Advertisement

Antiviral Strategies Based on Lethal Mutagenesis and Error Threshold

  • Celia Perales
  • Esteban DomingoEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 392)

Abstract

The concept of error threshold derived from quasispecies theory is at the basis of lethal mutagenesis, a new antiviral strategy based on the increase of virus mutation rate above an extinction threshold. Research on this strategy is justified by several inhibitor-escape routes that viruses utilize to ensure their survival. Successive steps in the transition from an organized viral quasispecies into loss of biologically meaningful genomic sequences are dissected. The possible connections between theoretical models and experimental observations on lethal mutagenesis are reviewed. The possibility of using combination of virus-specific mutagenic nucleotide analogues and broad-spectrum, non-mutagenic inhibitors is evaluated. We emphasize the power that quasispecies theory has had to stimulate exploration of new means to combat pathogenic viruses.

Keywords

Mutagenic Agent Fitness Landscape Mutant Spectrum Error Threshold Progeny Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are indebted to many colleagues in our laboratory for their contributions to quasispecies investigation, as reflected in the reference list. Work supported by grants BFU2011-23604 and SAF2014-52400-R from Spanish Ministries, and S2013/ABI-2906 (PLATESA) from Comunidad Autónoma de Madrid and Fundación Ramón Areces. CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas) is funded by Instituto de Salud Carlos III. C.P. is supported by the Miguel Servet program of the Instituto de Salud Carlos III (CP14/00121).

References

  1. Agudo R, Arias A, Pariente N et al (2008) Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis. J Mol Biol 382:652–666CrossRefPubMedGoogle Scholar
  2. Anderson JP, Daifuku R, Loeb LA (2004) Viral error catastrophe by mutagenic nucleosides. Annu Rev Microbiol 58:183–205CrossRefPubMedGoogle Scholar
  3. Arias A, Isabel de Avila A, Sanz-Ramos M et al (2013) Molecular dissection of a viral quasispecies under mutagenic treatment: positive correlation between fitness loss and mutational load. J Gen Virol 94:817–830CrossRefPubMedGoogle Scholar
  4. Arias A, Thorne L, Goodfellow I (2014) Favipiravir elicits antiviral mutagenesis during virus replication in vivo. eLife 3:e03679Google Scholar
  5. Baranovich T, Wong SS, Armstrong J et al (2013) T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 87:3741–3751CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cale EM, Hraber P, Giorgi EE et al (2011) Epitope-specific CD8 + T lymphocytes cross-recognize mutant simian immunodeficiency virus (SIV) sequences but fail to contain very early evolution and eventual fixation of epitope escape mutations during SIV infection. J Virol 85:3746–3757CrossRefPubMedPubMedCentralGoogle Scholar
  7. Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA 98:6895–6900CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cupples CG, Miller JH (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci USA 86:5345–5349CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dapp MJ, Patterson SE, Mansky LM (2013) Back to the future: revisiting HIV-1 lethal mutagenesis. Trends Microbiol 21:56–62CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Clercq E (2015) Ebola virus (EBOV) infection: therapeutic strategies. Biochem Pharmacol 93:1–10CrossRefPubMedGoogle Scholar
  11. Domingo E (2000) Viruses at the edge of adaptation. Virology 270:251–253CrossRefPubMedGoogle Scholar
  12. Domingo E, Brun A, Núñez JI et al (2006) Genomics of Viruses. In: Hacker J, Dobrindt U (eds) Pathogenomics: genome analysis of pathogenic microbes. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, pp 369–388Google Scholar
  13. Domingo E, Schuster P (2016) What is a quasispecies? Historical origins and current scope. Curr Top Microbiol Immunol doi: 10.1007/82_2015_453
  14. Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76:159–216CrossRefPubMedPubMedCentralGoogle Scholar
  15. Domingo E (ed) (2005) Virus entry into error catastrophe as a new antiviral strategy. Virus Res 107:115–228Google Scholar
  16. Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eigen M (2013) From strange simplicity to complex amiliarity. Oxford University Press, OxfordCrossRefGoogle Scholar
  18. Fischer W, Ganusov VV, Giorgi EE et al (2010) Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing. PLoS ONE 5:e12303CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gerold G, Pietschmann T (2014) The HCV life cycle: in vitro tissue culture systems and therapeutic targets. Dig Dis 32:525–537CrossRefPubMedGoogle Scholar
  20. González-López C, Arias A, Pariente N et al (2004) Preextinction viral RNA can interfere with infectivity. J Virol 78:3319–3324CrossRefPubMedPubMedCentralGoogle Scholar
  21. González-López C, Gómez-Mariano G, Escarmís C et al (2005) Invariant aphthovirus consensus nucleotide sequence in the transition to error catastrophe. Inf Genet Evol 5:366–374CrossRefGoogle Scholar
  22. Graci JD, Cameron CE (2008) Therapeutically targeting RNA viruses via lethal mutagenesis. Future Virol 3:553–566CrossRefPubMedPubMedCentralGoogle Scholar
  23. Grande-Pérez A, Gómez-Mariano G, Lowenstein PR et al (2005a) Mutagenesis-induced, large fitness variations with an invariant arenavirus consensus genomic nucleotide sequence. J Virol 79:10451–10459CrossRefPubMedPubMedCentralGoogle Scholar
  24. Grande-Pérez A, Lazaro E, Lowenstein P et al (2005b) Suppression of viral infectivity through lethal defection. Proc Natl Acad Sci USA 102:4448–4452CrossRefPubMedPubMedCentralGoogle Scholar
  25. Grande-Perez, A, Martin V, Moreno H, de la torre JC (2016) Arenavirus quasispecies and their biological implications. Current Topics in Microbiol and immunol. doi: 10.1007/82_2015_468
  26. Holland JJ, Spindler K, Horodyski F et al (1982) Rapid evolution of RNA genomes. Science 215:1577–1585CrossRefPubMedGoogle Scholar
  27. Holland JJ, Domingo E, de la Torre JC et al (1990) Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 64:3960–3962PubMedPubMedCentralGoogle Scholar
  28. Iranzo J, Perales C, Domingo E et al (2011) Tempo and mode of inhibitor-mutagen antiviral therapies: a multidisciplinary approach. Proc Natl Acad Sci USA 108:16008–16013CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li YP, Ramirez S, Mikkelsen L et al (2015) Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77. J Virol 89:811–823CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lindenbach BD, Evans MJ, Syder AJ et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626CrossRefPubMedGoogle Scholar
  31. Loeb LA, Essigmann JM, Kazazi F et al (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA 96:1492–1497CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lucas-Hourani M, Dauzonne D, Jorda P et al (2013) Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog 9:e1003678CrossRefPubMedPubMedCentralGoogle Scholar
  33. Moreno H, Grande-Perez A, Domingo E et al (2012) Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses 4:2786–2805PubMedGoogle Scholar
  34. Mullins JI, Heath L, Hughes JP et al (2011) Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461. PLoS ONE 6:e15135CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nájera I, Holguín A, Quiñones-Mateu ME et al (1995) Pol gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy. J Virol 69:23–31PubMedPubMedCentralGoogle Scholar
  36. Nijhuis M, van Maarseveen NM, Boucher CA (2009) Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases. Handb Exp Pharmacol 299–320Google Scholar
  37. Oestereich L, Ludtke A, Wurr S et al (2014) Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res 105:17–21CrossRefPubMedGoogle Scholar
  38. Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49:517–521CrossRefPubMedPubMedCentralGoogle Scholar
  39. Orgel LE (1973) Ageing of clones of mammalian cells. Nature 243:441–445CrossRefPubMedGoogle Scholar
  40. Ortega-Prieto AM, Sheldon J, Grande-Perez A et al (2013) Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS ONE 8:e71039CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ortiz-Riano E, Ngo N, Devito S et al (2014) Inhibition of arenavirus by A3, a pyrimidine biosynthesis inhibitor. J Virol 88:878–889CrossRefPubMedPubMedCentralGoogle Scholar
  42. Padmanabhan P, Dixit NM (2016) Models of viral population dynamics. Curr Top Microbiol Immunol. doi: 10.1007/82_2015_458
  43. Pariente N, Sierra S, Lowenstein PR et al (2001) Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. J Virol 75:9723–9730CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pariente N, Airaksinen A, Domingo E (2003) Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J Virol 77:7131–7138CrossRefPubMedPubMedCentralGoogle Scholar
  45. Perales C, Mateo R, Mateu MG et al (2007) Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 369:985–1000CrossRefPubMedGoogle Scholar
  46. Perales C, Agudo R, Tejero H et al (2009) Potential benefits of sequential inhibitor-mutagen treatments of RNA virus infections. PLoS Pathog 5:e1000658CrossRefPubMedPubMedCentralGoogle Scholar
  47. Perales C, Agudo R, Manrubia SC et al (2011a) Influence of mutagenesis and viral load on the sustained low-level replication of an RNA virus. J Mol Biol 407:60–78CrossRefPubMedGoogle Scholar
  48. Perales C, Henry M, Domingo E et al (2011b) Lethal mutagenesis of foot-and-mouth disease virus involves shifts in sequence space. J Virol 85:12227–12240CrossRefPubMedPubMedCentralGoogle Scholar
  49. Perales C, Iranzo J, Manrubia SC et al (2012) The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 20:595–603CrossRefPubMedGoogle Scholar
  50. Perales C, Beach NM, Gallego I et al (2013) Response of hepatitis C virus to long-term passage in the presence of alpha interferon: multiple mutations and a common phenotype. J Virol 87:7593–7607CrossRefPubMedPubMedCentralGoogle Scholar
  51. Perales C, Beach NM, Sheldon J et al (2014) Molecular basis of interferon resistance in hepatitis C virus. Curr Opin Virol 8C:38–44CrossRefGoogle Scholar
  52. Perales C, Iranzo J, Sheldon J et al (2015) Impact of fitness and inhibition in the response of hepatitis C to lethal mutagenesis (Manuscript in preparation)Google Scholar
  53. Richman DD (1996) Antiviral drug resistance. Wiley, New YorkGoogle Scholar
  54. Ruiz-Jarabo CM, Ly C, Domingo E et al (2003) Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308:37–47CrossRefPubMedGoogle Scholar
  55. Schuster P (2016) Quasispecies on fitness landscapes. Curr Top Microbiol Immunol. doi: 10.1007/82_2015_469
  56. Sheldon J, Beach NM, Moreno E et al (2014) Increased replicative fitness can lead to decreased drug sensitivity of hepatitis C virus. J Virol 88:12098–12111CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sierra S, Dávila M, Lowenstein PR et al (2000) Response of foot-and-mouth disease virus to increased mutagenesis. Influence of viral load and fitness in loss of infectivity. J Virol 74:8316–8323CrossRefPubMedPubMedCentralGoogle Scholar
  58. Smither SJ, Eastaugh LS, Steward JA et al (2014) Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antiviral Res 104:153–155CrossRefPubMedGoogle Scholar
  59. Steinmeyer SH, Wilke CO (2009) Lethal mutagenesis in a structured environment. J Theor Biol 261:67–73CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tapia N, Fernandez G, Parera M et al (2005) Combination of a mutagenic agent with a reverse transcriptase inhibitor results in systematic inhibition of HIV-1 infection. Virology 338:1–8CrossRefPubMedGoogle Scholar
  61. Tejero H, Montero F, Nuño JC (2016) Theories of lethal mutagenesis: from error catastrophe to lethal defection. Curr top Microbiol immunol. doi: 10.1007/82_2015_463
  62. Tsibris AM, Korber B, Arnaout R et al (2009) Quantitative deep sequencing reveals dynamic HIV-1 escape and large population shifts during CCR5 antagonist therapy in vivo. PLoS ONE 4:e5683CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wakita T, Pietschmann T, Kato T et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhong J, Gastaminza P, Cheng G et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102:9294–9299CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd)BarcelonaSpain
  3. 3.Liver UnitInternal Medicine, Laboratori of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d’Hebron, Universitat Autonoma de BarcelonaBarcelonaSpain

Personalised recommendations