (ed) Annual review of computational physics VII. World Scientific, Singapore, pp 203–264

    Google Scholar 

  • Baake E, Wagner H (2001) Mutation-selection models solved exactly with methods of statistical mechanics. Genet Res Camb 78:93–117

    Article  CAS  Google Scholar 

  • Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski RE (2007) Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evol Biol 7:e60

    Article  Google Scholar 

  • Betancourt AJ, Bollback JP (2006) Fitness effects of beneficial mutations: the mutational landscape model in experimental evolution. Curr Opin Genet Dev 16:618–623

    Article  CAS  PubMed  Google Scholar 

  • Biebricher CK (1983) Darwinian selection of self-replicating RNA molecules. In: Hecht MK, Wallace B, Prance GT (eds) Evolutionary biology, vol 16. Plenum Publishing Corporation, New York, pp 1–52

    Google Scholar 

  • Biebricher CK, Eigen M, William C, Gardiner J (1983) Kinetics of RNA replication. Biochemistry 22:2544–2559

    Article  CAS  PubMed  Google Scholar 

  • Biebricher CK, Eigen M, William C, Gardiner J (1984) Kinetics of RNA replication: plus-minus asymmetry and double-strand formation. Biochemistry 23:3186–3194

    Article  CAS  PubMed  Google Scholar 

  • Biebricher CK, Eigen M, William C, Gardiner J (1985) Kinetics of RNA replication: competition and selection among self-replicating RNA species. Biochemistry 24:6550–6560

    Article  CAS  PubMed  Google Scholar 

  • Bratus AS, Novozhilov AS, Semenov YS (2014) Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution. Math Biosci 256:42–57

    Article  PubMed  Google Scholar 

  • Bürger R (1998) Mathematical properties of mutation-selection models. Genetica 102(103):279–298

    Article  Google Scholar 

  • Charlesworth B (1990) Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res Camb 55:199–221

    Article  CAS  Google Scholar 

  • Chou H-H, Delaney NF, Draghi JA, Marx CJ (2014) Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations. PLoS Genet 10:e1004149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York (Reprinted at The Blackburn Press, Caldwell, NJ, 2009)

    Google Scholar 

  • Demetrius L, Schuster P, Sigmund K (1985) Polynucleotide evolution and branching processes. Bull Math Biol 47:239–262

    Article  CAS  PubMed  Google Scholar 

  • Drake JW, Charlesworth B, Charlesowrth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards SF, Anderson PW (1975) Theory of spin glasses. J Phys F 5:965–974

    Article  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, McCaskill J, Schuster P (1988) Molecular quasispecies. J Phys Chem 92:6881–6891

    Article  CAS  Google Scholar 

  • Eigen M, McCaskill J, Schuster P (1989) The molecular quasispecies. Adv Chem Phys 75:149–263

    CAS  Google Scholar 

  • Eigen M, Schuster P (1977) The hypercycle. A principle of natural self-organization. Part A: emergence of the hypercycle. Naturwissenschaften 64:541–565

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1978) The hypercycle. A principle of natural self-organization. Part B: the abstract hypercycle. Naturwissenschaften 65:7–41

    Article  Google Scholar 

  • Eigen M, Schuster P (1982) Stages of emerging life—five principles of early organization. J Mol Evol 19:47–61

    Article  CAS  PubMed  Google Scholar 

  • Elena SF, Sanjuán R (2007) Virus evolution: insights from an experimental approach. Annu Rev Ecol Evol Syst 58:27–52

    Article  Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs. I. Publ Math 6:290–295

    Google Scholar 

  • Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  • Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugenics 11:53–63

    Article  Google Scholar 

  • Fontana W, Griesmacher T, Schnabl W, Stadler PF, Schuster P (1991) Statistics of landscapes based od free energies, replication and degradation rate constants of RNA secondary structures. Mon Chem 122:795–819

    Article  CAS  Google Scholar 

  • Fontana W, Konings DAM, Stadler PF, Schuster P (1993) Statistics of RNA secondary structures. Biopolymers 33:1389–1404

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Schnabl W, Schuster P (1989) Physical aspects of evolutionary optimization and adaptation. Phys Rev A 40:3301–3321

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Schuster P (1987) A computer model of evolutionary optimization. Biophys Chem 26:123–147

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Schuster P (1998a) Continuity in evolution. On the nature of transitions. Science 280:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Fontana W, Schuster P (1998b) Shaping space. The possible and the attainable in RNA genotype-phenotype mapping. J Theor Biol 194:491–515

    Article  CAS  PubMed  Google Scholar 

  • Gago S, Elena SF, Flores R, Sanjuan R (2009) Extremely high mutation rate of a hammerhead viroid. Science 323:1308

    Article  CAS  PubMed  Google Scholar 

  • Galluccio S (1997) Exact solution of the quasispecies model in a sharply peaked fitness landscape. Phys Rev E 56:4526–4539

    Article  CAS  Google Scholar 

  • Gavrilets S (1997) Evolution and speciation on holey adaptive landscapes. Trends Ecol Evol 12:307–312

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  • Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  CAS  PubMed  Google Scholar 

  • Grüner W, Giegerich R, Strothmann D, Reidys C, Weber J, Hofacker IL, Schuster P (1996a) Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks. Mon Chem 127:355–374

    Article  Google Scholar 

  • Grüner W, Giegerich R, Strothmann D, Reidys C, Weber J, Hofacker IL, Schuster P (1996b) Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structures of neutral networks and shape space covering. Mon Chem 127:375–389

    Article  Google Scholar 

  • Hamming RW (1950) Error detecting and error correcting codes. Bell Syst Tech J 29:147–160

    Article  Google Scholar 

  • Hamming RW (1986) Coding and information theory, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Ho SYW, Duchêne S (2014) Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol 23:5947–5965

    Article  PubMed  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Mon Chem 125:167–188

    Article  CAS  Google Scholar 

  • Jain K, Krug J (2007) Adaptation in simple and complex fitness landscapes. In: Bastolla U, Porto M, Eduardo Roman H, Vendruscolo M (eds) Structural approaches to sequence evolution. Molecules, networks, populations, chapter 14. Springer, Berlin, pp 299–339

    Google Scholar 

  • Janet A (1895) Considérations méchaniques sur l’évolution et le problème des espèces. In: Comptes Rendue des 3me Congrès International de Zoologie. 3me Congres International de Zoologie, Leyden, pp 136–145

    Google Scholar 

  • Jiménez JI, Xulvi-Brunet R, Campbell GW, amd Irene A, Chen RT (2013) Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proc Natl Acad Sci USA 110:14984–14989

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones BL, Enns RH, Rangnekar SS (1976) On the theory of selection of coupled macromolecular systems. Bull Math Biol 38:15–28

    Article  Google Scholar 

  • Kang Y-G, Park J-M (2008) Survival probability of quasi-species model under environmental changes. J Korean Phys Soc 53:868–872

    Article  CAS  Google Scholar 

  • Kauffman S, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128:11–45

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA (1993) The origins of order. Self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Kauffman SA, Weinberger ED (1989) The N-k model of rugged fitness landscapes and its application to the maturation of the immune response. J Theor Biol 141:211–245

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kingman JFC (1978) A simple model for the balance between selection and mutation. J Appl Probab 15:1–12

    Article  Google Scholar 

  • Kingman JFC (1980) Mathematics of genetic diversity. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Kouyos RD, Leventhal GE, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Bonhoeffer S (2012) Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet 8:e1002551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouyos RD, von Wyl V, Hinkley T, Petropoulos CJ, Haddad M, Whitcomb JM, Böni J, Yerly S, Cellerai C, Klimkait T, Günthard HF, Bonhoeffer S, The Swiss HIV Cohort Study (2011). Assessing predicted HIV-1 replicative capacity in a clinical setting. PLoS Pathog 7: e1002321

    Google Scholar 

  • Lanfear R, Welch JJ, Bromham L (2010) Watching the clock: studying variation in rates of molecular evolution between species. TREE 25:495–503

    PubMed  Google Scholar 

  • Leuthäusser I (1986) An exact correspondence between Eigen’s evolution model and a two-dimensional ising system. J Chem Phys 84:1884–1885

    Article  Google Scholar 

  • Leuthäusser I (1987) Statistical mechanics of Eigen’s evolution model. J Stat Phys 48:343–360

    Article  Google Scholar 

  • Lifson S (1961) On the theory of helix-coil transitions in polypeptides. J Chem Phys 34:1963–1974

    Article  CAS  Google Scholar 

  • Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:e26

    Google Scholar 

  • McCoy JW (1979) The origin of the “adaptive landscape” concept. Am Nat 113:610–613

    Article  Google Scholar 

  • McGhee GR Jr (2007) The geomerty of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, Cambridge

    Google Scholar 

  • Mills DR, Peterson RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci USA 58:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollison D (ed) (1995) Epidemis models: their structure and relation to data. Cambridge University Press, Cambridge

    Google Scholar 

  • Nåsell I (2011) Extiction and quasi-stationarity in the stochastic logistic SIS model, vol 2022. Lecture Notes in Mathematics. Springer, Berlin

    Google Scholar 

  • Niederbrucker G, Gansterer WN (2011) Efficient solution of evolution models for virus populations. Procedia Comput Sci 4:126–135

    Article  Google Scholar 

  • Nowak M, Schuster P (1989) Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller’s ratchet. J Theor Biol 137:375–395

    Article  CAS  PubMed  Google Scholar 

  • Park J-M, noz EM, Deem MW (2010) Quasispecies theory for finite populations. Phys Rev E 81:e011902

    Article  CAS  Google Scholar 

  • Pitt JN, Ferré-D’Amaré AR (2010) Rapid construction of empirical RNA fitness landscapes. Science 330:376–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provine WB (1986) Sewall wright and evolutionary biology. University of Chicago Press, Chicago

    Google Scholar 

  • Reidys C, Stadler PF, Schuster P (1997) Generic properties of combinatory maps. Neutral networks of RNA secondary structure. Bull Math Biol 59:339–397

    Article  CAS  PubMed  Google Scholar 

  • Reidys CM, Stadler PF (2001) Neutrality in fitness landscapes. Appl Math Comput 117:321–350

    Google Scholar 

  • Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44:3–54

    Article  Google Scholar 

  • Ruse M (1996) Are pictures really necessary? The case of Sewall Wright’s ‘adaptive lanscapes’. In: Baigrie BS (ed) Picturing knowledge: historical and philosophical problems concerning the use of art in science. University of Toronto Press, Toronto, pp 303–337

    Google Scholar 

  • Saakian DB, Hu C-K (2006) Exact solution of the Eigen model with general fitness functions and degradation rates. Proc Natl Acad Sci USA 113:4935–4939

    Article  CAS  Google Scholar 

  • Saakian DB, Hu C-K, Khachatryan H (2004) Solvable biological evolution models with general fitness functions and multiple mutations in parallel mutation-selection scheme. Phys Rev E 70:e041908

    Article  CAS  Google Scholar 

  • Sanjuán R, Moya A, Elena SF (2004) The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci USA 101:8396–8401

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt LD (2004) The engineering of chemical reactions, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Schuster P (2003) Molecular insight into the evolution of phenotypes. In: Crutchfield JP, Schuster P (eds) Evolutionary dynamics—exploring the interplay of accident, selection, neutrality, and function. Oxford University Press, New York, pp 163–215

    Google Scholar 

  • Schuster P (2006) Prediction of RNA secondary structures: from theory to models and real molecules. Rep Prog Phys 69:1419–1477

    Article  CAS  Google Scholar 

  • Schuster P (2011) Mathematical modeling of evolution. Solved and open problems. Theory Biosci 130:71–89

    Article  PubMed  Google Scholar 

  • Schuster P (2012) Evolution on “realistic” fitness landscapes. Phase transitions, strong quasispecies, and neutrality. Working Paper 12-06-006, Santa Fe Institute, Santa Fe, NM

    Google Scholar 

  • Schuster P (2013) Present day biology seen in the looking glass of physics of complexity. In: Rubio RG, Ryazantsev YS, Starov VM, Huang G, Chetverikov AP, Arena P, Nepomnyashchy AA, Ferrus A, Morozov EG (eds) Without bounds: a scientific canvas of nonlinearity and complex dynamics. Springer, Berlin, pp 589–622

    Chapter  Google Scholar 

  • Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc Roy Soc Lond B 255:279–284

    Article  CAS  Google Scholar 

  • Schuster P, Sigmund K (1985) Dynamics of evolutionary optimization. Ber Bunsenges Phys Chem 89:668–682

    Article  CAS  Google Scholar 

  • Schuster P, Swetina J (1988) Stationary mutant distribution and evolutionary optimization. Bull Math Biol 50:635–660

    Article  CAS  PubMed  Google Scholar 

  • Schwarz G (1968) General theoretical approach to the thermodynamic and kinetic properties of cooperative intramolecular transformations of linear biopolymers. Biopolymers 6:873–897

    Article  CAS  PubMed  Google Scholar 

  • Seneta E (1981) Non-negative matrices and Markov chains, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Sherrington D, Kirkpatrick S (1975) Solvable model of spin glasses. Phys Rev Lett 35:1792–1796

    Article  Google Scholar 

  • Skipper RA Jr (2004) The heuristic role of Sewall Wright’s 1932 adaptive landscape diagram. Philos Sci 71:1176–1188

    Article  Google Scholar 

  • Spiegelman S (1971) An approach to the experimental analysis of precellular evolution. Quart Rev Biophys 4:213–253

    Article  CAS  Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos. With applications to physics, biology, chemistry, and engineering. Westview Press at Perseus Books, Cambridge

    Google Scholar 

  • Swetina J, Schuster P (1982) Self-replication with errors—a model for polynucleotide replication. Biophys Chem 16:329–345

    Article  CAS  PubMed  Google Scholar 

  • Tarazona P (1992) Error thresholds for molecular quasispecies as phase transitions: from simple landscapes to spin glasses. Phys Rev A 45:6038–6050

    Article  CAS  PubMed  Google Scholar 

  • Tejero H, Marín A, Moran F (2010) Effect of lethality on the extinction and on the error threshold of quasispecies. J Theor Biol 262:733–741

    Article  PubMed  Google Scholar 

  • Thompson CJ, McBride JL (1974) On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math Biosci 21:127–142

    Article  Google Scholar 

  • Toulouse G (1977) Theory of frustration effect in spin-glasses. I. Commun Phys 2:115–119

    CAS  Google Scholar 

  • Toulouse G (1980) The frustration model. In: Pękalski A, Przystawa JA (eds) Modern trends in the theory of condensed matter, vol 115., Lecture Notes in PhysicsBerlin, Springer, pp 195–203

    Chapter  Google Scholar 

  • van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Walsh B, Blows MV (2009) Abundant variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol Syst 40:41–59

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Weinreich DM (2011) High-throughput identification of genetic interactions in HIV-1. Nat Genet 41:398–400

    Article  CAS  Google Scholar 

  • Wiehe T (1997) Model dependency of error thresholds: the role of fitness functions and contrasts between the finite and infinite sites models. Genet Res Camb 69:127–136

    Article  Google Scholar 

  • Wilke CO, Wang JL, Ofria C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones DF (ed) International proceedings of the sixth international congress on genetics, vol 1. Brooklyn Botanic Garden, Ithaca, NY, pp 356–366

    Google Scholar 

  • Wright S (1988) Surfaces of selective value revisited. American Naturalist 131:115–123

    Article  Google Scholar 

  • Zimm BH (1960) Theory of “melting” of the helical form in double chains of the DNA type. J Chem Phys 33:1349–1356

    Article  CAS  Google Scholar 

  • Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The calculations reported here were done with the package Mathematica 9.0. For the simulations based on Gillespie’s algorithm, we made use of the open-source SSA-program within X-Cellerator package. We are grateful to Bruce Shapiro for making this software public.

The author wishes to acknowledge support by the University of Vienna, Austria, and the Santa Fe Institute, Santa Fe, USA. A number of colleagues have helped in discussions. I am particulary grateful to Reinhard Bürger, Esteban Domingo, Christoph Flamm, Leticia Gonzalez-Herrero, Ivo Hofacker, Markus Oppel, David Saakian, and Peter Stadler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schuster, P. (2015). Quasispecies on Fitness Landscapes. In: Domingo, E., Schuster, P. (eds) Quasispecies: From Theory to Experimental Systems. Current Topics in Microbiology and Immunology, vol 392. Springer, Cham. https://doi.org/10.1007/82_2015_469

Download citation

Publish with us

Policies and ethics