Arenavirus Quasispecies and Their Biological Implications

  • Ana Grande-Pérez
  • Veronica Martin
  • Hector Moreno
  • Juan C. de la TorreEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 392)


The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90–95 % and 44–63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.


Lassa Fever Reassortment Event LCMV Infection Junin Virus Superinfection Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham J, Kwong JA, Albarino CG, Lu JG, Radoshitzky SR, Salazar-Bravo J, Farzan M, Spiropoulou CF, Choe H (2009) Host-species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic New World clade B arenaviruses. PLoS Pathog 5(4):e1000358. doi: 10.1371/journal.ppat.1000358 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aebischer T, Moskophidis D, Rohrer UH, Zinkernagel RM, Hengartner H (1991) In vitro selection of lymphocytic choriomeningitis virus escape mutants by cytotoxic T lymphocytes. Proc Natl Acad Sci USA 88(24):11047–11051PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agudo R, Arias A, Pariente N, Perales C, Escarmis C, Jorge A, Marina A, Domingo E (2008) Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis: implications for lethal mutagenesis. J Mol Biol 382(3):652–666. doi: 10.1016/j.jmb.2008.07.033 PubMedCrossRefGoogle Scholar
  4. Ahmed R, Oldstone MB (1988) Organ-specific selection of viral variants during chronic infection. J Exp Med 167(5):1719–1724PubMedCrossRefGoogle Scholar
  5. Ahmed R, Salmi A, Butler LD, Chiller JM, Oldstone MB (1984) Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice: role in suppression of cytotoxic T lymphocyte response and viral persistence. J Exp Med 160(2):521–540PubMedCrossRefGoogle Scholar
  6. Ahmed R, Simon RS, Matloubian M, Kolhekar SR, Southern PJ, Freedman DM (1988) Genetic analysis of in vivo-selected viral variants causing chronic infection: importance of mutation in the L RNA segment of lymphocytic choriomeningitis virus. J Virol 62(9):3301–3308PubMedPubMedCentralGoogle Scholar
  7. Ahmed R, Hahn CS, Somasundaram T, Villarete L, Matloubian M, Strauss JH (1991) Molecular basis of organ-specific selection of viral variants during chronic infection. J Virol 65(8):4242–4247PubMedPubMedCentralGoogle Scholar
  8. Albarino CG, Posik DM, Ghiringhelli PD, Lozano ME, Romanowski V (1998) Arenavirus phylogeny: a new insight. Virus Genes 16(1):39–46PubMedCrossRefGoogle Scholar
  9. Albarino CG, Bergeron E, Erickson BR, Khristova ML, Rollin PE, Nichol ST (2009) Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. J Virol 83(11):5606–5614. doi: 10.1128/JVI.00276-09 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Albarino CG, Palacios G, Khristova ML, Erickson BR, Carroll SA, Comer JA, Hui J, Briese T, St George K, Ksiazek TG, Lipkin WI, Nichol ST (2010) High diversity and ancient common ancestry of lymphocytic choriomeningitis virus. Emerg Infect Dis 16(7):1093–1100. doi: 10.3201/eid1607.091902 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Albarino CG, Bird BH, Chakrabarti AK, Dodd KA, Erickson BR, Nichol ST (2011) Efficient rescue of recombinant Lassa virus reveals the influence of S segment noncoding regions on virus replication and virulence. J Virol 85(8):4020–4024. doi: 10.1128/JVI.02556-10 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Andrei G, De Clercq E (1990) Inhibitory effect of selected antiviral compounds on arenavirus replication in vitro. Antiviral Res 14(4–5):287–299PubMedCrossRefGoogle Scholar
  13. Andrei G, De Clercq E (1993) Molecular approaches for the treatment of hemorrhagic fever virus infections. Antiviral Res 22(1):45–75PubMedCrossRefGoogle Scholar
  14. Archer AM, Rico-Hesse R (2002) High genetic divergence and recombination in Arenaviruses from the Americas. Virology 304(2):274–281PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baranowski E, Ruiz-Jarabo CM, Sevilla N, Andreu D, Beck E, Domingo E (2000) Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74(4):1641–1647PubMedPubMedCentralCrossRefGoogle Scholar
  16. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687PubMedCrossRefGoogle Scholar
  17. Beaucourt S, Borderia AV, Coffey LL, Gnadig NF, Sanz-Ramos M, Beeharry Y, Vignuzzi M (2011) Isolation of fidelity variants of RNA viruses and characterization of virus mutation frequency. J Vis Exp 52:2953–2982. doi: 10.3791/2953 PubMedGoogle Scholar
  18. Bergthaler A, Flatz L, Hegazy AN, Johnson S, Horvath E, Lohning M, Pinschewer DD (2010) Viral replicative capacity is the primary determinant of lymphocytic choriomeningitis virus persistence and immunosuppression. Proc Natl Acad Sci USA 107(50):21641–21646. doi: 10.1073/pnas.1011998107 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Beyer WR, Popplau D, Garten W, von Laer D, Lenz O (2003) Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 77(5):2866–2872PubMedPubMedCentralCrossRefGoogle Scholar
  20. Blasdell KR, Becker SD, Hurst J, Begon M, Bennett M (2008) Host range and genetic diversity of arenaviruses in rodents United Kingdom. Emerg Infect Dis 14(9):1455–1458. doi: 10.3201/eid1409.080209 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bodewes R, Kik MJ, Raj VS, Schapendonk CM, Haagmans BL, Smits SL, Osterhaus AD (2013) Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands. J Gen Virol 94(Pt 6):1206–1210. doi: 10.1099/vir.0.051995-0 PubMedCrossRefGoogle Scholar
  22. Bolken TC, Laquerre S, Zhang Y, Bailey TR, Pevear DC, Kickner SS, Sperzel LE, Jones KF, Warren TK, Amanda Lund S, Kirkwood-Watts DL, King DS, Shurtleff AC, Guttieri MC, Deng Y, Bleam M, Hruby DE (2005) Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antiviral ResGoogle Scholar
  23. Bonnac LF, Mansky LM, Patterson SE (2013) Structure-activity relationships and design of viral mutagens and application to lethal mutagenesis. J Med Chem 56(23):9403–9414. doi: 10.1021/jm400653j PubMedCrossRefGoogle Scholar
  24. Borden KL, Campbell Dwyer EJ, Salvato MS (1998) An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J Virol 72(1):758–766PubMedPubMedCentralGoogle Scholar
  25. Borrow P, Evans CF, Oldstone MB (1995) Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J Virol 69(2):1059–1070PubMedPubMedCentralGoogle Scholar
  26. Botten J, Alexander J, Pasquetto V, Sidney J, Barrowman P, Ting J, Peters B, Southwood S, Stewart B, Rodriguez-Carreno MP, Mothe B, Whitton JL, Sette A, Buchmeier MJ (2006) Identification of protective Lassa virus epitopes that are restricted by HLA-A2. J Virol 80(17):8351–8361. doi: 10.1128/JVI.00896-06 ([pii] 80/17/8351)PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bowen MD, Peters CJ, Nichol ST (1996) The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 219(1):285–290. doi: 10.1006/viro.1996.0248 PubMedCrossRefGoogle Scholar
  28. Bowen MD, Peters CJ, Nichol ST (1997) Phylogenetic analysis of the arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol 8(3):301–316PubMedCrossRefGoogle Scholar
  29. Bowen MD, Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH, Bajani MD, Peters CJ, Nichol ST (2000) Genetic diversity among Lassa virus strains. J Virol 74(15):6992–7004PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bray M (2005) Pathogenesis of viral hemorrhagic fever. Curr Opin Immunol 17(4):399–403PubMedCrossRefGoogle Scholar
  31. Brown RJ, Peters PJ, Caron C, Gonzalez-Perez MP, Stones L, Ankghuambom C, Pondei K, McClure CP, Alemnji G, Taylor S, Sharp PM, Clapham PR, Ball JK (2011) Intercompartmental recombination of HIV-1 contributes to env intrahost diversity and modulates viral tropism and sensitivity to entry inhibitors. J Virol 85(12):6024–6037. doi: 10.1128/JVI.00131-11 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Brunotte L, Lelke M, Hass M, Kleinsteuber K, Becker-Ziaja B, Gunther S (2011) Domain structure of Lassa virus L protein. J Virol 85(1):324–333. doi: 10.1128/JVI.00721-10 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Buchmeier MJ, Peters CJ, de la Torre JC (2007) Arenaviridae: the viruses and their replication. In: Knipe DM, Holey PM (eds) Fields virology, 5th edn, vol 2, pp 1792–1827Google Scholar
  34. Buesa-Gomez J, Teng MN, Oldstone CE, Oldstone MB, de la Torre JC (1996) Variants able to cause growth hormone deficiency syndrome are present within the disease-nil WE strain of lymphocytic choriomeningitis virus. J Virol 70(12):8988–8992PubMedPubMedCentralGoogle Scholar
  35. Cabot B, Martell M, Esteban JI, Sauleda S, Otero T, Esteban R, Guardia J, Gomez J (2000) Nucleotide and amino acid complexity of hepatitis C virus quasispecies in serum and liver. J Virol 74(2):805–811PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cajimat MN, Fulhorst CF (2004) Phylogeny of the venezuelan arenaviruses. Virus Res 102(2):199–206. doi: 10.1016/j.virusres.2004.01.032 ([pii] S0168170204000735)PubMedCrossRefGoogle Scholar
  37. Cajimat MN, Milazzo ML, Hess BD, Rood MP, Fulhorst CF (2007) Principal host relationships and evolutionary history of the North American arenaviruses. Virology 367(2):235–243. doi: 10.1016/j.virol.2007.05.031 ([pii] S0042-6822(07)00399-6)PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cajimat MN, Milazzo ML, Mauldin MR, Bradley RD, Fulhorst CF (2013) Diversity among Tacaribe serocomplex viruses (family arenaviridae) associated with the southern plains woodrat (Neotoma micropus). Virus Res 178(2):486–494. doi: 10.1016/j.virusres.2013.10.004 ([pii] S0168-1702(13)00351-1)PubMedPubMedCentralCrossRefGoogle Scholar
  39. Campbell Dwyer EJ, Lai H, MacDonald RC, Salvato MS, Borden KL (2000) The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner. J Virol 74(7):3293–3300PubMedPubMedCentralCrossRefGoogle Scholar
  40. Candurra NA, Maskin L, Damonte EB (1996) Inhibition of arenavirus multiplication in vitro by phenotiazines. Antiviral Res 31(3):149–158PubMedCrossRefGoogle Scholar
  41. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282(5396):2079–2081 (see comments)PubMedCrossRefGoogle Scholar
  42. Carrion R Jr, Bredenbeek P, Jiang X, Tretyakova I, Pushko P, Lukashevich IS (2012) Vaccine platforms to control arenaviral hemorrhagic fevers. J Vaccines Vaccin 3(7). doi: 10.4172/2157-7560.1000160
  43. Cattaneo R, Billeter MA (1992) Mutations and A/I hypermutations in measles virus persistent infections. Curr Top Microbiol Immunol 176:63–74PubMedGoogle Scholar
  44. Charrel RN, de Lamballerie X (2003) Arenaviruses other than Lassa virus. Antiviral Res 57(1–2):89–100PubMedCrossRefGoogle Scholar
  45. Charrel RN, de Lamballerie X, Fulhorst CF (2001) The whitewater Arroyo virus: natural evidence for genetic recombination among Tacaribe serocomplex viruses (family arenaviridae). Virology 283(2):161–166. doi: 10.1006/viro.2001.0874 PubMedCrossRefGoogle Scholar
  46. Charrel RN, Feldmann H, Fulhorst CF, Khelifa R, de Chesse R, de Lamballerie X (2002) Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem Biophys Res Commun 296(5):1118–1124PubMedCrossRefGoogle Scholar
  47. Charrel RN, Lemasson JJ, Garbutt M, Khelifa R, De Micco P, Feldmann H, de Lamballerie X (2003) New insights into the evolutionary relationships between arenaviruses provided by comparative analysis of small and large segment sequences. Virology 317(2):191–196PubMedCrossRefGoogle Scholar
  48. Charrel RN, de Lamballerie X, Emonet S (2008) Phylogeny of the genus arenavirus. Curr Opin Microbiol 11(4):362–368. doi: 10.1016/j.mib.2008.06.001 ([pii] S1369-5274(08)00073-8)PubMedCrossRefGoogle Scholar
  49. Chen M, Lan S, Ou R, Price GE, Jiang H, de la Torre JC, Moskophidis D (2008) Genomic and biological characterization of aggressive and docile strains of lymphocytic choriomeningitis virus rescued from a plasmid-based reverse-genetics system. J Gen Virol 89(Pt 6):1421–1433. doi: 10.1099/vir.0.83464-0 ([pii] 89/6/1421)PubMedPubMedCentralCrossRefGoogle Scholar
  50. Cheng-Mayer C, Weiss C, Seto D, Levy JA (1989) Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci USA 86(21):8575–8579PubMedPubMedCentralCrossRefGoogle Scholar
  51. Childs JE, Peters CJ (1993) Ecology and epidemiology of arenaviruses and their hosts. In: Salvato M (ed) The arenaviridae. Plenum Press, New York, pp 331–384CrossRefGoogle Scholar
  52. Choe H, Jemielity S, Abraham J, Radoshitzky SR, Farzan M (2011) Transferrin receptor 1 in the zoonosis and pathogenesis of New World hemorrhagic fever arenaviruses. Curr Opin Microbiol 14(4):476–482. doi: 10.1016/j.mib.2011.07.014 ([pii] S1369-5274(11)00098-1)PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ciurea A, Klenerman P, Hunziker L, Horvath E, Senn BM, Ochsenbein AF, Hengartner H, Zinkernagel RM (2000) Viral persistence in vivo through selection of neutralizing antibody-escape variants. Proc Natl Acad Sci USA 97(6):2749–2754. doi: 10.1073/pnas.040558797 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ciurea A, Hunziker L, Zinkernagel RM, Hengartner H (2001) Viral escape from the neutralizing antibody response: the lymphocytic choriomeningitis virus model. Immunogenetics 53(3):185–189PubMedCrossRefGoogle Scholar
  55. Cordo SM, Candurra NA, Damonte EB (1999) Myristic acid analogs are inhibitors of Junin virus replication. Microbes Infect 1(8):609–614PubMedCrossRefGoogle Scholar
  56. Cornu TI, de la Torre JC (2001) RING finger Z protein of lymphocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV S-segment minigenome. J Virol 75(19):9415–9426PubMedPubMedCentralCrossRefGoogle Scholar
  57. Cornu TI, de la Torre JC (2002) Characterization of the arenavirus RING finger Z protein regions required for Z-mediated inhibition of viral RNA synthesis. J Virol 76(13):6678–6688PubMedPubMedCentralCrossRefGoogle Scholar
  58. Cornu TI, Feldmann H, de la Torre JC (2004) Cells expressing the RING finger Z protein are resistant to arenavirus infection. J Virol 78(6):2979–2983PubMedPubMedCentralCrossRefGoogle Scholar
  59. Coulibaly-N’Golo D, Allali B, Kouassi SK, Fichet-Calvet E, Becker-Ziaja B, Rieger T, Olschlager S, Dosso H, Denys C, Ter Meulen J, Akoua-Koffi C, Gunther S (2011) Novel arenavirus sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Cote d’Ivoire: implications for evolution of arenaviruses in Africa. PLoS ONE 6(6):e20893. doi: 10.1371/journal.pone.0020893 ([pii] PONE-D-11-02828)PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dalldorf G (1939) The simultaneous occurrence of the viruses of canine distemper and lymphocytic choriomeningitis : a correction of “canine distemper in the rhesus monkey”. J Exp Med 70(1):19–27PubMedPubMedCentralCrossRefGoogle Scholar
  61. Damonte EB, Coto CE (2002) Treatment of arenavirus infections: from basic studies to the challenge of antiviral therapy. Adv Virus Res 58:125–155PubMedCrossRefGoogle Scholar
  62. Damonte EB, Mersich SE, Coto CE (1983) Response of cells persistently infected with arenaviruses to superinfection with homotypic and heterotypic viruses. Virology 129(2):474–478PubMedCrossRefGoogle Scholar
  63. Dapp MJ, Clouser CL, Patterson S, Mansky LM (2009) 5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. J Virol 83(22):11950–11958. doi: 10.1128/JVI.01406-09 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Dapp MJ, Holtz CM, Mansky LM (2012) Concomitant lethal mutagenesis of human immunodeficiency virus type 1. J Mol Biol 419(3–4):158–170. doi: 10.1016/j.jmb.2012.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  65. de la Torre JC, Holland JJ (1990) RNA virus quasispecies populations can suppress vastly superior mutant progeny. J Virol 64(12):6278–6281PubMedPubMedCentralGoogle Scholar
  66. Deforges S, Evlashev A, Perret M, Sodoyer M, Pouzol S, Scoazec JY, Bonnaud B, Diaz O, Paranhos-Baccala G, Lotteau V, Andre P (2004) Expression of hepatitis C virus proteins in epithelial intestinal cells in vivo. J Gen Virol 85(Pt 9):2515–2523. doi: 10.1099/vir.0.80071-0 ([pii] 85/9/2515)PubMedPubMedCentralCrossRefGoogle Scholar
  67. Delgado S, Erickson BR, Agudo R, Blair PJ, Vallejo E, Albarino CG, Vargas J, Comer JA, Rollin PE, Ksiazek TG, Olson JG, Nichol ST (2008) Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog 4(4):e1000047. doi: 10.1371/journal.ppat.1000047 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL (2013) Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol 11(5):e1001571. doi: 10.1371/journal.pbio.1001571 ([pii] PBIOLOGY-D-12-04902)PubMedPubMedCentralCrossRefGoogle Scholar
  69. Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS (2011) Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 8(2):270–279PubMedPubMedCentralCrossRefGoogle Scholar
  70. Djavani M, Rodas J, Lukashevich IS, Horejsh D, Pandolfi PP, Borden KL, Salvato MS (2001) Role of the promyelocytic leukemia protein PML in the interferon sensitivity of lymphocytic choriomeningitis virus. J Virol 75(13):6204–6208PubMedPubMedCentralCrossRefGoogle Scholar
  71. Domingo E (1989) RNA virus evolution and the control of viral disease. Prog Drug Res Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques 33:93–133PubMedGoogle Scholar
  72. Domingo E (1992) Genetic variation and quasi-species. Curr Opin Genet Dev 2(1):61–63PubMedCrossRefGoogle Scholar
  73. Domingo E (2006) Quasispecies: concepts and implications for virology, vol 299., Current topics in microbiology and immunologySpringer, BerlinCrossRefGoogle Scholar
  74. Domingo E (2007) Virus evolution. In: Knipe DM, Holey PM (eds) Fields virology, 5th ednGoogle Scholar
  75. Domingo E, Holland JJ, Ahlquist P (1988) RNA Genetics, vol I, II, III. CRC Press, Boca RatónGoogle Scholar
  76. Domingo E, Mas A, Yuste E, Pariente N, Sierra S, Gutierrez-Riva M, Menendez-Arias L (2001) Virus population dynamics, fitness variations and the control of viral disease: an update. Prog Drug Res 57:77–115PubMedGoogle Scholar
  77. Domingo E, Martin V, Perales C, Escarmis C (2008) Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Top Microbiol Immunol 323:3–32PubMedGoogle Scholar
  78. Downs WG, Anderson CR, Spence L, Aitken TH, Greenhall AH (1963) Tacaribe virus, a new agent isolated from artibeus bats and mosquitoes in Trinidad, West Indies. Am J Trop Med Hyg 12:640–646PubMedGoogle Scholar
  79. Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96(24):13910–13913PubMedPubMedCentralCrossRefGoogle Scholar
  80. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58(10):465–523PubMedCrossRefGoogle Scholar
  81. Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA 99(21):13374–13376. doi: 10.1073/pnas.212514799 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ellenberg P, Edreira M, Scolaro L (2004) Resistance to superinfection of Vero cells persistently infected with Junin virus. Arch Virol 149(3):507–522. doi: 10.1007/s00705-003-0227-1 PubMedCrossRefGoogle Scholar
  83. Ellenberg P, Linero FN, Scolaro LA (2007) Superinfection exclusion in BHK-21 cells persistently infected with Junin virus. J Gen Virol 88(Pt 10):2730–2739. doi: 10.1099/vir.0.83041-0 PubMedCrossRefGoogle Scholar
  84. Emmerich P, Gunther S, Schmitz H (2008) Strain-specific antibody response to Lassa virus in the local population of west Africa. J Clin Virol 42(1):40–44. doi: 10.1016/j.jcv.2007.11.019 ([pii] S1386-6532(07)00437-4)PubMedCrossRefGoogle Scholar
  85. Emonet S, Lemasson JJ, Gonzalez JP, de Lamballerie X, Charrel RN (2006) Phylogeny and evolution of old world arenaviruses. Virology 350(2):251–257. doi: 10.1016/j.virol.2006.01.026 PubMedCrossRefGoogle Scholar
  86. Emonet SF, de la Torre JC, Domingo E, Sevilla N (2009a) Arenavirus genetic diversity and its biological implications. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 9(4):417–429. doi: 10.1016/j.meegid.2009.03.005 CrossRefGoogle Scholar
  87. Emonet SF, Garidou L, McGavern DB, de la Torre JC (2009b) Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci USA 106(9):3473–3478. doi: 10.1073/pnas.0900088106 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Emonet SE, Urata S, de la Torre JC (2011a) Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 411(2):416–425. doi: 10.1016/j.virol.2011.01.013 ([pii] S0042-6822(11)00018-3)PubMedPubMedCentralCrossRefGoogle Scholar
  89. Emonet SF, Seregin AV, Yun NE, Poussard AL, Walker AG, de la Torre JC, Paessler S (2011b) Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of argentine hemorrhagic fever disease. J Virol 85(4):1473–1483. doi: 10.1128/JVI.02102-10 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Enria DA, Barrera Oro JG (2002) Junin virus vaccines. Curr Top Microbiol Immunol 263:239–261PubMedGoogle Scholar
  91. Enria DA, Briggiler AM, Sanchez Z (2008) Treatment of argentine hemorrhagic fever. Antiviral Res 78(1):132–139. doi: 10.1016/j.antiviral.2007.10.010 ([pii] S0166-3542(07)00433-0)PubMedCrossRefGoogle Scholar
  92. Evans CF, Borrow P, de la Torre JC, Oldstone MB (1994) Virus-induced immunosuppression: kinetic analysis of the selection of a mutation associated with viral persistence. J Virol 68(11):7367–7373PubMedPubMedCentralGoogle Scholar
  93. Falzarano D, Feldmann H (2013) Vaccines for viral hemorrhagic fevers–progress and short comings. Curr Opin Virol 3(3):343–351. doi: 10.1016/j.coviro.2013.04.007 ([pii] S1879-6257(13)00062-X)PubMedPubMedCentralCrossRefGoogle Scholar
  94. Fichet-Calvet E, Rogers DJ (2009) Risk maps of Lassa fever in West Africa. PLoS Negl Trop Dis 3(3):e388. doi: 10.1371/journal.pntd.0000388 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Flanagan ML, Oldenburg J, Reignier T, Holt N, Hamilton GA, Martin VK, Cannon PM (2008) New world clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J Virol 82(2):938–948. doi: 10.1128/JVI.01397-07 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Flatz L, Bergthaler A, de la Torre JC, Pinschewer DD (2006) Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. Proc Natl Acad Sci USA 103(12):4663–4668PubMedPubMedCentralCrossRefGoogle Scholar
  97. Freedman DO, Woodall J (1999) Emerging infectious diseases and risk to the traveler. Med Clin North Am 83(4):865–883Google Scholar
  98. Fulhorst CF, Bowen MD, Ksiazek TG, Rollin PE, Nichol ST, Kosoy MY, Peters CJ (1996) Isolation and characterization of whitewater Arroyo virus, a novel North American arenavirus. Virology 224(1):114–120. doi: 10.1006/viro.1996.0512 PubMedCrossRefGoogle Scholar
  99. Fulhorst CF, Bowen MD, Salas RA, Duno G, Utrera A, Ksiazek TG, De Manzione NM, De Miller E, Vasquez C, Peters CJ, Tesh RB (1999) Natural rodent host associations of Guanarito and pirital viruses (family arenaviridae) in central Venezuela. Am J Trop Med Hyg 61(2):325–330PubMedGoogle Scholar
  100. Fulhorst CF, Charrel RN, Weaver SC, Ksiazek TG, Bradley RD, Milazzo ML, Tesh RB, Bowen MD (2001) Geographic distribution and genetic diversity of whitewater Arroyo virus in the southwestern United States. Emerg Infect Dis 7(3):403–407. doi: 10.3201/eid0703.010306 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Fulhorst CF, Cajimat MN, Milazzo ML, Paredes H, de Manzione NM, Salas RA, Rollin PE, Ksiazek TG (2008) Genetic diversity between and within the arenavirus species indigenous to western Venezuela. Virology 378(2):205–213. doi: 10.1016/j.virol.2008.05.014 ([pii] S0042-6822(08)00341-3)PubMedPubMedCentralCrossRefGoogle Scholar
  102. Garcia JB, Morzunov SP, Levis S, Rowe J, Calderon G, Enria D, Sabattini M, Buchmeier MJ, Bowen MD, St Jeor SC (2000) Genetic diversity of the Junin virus in Argentina: geographic and temporal patterns. Virology 272(1):127–136. doi: 10.1006/viro.2000.0345 ([pii] S0042682200903453)PubMedCrossRefGoogle Scholar
  103. Geisbert TW, Jahrling PB (2004) Exotic emerging viral diseases: progress and challenges. Nat Med 10(12 Suppl):S110–S121PubMedCrossRefGoogle Scholar
  104. Geleziunas R, Bour S, Wainberg MA (1994) Cell surface down-modulation of CD4 after infection by HIV-1. FASEB J 8(9):593–600PubMedGoogle Scholar
  105. Gonzalez-Lopez C, Arias A, Pariente N, Gomez-Mariano G, Domingo E (2004) Preextinction viral RNA can interfere with infectivity. J Virol 78(7):3319–3324PubMedPubMedCentralCrossRefGoogle Scholar
  106. Graci JD, Cameron CE (2006) Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol 16(1):37–48. doi: 10.1002/rmv.483 PubMedCrossRefGoogle Scholar
  107. Graci JD, Harki DA, Korneeva VS, Edathil JP, Too K, Franco D, Smidansky ED, Paul AV, Peterson BR, Brown DM, Loakes D, Cameron CE (2007) Lethal mutagenesis of poliovirus mediated by a mutagenic pyrimidine analogue. J Virol 81(20):11256–11266. doi: 10.1128/JVI.01028-07 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Graci JD, Too K, Smidansky ED, Edathil JP, Barr EW, Harki DA, Galarraga JE, Bollinger JM Jr, Peterson BR, Loakes D, Brown DM, Cameron CE (2008) Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues. Antimicrob Agents Chemother 52(3):971–979. doi: 10.1128/AAC.01056-07 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Grande-Perez A, Sierra S, Castro MG, Domingo E, Lowenstein PR (2002) Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc Natl Acad Sci USA 99(20):12938–12943. doi: 10.1073/pnas.182426999 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Grande-Perez A, Gomez-Mariano G, Lowenstein PR, Domingo E (2005a) Mutagenesis-induced, large fitness variations with an invariant arenavirus consensus genomic nucleotide sequence. J Virol 79(16):10451–10459. doi: 10.1128/JVI.79.16.10451-10459.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Grande-Perez A, Lazaro E, Lowenstein P, Domingo E, Manrubia SC (2005b) Suppression of viral infectivity through lethal defection. Proc Natl Acad Sci USA 102(12):4448–4452PubMedPubMedCentralCrossRefGoogle Scholar
  112. Greenwood AG, Sanchez S (2002) Serological evidence of murine pathogens in wild grey squirrels (Sciurus carolinensis) in North Wales. Vet Rec 150(17):543–546PubMedCrossRefGoogle Scholar
  113. Hall JS, French R, Hein GL, Morris TJ, Stenger DC (2001) Three distinct mechanisms facilitate genetic isolation of sympatric wheat streak mosaic virus lineages. Virology 282(2):230–236. doi: 10.1006/viro.2001.0841 ([pii] S0042-6822(01)90841-4)PubMedCrossRefGoogle Scholar
  114. Harki DA, Graci JD, Korneeva VS, Ghosh SK, Hong Z, Cameron CE, Peterson BR (2002) Synthesis and antiviral evaluation of a mutagenic and non-hydrogen bonding ribonucleoside analogue: 1-beta-D-Ribofuranosyl-3-nitropyrrole. Biochemistry 41(29):9026–9033PubMedCrossRefGoogle Scholar
  115. Harris KS, Brabant W, Styrchak S, Gall A, Daifuku R (2005) KP-1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis. Antiviral Res 67(1):1–9. doi: 10.1016/j.antiviral.2005.03.004 PubMedCrossRefGoogle Scholar
  116. Hass M, Golnitz U, Muller S, Becker-Ziaja B, Gunther S (2004) Replicon system for Lassa virus. J Virol 78(24):13793–13803PubMedPubMedCentralCrossRefGoogle Scholar
  117. Hass M, Westerkofsky M, Muller S, Becker-Ziaja B, Busch C, Gunther S (2006) Mutational analysis of the lassa virus promoter. J Virol 80(24):12414–12419PubMedPubMedCentralCrossRefGoogle Scholar
  118. Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO (2011) Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc Natl Acad Sci USA 108(6):2396–2401. doi: 10.1073/pnas.1016404108 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Haydon DT, Bastos AD, Knowles NJ, Samuel AR (2001) Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157(1):7–15PubMedPubMedCentralGoogle Scholar
  120. Hetzel U, Sironen T, Laurinmaki P, Liljeroos L, Patjas A, Henttonen H, Vaheri A, Artelt A, Kipar A, Butcher SJ, Vapalahti O, Hepojoki J (2013) Isolation, identification, and characterization of novel arenaviruses, the etiological agents of boid inclusion body disease. J Virol 87(20):10918–10935. doi: 10.1128/JVI.01123-13 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Hicks C, Clay P, Redfield R, Lalezari J, Liporace R, Schneider S, Sension M, McRae M, Laurent JP (2013) Safety, tolerability, and efficacy of KP-1461 as monotherapy for 124 days in antiretroviral-experienced, HIV type 1-infected subjects. AIDS Res Hum Retroviruses 29(2):250–255. doi: 10.1089/AID.2012.0093 PubMedPubMedCentralGoogle Scholar
  122. Holland JJ, Domingo E, de la Torre JC, Steinhauer DA (1990) Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 64(8):3960–3962PubMedPubMedCentralGoogle Scholar
  123. Horga MA, Gusella GL, Greengard O, Poltoratskaia N, Porotto M, Moscona A (2000) Mechanism of interference mediated by human parainfluenza virus type 3 infection. J Virol 74(24):11792–11799PubMedPubMedCentralCrossRefGoogle Scholar
  124. Hotchin J (1973) Transient virus infection: spontaneous recovery mechanism of lymphocytic choriomeningitis virrus-infected cells. Nat New Biol 241(113):270–272PubMedCrossRefGoogle Scholar
  125. Hotchin J, Sikora E (1973) Low-pathogenicity variant of lymphocytic choriomeningitis virus. Infect Immun 7(5):825–826PubMedPubMedCentralGoogle Scholar
  126. Hotchin J, Kinch W, Benson L (1971) Lytic and turbid plaque-type mutants of lymphocytic choriomeningitis virus as a cause of neurological disease or persistent infection. Infect Immun 4(3):281–286PubMedPubMedCentralGoogle Scholar
  127. Huang IC, Li W, Sui J, Marasco W, Choe H, Farzan M (2008) Influenza A virus neuraminidase limits viral superinfection. J Virol 82(10):4834–4843. doi: 10.1128/JVI.00079-08 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Huggins JW (1989) Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug. Rev Infect Dis 11(Suppl 4):S750–S761PubMedCrossRefGoogle Scholar
  129. Hugot JP, Gonzalez JP, Denys C (2001) Evolution of the Old World arenaviridae and their rodent hosts: generalized host-transfer or association by descent? Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 1(1):13–20 ([pii] S156713480100003X)CrossRefGoogle Scholar
  130. Hundley HA, Bass BL (2010) ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem Sci 35(7):377–383. doi: 10.1016/j.tibs.2010.02.008 ([pii] S0968-0004(10)00029-0)PubMedPubMedCentralCrossRefGoogle Scholar
  131. Irwin NR, Bayerlova M, Missa O, Martinkova N (2012) Complex patterns of host switching in New World arenaviruses. Mol Ecol 21(16):4137–4150. doi: 10.1111/j.1365-294X.2012.05663.x PubMedCrossRefGoogle Scholar
  132. Isaacson M (2001) Viral hemorrhagic fever hazards for travelers in Africa. Clin Infect Dis 33(10):1707–1712PubMedCrossRefGoogle Scholar
  133. Ishii A, Thomas Y, Moonga L, Nakamura I, Ohnuma A, Hang’ombe BM, Takada A, Mweene AS, Sawa H (2012) Molecular surveillance and phylogenetic analysis of Old World arenaviruses in Zambia. J Gen Virol 93(Pt 10):2247–2251. doi: 10.1099/vir.0.044099-0 PubMedCrossRefGoogle Scholar
  134. Jackson AP, Charleston MA (2004) A cophylogenetic perspective of RNA-virus evolution. Mol Biol Evol 21(1):45–57. doi: 10.1093/molbev/msg232 PubMedCrossRefGoogle Scholar
  135. Jahrling PB (1983) Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J Med Virol 12(2):93–102PubMedCrossRefGoogle Scholar
  136. Jahrling PB, Peters CJ (1984) Passive antibody therapy of Lassa fever in cynomolgus monkeys: importance of neutralizing antibody and Lassa virus strain. Infect Immun 44(2):528–533PubMedPubMedCentralGoogle Scholar
  137. Jahrling PB, Peters CJ (1992) Lymphocytic choriomeningitis virus A neglected pathogen of man. Arch Pathol Lab Med 116(5):486–488PubMedGoogle Scholar
  138. Jay MT, Glaser C, Fulhorst CF (2005) The arenaviruses. J Am Vet Med Assoc 227(6):904–915PubMedCrossRefGoogle Scholar
  139. Jelcic I, Hotz-Wagenblatt A, Hunziker A, Zur Hausen H, de Villiers EM (2004) Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78(14):7498–7507. doi: 10.1128/JVI.78.14.7498-7507.2004 ([pii] 78/14/7498)PubMedPubMedCentralCrossRefGoogle Scholar
  140. Jridi C, Martin JF, Marie-Jeanne V, Labonne G, Blanc S (2006) Distinct viral populations differentiate and evolve independently in a single perennial host plant. J Virol 80(5):2349–2357. doi: 10.1128/JVI.80.5.2349-2357.2006 ([pii] 80/5/2349)PubMedPubMedCentralCrossRefGoogle Scholar
  141. Kilgore PE, Peters CJ, Mills JN, Rollin PE, Armstrong L, Khan AS, Ksiazek TG (1995) Prospects for the control of Bolivian hemorrhagic fever. Emerg Infect Dis 1(3):97–100PubMedPubMedCentralCrossRefGoogle Scholar
  142. Kilgore PE, Ksiazek TG, Rollin PE, Mills JN, Villagra MR, Montenegro MJ, Costales MA, Paredes LC, Peters CJ (1997) Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. Clin Infect Dis 24(4):718–722PubMedCrossRefGoogle Scholar
  143. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Ninth report of the international committee on taxonomy of viruses. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses. Elsevier, San DiegoGoogle Scholar
  144. Klavinskis LS, Oldstone MB (1989) Lymphocytic choriomeningitis virus selectively alters differentiated but not housekeeping functions: block in expression of growth hormone gene is at the level of transcriptional initiation. Virology 168(2):232–235PubMedCrossRefGoogle Scholar
  145. Kranzusch PJ, Whelan SP (2011) Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex. Proc Natl Acad Sci USA 108(49):19743–19748. doi: 10.1073/pnas.1112742108 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Kunz S, Borrow P, Oldstone MB (2002) Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol 262:111–137PubMedGoogle Scholar
  147. Kunz S, Edelmann KH, de la Torre J-C, Gorney R, Oldstone MBA (2003a) Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology (in press)Google Scholar
  148. Kunz S, Edelmann KH, de la Torre JC, Gorney R, Oldstone MB (2003b) Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology 314(1):168–178 ([pii] S0042682203004215)PubMedCrossRefGoogle Scholar
  149. Kunz S, Sevilla N, Rojek JM, Oldstone MB (2004) Use of alternative receptors different than alpha-dystroglycan by selected isolates of lymphocytic choriomeningitis virus. Virology 325(2):432–445PubMedCrossRefGoogle Scholar
  150. Kunz S, Rojek JM, Kanagawa M, Spiropoulou CF, Barresi R, Campbell KP, Oldstone MB (2005) Posttranslational modification of alpha-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J Virol 79(22):14282–14296. doi: 10.1128/JVI.79.22.14282-14296.2005 ([pii] 79/22/14282)PubMedPubMedCentralCrossRefGoogle Scholar
  151. Lan S, McLay Schelde L, Wang J, Kumar N, Ly H, Liang Y (2009) Development of infectious clones for virulent and avirulent pichinde viruses: a model virus to study arenavirus-induced hemorrhagic fevers. J Virol 83(13):6357–6362. doi: 10.1128/JVI.00019-09 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Lecompte E, ter Meulen J, Emonet S, Daffis S, Charrel RN (2007) Genetic identification of Kodoko virus, a novel arenavirus of the African pigmy mouse (Mus Nannomys minutoides) in West Africa. Virology 364(1):178–183. doi: 10.1016/j.virol.2007.02.008 ([pii] S0042-6822(07)00118-3)PubMedCrossRefGoogle Scholar
  153. Lee CH, Gilbertson DL, Novella IS, Huerta R, Domingo E, Holland JJ (1997) Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. J Virol 71(5):3636–3640PubMedPubMedCentralGoogle Scholar
  154. Lee KJ, Novella IS, Teng MN, Oldstone MB, de La Torre JC (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74(8):3470–3477PubMedPubMedCentralCrossRefGoogle Scholar
  155. Lee AM, Rojek JM, Spiropoulou CF, Gundersen AT, Jin W, Shaginian A, York J, Nunberg JH, Boger DL, Oldstone MB, Kunz S (2008) Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem 283(27):18734–18742. doi: 10.1074/jbc.M802089200 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Lelke M, Brunotte L, Busch C, Gunther S (2010) An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome. J Virol 84(4):1934–1944. doi: 10.1128/JVI.01657-09 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci USA 98(22):12701–12705. doi: 10.1073/pnas.221447598 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Lewicki H, Tishon A, Borrow P, Evans CF, Gairin JE, Hahn KM, Jewell DA, Wilson IA, Oldstone MB (1995) CTL escape viral variants I: generation and molecular characterization. Virology 210(1):29–40. doi: 10.1006/viro.1995.1314 ([pii] S0042-6822(85)71314-1)PubMedCrossRefGoogle Scholar
  159. Liang Y, Lan S, Ly H (2009) Molecular determinants of Pichinde virus infection of guinea pigs–a small animal model system for arenaviral hemorrhagic fevers. Ann N Y Acad Sci 1171(Suppl 1):E65–E74. doi: 10.1111/j.1749-6632.2009.05051.x ([pii] NYAS5051)PubMedPubMedCentralCrossRefGoogle Scholar
  160. Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA 96(4):1492–1497PubMedPubMedCentralCrossRefGoogle Scholar
  161. Lopez N, Jacamo R, Franze-Fernandez MT (2001) Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: z protein is an inhibitor of these processes. J Virol 75(24):12241–12251PubMedPubMedCentralCrossRefGoogle Scholar
  162. Loureiro ME, Wilda M, Levingston Macleod JM, D’Antuono A, Foscaldi S, Marino Buslje C, Lopez N (2011) Molecular determinants of arenavirus Z protein homo-oligomerization and L polymerase binding. J Virol 85(23):12304–12314. doi: 10.1128/JVI.05691-11 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Lukashevich IS (1992) Generation of reassortants between African arenaviruses. Virology 188(2):600–605PubMedCrossRefGoogle Scholar
  164. Lukashevich IS (2012) Advanced vaccine candidates for Lassa fever. Viruses 4(11):2514–2557. doi: 10.3390/v4112514 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Lukashevich IS, Patterson J, Carrion R, Moshkoff D, Ticer A, Zapata J, Brasky K, Geiger R, Hubbard GB, Bryant J, Salvato MS (2005) A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses. J Virol 79(22):13934–13942. doi: 10.1128/JVI.79.22.13934-13942.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Mallela A, Nishikura K (2012) A-to-I editing of protein coding and noncoding RNAs. Crit Rev Biochem Mol Biol 47(6):493–501. doi: 10.3109/10409238.2012.714350 PubMedCrossRefGoogle Scholar
  167. Manrubia SC, Domingo E, Lazaro E (2010) Pathways to extinction: beyond the error threshold. Philos Trans R Soc Lond B Biol Sci 365(1548):1943–1952. doi: 10.1098/rstb.2010.0076 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Martin V, Domingo E (2008) Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol Biol Evol 25(8):1544–1554. doi: 10.1093/molbev/msn099 PubMedCrossRefGoogle Scholar
  169. Martin V, Abia D, Domingo E, Grande-Perez A (2010) An interfering activity against lymphocytic choriomeningitis virus replication associated with enhanced mutagenesis. J Gen Virol 91(Pt 4):990–1003. doi: 10.1099/vir.0.017053-0 PubMedCrossRefGoogle Scholar
  170. Martinez-Sobrido L, Zuniga EI, Rosario D, Garcia-Sastre A, de la Torre JC (2006) Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 80(18):9192–9199PubMedPubMedCentralCrossRefGoogle Scholar
  171. Martinez-Sobrido L, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2007) Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol 81(22):12696–12703PubMedPubMedCentralCrossRefGoogle Scholar
  172. Martinez-Sobrido L, Emonet S, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2009) Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 83(21):11330–11340. doi: 10.1128/JVI.00763-09 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Mas A, Lopez-Galindez C, Cacho I, Gomez J, Martinez MA (2010) Unfinished stories on viral quasispecies and Darwinian views of evolution. J Mol Biol 397(4):865–877. doi: 10.1016/j.jmb.2010.02.005 ([pii] S0022-2836(10)00155-5)PubMedCrossRefGoogle Scholar
  174. Matloubian M, Somasundaram T, Kolhekar SR, Selvakumar R, Ahmed R (1990) Genetic basis of viral persistence: single amino acid change in the viral glycoprotein affects ability of lymphocytic choriomeningitis virus to persist in adult mice. J Exp Med 172(4):1043–1048PubMedCrossRefGoogle Scholar
  175. Matloubian M, Kolhekar SR, Somasundaram T, Ahmed R (1993) Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J Virol 67(12):7340–7349PubMedPubMedCentralGoogle Scholar
  176. McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, Johnson KM, Elliott LH, Belmont-Williams R (1986) Lassa fever: effective therapy with ribavirin. N Engl J Med 314(1):20–26PubMedCrossRefGoogle Scholar
  177. McKee KT Jr, Huggins JW, Trahan CJ, Mahlandt BG (1988) Ribavirin prophylaxis and therapy for experimental argentine hemorrhagic fever. Antimicrob Agents Chemother 32(9):1304–1309PubMedPubMedCentralCrossRefGoogle Scholar
  178. Merkler D, Horvath E, Bruck W, Zinkernagel RM, Del la Torre JC, Pinschewer DD (2006) “Viral deja vu” elicits organ-specific immune disease independent of reactivity to self. J Clin Invest 116(5):1254–1263PubMedPubMedCentralCrossRefGoogle Scholar
  179. Mets MB, Barton LL, Khan AS, Ksiazek TG (2000) Lymphocytic choriomeningitis virus: an underdiagnosed cause of congenital chorioretinitis. Am J Ophthalmol 130(2):209–215PubMedCrossRefGoogle Scholar
  180. Meyer BJ, Southern PJ (1994) Sequence heterogeneity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J Virol 68(11):7659–7664PubMedPubMedCentralGoogle Scholar
  181. Meyer BJ, de la Torre JC, Southern PJ (2002) Arenaviruses: genomic RNAs, transcription, and replication. Curr Top Microbiol Immunol 262:139–149PubMedGoogle Scholar
  182. Mills JN, Barrera Oro JG, Bressler DS, Childs JE, Tesh RB, Smith JF, Enria DA, Geisbert TW, McKee KT Jr, Bowen MD, Peters CJ, Jahrling PB (1996) Characterization of Oliveros virus, a new member of the Tacaribe complex (arenaviridae: arenavirus). Am J Trop Med Hyg 54(4):399–404PubMedGoogle Scholar
  183. Monath TP, Casals J (1975) Diagnosis of Lassa fever and the isolation and management of patients. Bull World Health Organ 52(4–6):707–715PubMedPubMedCentralGoogle Scholar
  184. Moreno H, Gallego I, Sevilla N, de la Torre JC, Domingo E, Martin V (2011) Ribavirin can be mutagenic for arenaviruses. J Virol 85(14):7246–7255. doi: 10.1128/JVI.00614-11 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Moreno H, Grande-Perez A, Domingo E, Martin V (2012a) Arenaviruses and lethal mutagenesis: prospects for new ribavirin-based interventions. Viruses 4(11):2786–2805. doi: 10.3390/v4112786 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Moreno H, Tejero H, de la Torre JC, Domingo E, Martin V (2012b) Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection. PLoS ONE 7(3):e32550. doi: 10.1371/journal.pone.0032550 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Morimoto K, Hooper DC, Carbaugh H, Fu ZF, Koprowski H, Dietzschold B (1998) Rabies virus quasispecies: implications for pathogenesis. Proc Natl Acad Sci USA 95(6):3152–3156PubMedPubMedCentralCrossRefGoogle Scholar
  188. Morin B, Coutard B, Lelke M, Ferron F, Kerber R, Jamal S, Frangeul A, Baronti C, Charrel R, de Lamballerie X, Vonrhein C, Lescar J, Bricogne G, Gunther S, Canard B (2010) The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 6(9):e1001038. doi: 10.1371/journal.ppat.1001038 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Morrison TG, McGinnes LW (1989) Avian cells expressing the Newcastle disease virus hemagglutinin-neuraminidase protein are resistant to Newcastle disease virus infection. Virology 171(1):10–17PubMedCrossRefGoogle Scholar
  190. Moshkoff DA, Salvato MS, Lukashevich IS (2007) Molecular characterization of a reassortant virus derived from Lassa and Mopeia viruses. Virus Genes 34(2):169–176. doi: 10.1007/s11262-006-0050-3 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Muller G, Bruns M, Martinez Peralta L, Lehmann-Grube F (1983) Lymphocytic choriomeningitis virus. IV. Electron microscopic investigation of the virion. Arch Virol 75(4):229–242Google Scholar
  192. Murphy DG, Dimock K, Kang CY (1991) Numerous transitions in human parainfluenza virus 3 RNA recovered from persistently infected cells. Virology 181(2):760–763PubMedCrossRefGoogle Scholar
  193. Neuman BW, Adair BD, Burns JW, Milligan RA, Buchmeier MJ, Yeager M (2005) Complementarity in the supramolecular design of arenaviruses and retroviruses revealed by electron cryomicroscopy and image analysis. J Virol 79(6):3822–3830PubMedPubMedCentralCrossRefGoogle Scholar
  194. Neumann G, Kawaoka Y (2004) Reverse genetics systems for the generation of segmented negative-sense RNA viruses entirely from cloned cDNA. Curr Top Microbiol Immunol 283:43–60PubMedGoogle Scholar
  195. Nijhuis M, van Maarseveen NM, Boucher CA (2009) Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases. Handb Exp Pharmacol 189:299–320. doi: 10.1007/978-3-540-79086-0_11 PubMedCrossRefGoogle Scholar
  196. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349. doi: 10.1146/annurev-biochem-060208-105251 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Novella IS, Duarte EA, Elena SF, Moya A, Domingo E, Holland JJ (1995) Exponential increases of RNA virus fitness during large population transmissions. Proc Natl Acad Sci USA 92(13):5841–5844PubMedPubMedCentralCrossRefGoogle Scholar
  198. Oldstone MB (2002) Biology and pathogenesis of lymphocytic choriomeningitis virus infection. In: Oldstone MB (ed) Arenaviruses, vol 263, pp 83–118Google Scholar
  199. Oldstone MB, Campbell KP (2010) Decoding arenavirus pathogenesis: essential roles for alpha-dystroglycan-virus interactions and the immune response. Virology 411(2):170–179. doi: 10.1016/j.virol.2010.11.023 ([pii] S0042-6822(10)00741-5)PubMedPubMedCentralCrossRefGoogle Scholar
  200. Oldstone MB, Rodriguez M, Daughaday WH, Lampert PW (1984) Viral perturbation of endocrine function: disordered cell function leads to disturbed homeostasis and disease. Nature 307(5948):278–281PubMedCrossRefGoogle Scholar
  201. Oldstone MB, Ahmed R, Buchmeier MJ, Blount P, Tishon A (1985) Perturbation of differentiated functions during viral infection in vivo I: relationship of lymphocytic choriomeningitis virus and host strains to growth hormone deficiency. Virology 142(1):158–174PubMedCrossRefGoogle Scholar
  202. Ortega-Prieto AM, Sheldon J, Grande-Perez A, Tejero H, Gregori J, Quer J, Esteban JI, Domingo E, Perales C (2013) Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS ONE 8(8):e71039. doi: 10.1371/journal.pone.0071039 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J, Simons JF, Egholm M, Paddock CD, Shieh WJ, Goldsmith CS, Zaki SR, Catton M, Lipkin WI (2008) A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358(10):991–998PubMedCrossRefGoogle Scholar
  204. Pariente N, Airaksinen A, Domingo E (2003) Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J Virol 77(12):7131–7138PubMedPubMedCentralCrossRefGoogle Scholar
  205. Pasqual G, Rojek JM, Masin M, Chatton JY, Kunz S (2011) Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog 7(9):e1002232. doi: 10.1371/journal.ppat.1002232 ([pii] 10-PLPA-RA-4139)PubMedPubMedCentralCrossRefGoogle Scholar
  206. Perales C, Martin V, Ruiz-Jarabo CM, Domingo E (2005) Monitoring sequence space as a test for the target of selection in viruses. J Mol Biol 345(3):451–459. doi: 10.1016/j.jmb.2004.10.066 ([pii] S0022-2836(04)01372-5)PubMedCrossRefGoogle Scholar
  207. Perales C, Mateo R, Mateu MG, Domingo E (2007) Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 369(4):985–1000. doi: 10.1016/j.jmb.2007.03.074 PubMedCrossRefGoogle Scholar
  208. Perales C, Agudo R, Tejero H, Manrubia SC, Domingo E (2009) Potential benefits of sequential inhibitor-mutagen treatments of RNA virus infections. PLoS Pathog 5(11):e1000658. doi: 10.1371/journal.ppat.1000658 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Perales C, Iranzo J, Manrubia SC, Domingo E (2012) The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 20(12):595–603. doi: 10.1016/j.tim.2012.08.010 ([pii] S0966-842X(12)00155-2)PubMedCrossRefGoogle Scholar
  210. Perez M, de la Torre JC (2002) Characterization of the genomic promoter of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). J Virol (in Press)Google Scholar
  211. Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci USA 100(22):12978–12983PubMedPubMedCentralCrossRefGoogle Scholar
  212. Perez M, Greenwald DL, de la Torre JC (2004) Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 78(20):11443–11448PubMedPubMedCentralCrossRefGoogle Scholar
  213. Peters CJ (2002) Human Infection with Arenaviruses in the Americas. In: Oldstone MB (ed) Arenaviruses i, vol 262., Current topics in microbiology and immunologySpringer, Berlin, pp 65–74CrossRefGoogle Scholar
  214. Peters CJ (2006) Lymphocytic choriomeningitis virus—an old enemy up to new tricks. N Engl J Med 354(21):2208–2211PubMedCrossRefGoogle Scholar
  215. Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 100(12):7289–7294. doi: 10.1073/pnas.1232294100 PubMedPubMedCentralCrossRefGoogle Scholar
  216. Pfeiffer JK, Kirkegaard K (2005) Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog 1(2):e11. doi: 10.1371/journal.ppat.0010011 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Pinschewer DD, Perez M, Sanchez AB, de la Torre JC (2003) Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. Proc Natl Acad Sci USA 100(13):7895–7900PubMedPubMedCentralCrossRefGoogle Scholar
  218. Pinschewer DD, Perez M, de la Torre JC (2005) Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. J Virol 79(7):4519–4526PubMedPubMedCentralCrossRefGoogle Scholar
  219. Pinschewer DD, Flatz L, Steinborn R, Horvath E, Fernandez M, Lutz H, Suter M, Bergthaler A (2010) Innate and adaptive immune control of genetically engineered live-attenuated arenavirus vaccine prototypes. Int Immunol 22(9):749–756. doi: 10.1093/intimm/dxq061 PubMedCrossRefGoogle Scholar
  220. Pircher H, Moskophidis D, Rohrer U, Burki K, Hengartner H, Zinkernagel RM (1990) Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346(6285):629–633. doi: 10.1038/346629a0 PubMedCrossRefGoogle Scholar
  221. Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8(12):3867–3874PubMedPubMedCentralGoogle Scholar
  222. Polson AG, Bass BL (1994) Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 13(23):5701–5711PubMedPubMedCentralGoogle Scholar
  223. Prince GA, Ottolini MG, Moscona A (2001) Contribution of the human parainfluenza virus type 3 HN-receptor interaction to pathogenesis in vivo. J Virol 75(24):12446–12451. doi: 10.1128/JVI.75.24.12446-12451.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  224. Pulkkinen AJ, Pfau CJ (1970) Plaque size heterogeneity: a genetic trait of lymphocytic choriomeningitis virus. Appl Microbiol 20(1):123–128PubMedPubMedCentralGoogle Scholar
  225. Qi X, Lan S, Wang W, Schelde LM, Dong H, Wallat GD, Ly H, Liang Y, Dong C (2010) Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 468(7325):779–783. doi: 10.1038/nature09605 PubMedPubMedCentralCrossRefGoogle Scholar
  226. Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, Nagel J, Schmidt PJ, Nunberg JH, Andrews NC, Farzan M, Choe H (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446(7131):92–96 (Epub 2007 Feb 2007)PubMedPubMedCentralCrossRefGoogle Scholar
  227. Radoshitzky SR, Kuhn JH, Spiropoulou CF, Albarino CG, Nguyen DP, Salazar-Bravo J, Dorfman T, Lee AS, Wang E, Ross SR, Choe H, Farzan M (2008) Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc Natl Acad Sci USA 105(7):2664–2669. doi: 10.1073/pnas.0709254105 PubMedPubMedCentralCrossRefGoogle Scholar
  228. Richmond JK, Baglole DJ (2003) Lassa fever: epidemiology, clinical features, and social consequences. BMJ 327(7426):1271–1275. doi: 10.1136/bmj.327.7426.1271 PubMedPubMedCentralCrossRefGoogle Scholar
  229. Rima BK, Gatherer D, Young DF, Norsted H, Randall RE, Davison AJ (2014) Stability of the parainfluenza virus 5 genome revealed by deep sequencing of strains isolated from different hosts and following passage in cell culture. J Virol. doi: 10.1128/JVI.03351-13 Google Scholar
  230. Riviere Y (1987) Mapping arenavirus genes causing virulence. Curr Top Microbiol Immunol 133:59–65PubMedGoogle Scholar
  231. Riviere Y, Oldstone MB (1986) Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis. J Virol 59(2):363–368PubMedPubMedCentralGoogle Scholar
  232. Riviere Y, Ahmed R, Oldstone MB (1986) The use of lymphocytic choriomeningitis virus reassortants to map viral genes causing virulence. Med Microbiol Immunol 175(2–3):191–192PubMedCrossRefGoogle Scholar
  233. Rodrigo WW, de la Torre JC, Martinez-Sobrido L (2011) Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J Virol 85(4):1684–1695. doi: 10.1128/JVI.02229-10 PubMedPubMedCentralCrossRefGoogle Scholar
  234. Rojek JM, Kunz S (2008) Cell entry by human pathogenic arenaviruses. Cell Microbiol 10(4):828–835PubMedCrossRefGoogle Scholar
  235. Rojek JM, Perez M, Kunz S (2008a) Cellular entry of lymphocytic choriomeningitis virus. J Virol 82(3):1505–1517PubMedPubMedCentralCrossRefGoogle Scholar
  236. Rojek JM, Sanchez AB, Thao NN, de la Torre JC, Kunz S (2008b) Different mechanisms of cell entry by human pathogenic Old World and New World arenaviruses. J VirolGoogle Scholar
  237. Rojek JM, Pasqual G, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S (2010) Targeting the proteolytic processing of the viral glycoprotein precursor is a promising novel antiviral strategy against arenaviruses. J Virol 84(1):573–584. doi: 10.1128/JVI.01697-09 PubMedPubMedCentralCrossRefGoogle Scholar
  238. Rueda P, Garcia-Barreno B, Melero JA (1994) Loss of conserved cysteine residues in the attachment (G) glycoprotein of two human respiratory syncytial virus escape mutants that contain multiple A-G substitutions (hypermutations). Virology 198(2):653–662 ([pii] S0042682284710774)PubMedCrossRefGoogle Scholar
  239. Ruiz-Jarabo CM, Ly C, Domingo E, de la Torre JC (2003) Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308(1):37–47PubMedCrossRefGoogle Scholar
  240. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Sun W, Wang H, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe’er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Sham PC, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Johnson TA, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Yakub I, Birren BW, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L’Archeveque P, Bellemare G, Saeki K, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913–918. doi: 10.1038/nature06250 PubMedPubMedCentralCrossRefGoogle Scholar
  241. Salazar-Bravo J, Ruedas LA, Yates TL (2002) Mammalian reservoirs of arenaviruses. In: Oldstone MBA (ed) Arenaviruses I: the epidemiology, molecular and cell biology of arenaviruses, vol 262., Current topics in microbiology and immunologySpringer, Berlin, pp 25–63CrossRefGoogle Scholar
  242. Salvato MS, Shimomaye EM (1989) The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology 173(1):1–10PubMedCrossRefGoogle Scholar
  243. Salvato M, Borrow P, Shimomaye E, Oldstone MB (1991) Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J Virol 65(4):1863–1869PubMedPubMedCentralGoogle Scholar
  244. Sanchez AB, de la Torre JC (2005) Genetic and biochemical evidence for an oligomeric structure of the functional L polymerase of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 79(11):7262–7268PubMedPubMedCentralCrossRefGoogle Scholar
  245. Sanchez AB, de la Torre JC (2006) Rescue of the prototypic Arenavirus LCMV entirely from plasmid. Virology 350(2):370–380PubMedCrossRefGoogle Scholar
  246. Sanjuan R, Codoner FM, Moya A, Elena SF (2004) Natural selection and the organ-specific differentiation of HIV-1 V3 hypervariable region. Evolution 58(6):1185–1194PubMedCrossRefGoogle Scholar
  247. Sanz-Ramos M, Rodriguez-Calvo T, Sevilla N (2012) Mutagenesis-mediated decrease of pathogenicity as a feature of the mutant spectrum of a viral population. PLoS ONE 7(6):e39941. doi: 10.1371/journal.pone.0039941 PubMedPubMedCentralCrossRefGoogle Scholar
  248. Saunders AA, Ting JP, Meisner J, Neuman BW, Perez M, de la Torre JC, Buchmeier MJ (2007) Mapping the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J Virol 81(11):5649–5657. doi: 10.1128/JVI.02759-06 PubMedPubMedCentralCrossRefGoogle Scholar
  249. Scheidel LM, Durbin RK, Stollar V (1987) Sindbis virus mutants resistant to mycophenolic acid and ribavirin. Virology 158(1):1–7PubMedCrossRefGoogle Scholar
  250. Sevilla N, de la Torre JC (2006) Arenavirus diversity and evolution: quasispecies in vivo. In: Domingo E (ed) Quasispecies: concepts and implications for virology, current topics in microbiology and immunology, vol 299, pp 315–335Google Scholar
  251. Sevilla N, Kunz S, Holz A, Lewicki H, Homann D, Yamada H, Campbell KP, de La Torre JC, Oldstone MB (2000) Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 192(9):1249–1260PubMedPubMedCentralCrossRefGoogle Scholar
  252. Sevilla N, Domingo E, de la Torre JC (2002) Contribution of LCMV towards deciphering biology of quasispecies in vivo. Curr Top Microbiol Immunol 263:197–220PubMedGoogle Scholar
  253. Sidwell RW, Huffman JH, Allen LB, Meyer RB Jr, Shuman DA, Simon LN, Robins RK (1974) In vitro antiviral activity of 6-substituted 9-beta-D-ribofuranosylpurine 3′, 5′-cyclic phosphates. Antimicrob Agents Chemother 5(6):652–657PubMedPubMedCentralCrossRefGoogle Scholar
  254. Sierra S, Davila M, Lowenstein PR, Domingo E (2000) Response of foot-and-mouth disease virus to increased mutagenesis: influence of viral load and fitness in loss of infectivity. J Virol 74(18):8316–8323PubMedPubMedCentralCrossRefGoogle Scholar
  255. Smith EC, Blanc H, Vignuzzi M, Denison MR (2013) Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog 9(8):e1003565. doi: 10.1371/journal.ppat.1003565 PubMedPubMedCentralCrossRefGoogle Scholar
  256. Sogoba N, Feldmann H, Safronetz D (2012) Lassa fever in West Africa: evidence for an expanded region of endemicity. Zoonoses Public Health 59(Suppl 2):43–47. doi: 10.1111/j.1863-2378.2012.01469.x PubMedCrossRefGoogle Scholar
  257. Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY, Reavill DR, Dunker F, Derisi JL (2012) Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. MBio 3(4):e00180–e00112. doi: 10.1128/mBio.00180-12
  258. Strecker T, Eichler R, Meulen J, Weissenhorn W, Dieter Klenk H, Garten W, Lenz O (2003) Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles. J Virol 77(19):10700–10705 (corrected)PubMedPubMedCentralCrossRefGoogle Scholar
  259. Strecker T, Maisa A, Daffis S, Eichler R, Lenz O, Garten W (2006) The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 3:93. doi: 10.1186/1743-422X-3-93 PubMedPubMedCentralCrossRefGoogle Scholar
  260. Streeter DG, Witkowski JT, Khare GP, Sidwell RW, Bauer RJ, Robins RK, Simon LN (1973) Mechanism of action of 1-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc Natl Acad Sci USA 70(4):1174–1178PubMedPubMedCentralCrossRefGoogle Scholar
  261. Subbarao K, Katz JM (2004) Influenza vaccines generated by reverse genetics. Curr Top Microbiol Immunol 283:313–342PubMedGoogle Scholar
  262. Sullivan BM, Emonet SF, Welch MJ, Lee AM, Campbell KP, de la Torre JC, Oldstone MB (2011) Point mutation in the glycoprotein of lymphocytic choriomeningitis virus is necessary for receptor binding, dendritic cell infection, and long-term persistence. Proc Natl Acad Sci USA 108(7):2969–2974. doi: 10.1073/pnas.1019304108 PubMedPubMedCentralCrossRefGoogle Scholar
  263. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi: 10.1093/molbev/mst197 PubMedPubMedCentralCrossRefGoogle Scholar
  264. Tapia N, Fernandez G, Parera M, Gomez-Mariano G, Clotet B, Quinones-Mateu M, Domingo E, Martinez MA (2005) Combination of a mutagenic agent with a reverse transcriptase inhibitor results in systematic inhibition of HIV-1 infection. Virology 338(1):1–8. doi: 10.1016/j.virol.2005.05.008 PubMedCrossRefGoogle Scholar
  265. Teng MN, Borrow P, Oldstone MB, de la Torre JC (1996) A single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with the ability to cause growth hormone deficiency syndrome. J Virol 70(12):8438–8443PubMedPubMedCentralGoogle Scholar
  266. Tishon A, Eddleston M, de la Torre JC, Oldstone MB (1993) Cytotoxic T lymphocytes cleanse viral gene products from individually infected neurons and lymphocytes in mice persistently infected with lymphocytic choriomeningitis virus. Virology 197(1):463–467 ([pii] S0042682283716132)PubMedCrossRefGoogle Scholar
  267. Tortorici MA, Albarino CG, Posik DM, Ghiringhelli PD, Lozano ME, Rivera Pomar R, Romanowski V (2001) Arenavirus nucleocapsid protein displays a transcriptional antitermination activity in vivo. Virus Res 73(1):41–55 ([pii] S0168-1702(00)00222-7)PubMedCrossRefGoogle Scholar
  268. Trivedi P, Meyer KK, Streblow DN, Preuninger BL, Schultz KT, Pauza CD (1994) Selective amplification of simian immunodeficiency virus genotypes after intrarectal inoculation of rhesus monkeys. J Virol 68(11):7649–7653PubMedPubMedCentralGoogle Scholar
  269. Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J (2006) Cellular factors required for Lassa virus budding. J Virol 80(8):4191–4195PubMedPubMedCentralCrossRefGoogle Scholar
  270. Urata S, Yun N, Pasquato A, Paessler S, Kunz S, de la Torre JC (2011) Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J Virol 85(2):795–803. doi: 10.1128/JVI.02019-10 PubMedPubMedCentralCrossRefGoogle Scholar
  271. Valsamakis A, Riviere Y, Oldstone MB (1987) Perturbation of differentiated functions in vivo during persistent viral infection III: decreased growth hormone mRNA. Virology 156(2):214–220PubMedCrossRefGoogle Scholar
  272. Vazquez-Calvo A, Martin-Acebes MA, Saiz JC, Ngo N, Sobrino F, de la Torre JC (2013) Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Res 99(2):172–179. doi: 10.1016/j.antiviral.2013.05.012 PubMedPubMedCentralCrossRefGoogle Scholar
  273. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439(7074):344–348. doi: 10.1038/nature04388 PubMedPubMedCentralCrossRefGoogle Scholar
  274. Volpon L, Osborne MJ, Capul AA, de la Torre JC, Borden KL (2010) Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E. Proc Natl Acad Sci USA 107(12):5441–5446. doi: 10.1073/pnas.0909877107 PubMedPubMedCentralCrossRefGoogle Scholar
  275. von Messling V, Cattaneo R (2004) Toward novel vaccines and therapies based on negative-strand RNA viruses. Curr Top Microbiol Immunol 283:281–312Google Scholar
  276. Wachsman MB, Lopez EM, Ramirez JA, Galagovsky LR, Coto CE (2000) Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antivir Chem Chemother 11(1):71–77PubMedCrossRefGoogle Scholar
  277. Ward SV, George CX, Welch MJ, Liou LY, Hahm B, Lewicki H, de la Torre JC, Samuel CE, Oldstone MB (2011) RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc Natl Acad Sci USA 108(1):331–336. doi: 10.1073/pnas.1017241108 PubMedPubMedCentralCrossRefGoogle Scholar
  278. Weaver SC, Salas RA, de Manzione N, Fulhorst CF, Duno G, Utrera A, Mills JN, Ksiazek TG, Tovar D, Tesh RB (2000) Guanarito virus (arenaviridae) isolates from endemic and outlying localities in Venezuela: sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virology 266(1):189–195. doi: 10.1006/viro.1999.0067 ([pii] S0042-6822(99)90067-3)PubMedCrossRefGoogle Scholar
  279. Weaver SC, Salas RA, de Manzione N, Fulhorst CF, Travasos da Rosa AP, Duno G, Utrera A, Mills JN, Ksiazek TG, Tovar D, Guzman H, Kang W, Tesh RB (2001) Extreme genetic diversity among Pirital virus (Arenaviridae) isolates from western Venezuela. Virology 285(1):110–118. doi: 10.1006/viro.2001.0954 ([pii] S0042-6822(01)90954-7)PubMedCrossRefGoogle Scholar
  280. Wright CF, Morelli MJ, Thebaud G, Knowles NJ, Herzyk P, Paton DJ, Haydon DT, King DP (2011) Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus by using next-generation genome sequencing. J Virol 85(5):2266–2275. doi: 10.1128/JVI.01396-10 PubMedPubMedCentralCrossRefGoogle Scholar
  281. Wu-Hsieh B, Howard DH, Ahmed R (1988) Virus-induced immunosuppression: a murine model of susceptibility to opportunistic infection. J Infect Dis 158(1):232–235PubMedCrossRefGoogle Scholar
  282. York J, Nunberg JH (2006) Role of the stable signal peptide of Junin arenavirus envelope glycoprotein in pH-dependent membrane fusion. J Virol 80(15):7775–7780. doi: 10.1128/JVI.00642-06 ([pii] 80/15/7775)PubMedPubMedCentralCrossRefGoogle Scholar
  283. York J, Nunberg JH (2007) Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein. Virology 359(1):72–81. doi: 10.1016/j.virol.2006.08.048 ([pii] S0042-6822(06)00620-9)PubMedCrossRefGoogle Scholar
  284. York J, Romanowski V, Lu M, Nunberg JH (2004) The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex. J Virol 78(19):10783–10792. doi: 10.1128/JVI.78.19.10783-10792.2004 ([pii] 78/19/10783)PubMedPubMedCentralCrossRefGoogle Scholar
  285. Young PR, Howard CR (1983) Fine structure analysis of Pichinde virus nucleocapsids. J Gen Virol 64(Pt 4):833–842PubMedCrossRefGoogle Scholar
  286. Young KC, Lindsay KL, Lee KJ, Liu WC, He JW, Milstein SL, Lai MM (2003) Identification of a ribavirin-resistant NS5B mutation of hepatitis C virus during ribavirin monotherapy. Hepatology 38(4):869–878. doi: 10.1053/jhep.2003.50445 PubMedCrossRefGoogle Scholar
  287. Zahn RC, Schelp I, Utermohlen O, von Laer D (2007) A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus. J Virol 81(2):457–464. doi: 10.1128/JVI.00067-06 PubMedPubMedCentralCrossRefGoogle Scholar
  288. Zapata JC, Salvato MS (2013) Arenavirus variations due to host-specific adaptation. Viruses 5(1):241–278. doi: 10.3390/v5010241 PubMedPubMedCentralCrossRefGoogle Scholar
  289. Zinkernagel RM (2002) Lymphocytic choriomeningitis virus and immunology. Curr Top Microbiol Immunol 263:1–5PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ana Grande-Pérez
    • 1
  • Veronica Martin
    • 1
  • Hector Moreno
    • 1
  • Juan C. de la Torre
    • 1
    Email author
  1. 1.Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaUSA

Personalised recommendations