Advertisement

What Is a Quasispecies? Historical Origins and Current Scope

  • Esteban DomingoEmail author
  • Peter SchusterEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 392)

Abstract

The quasispecies concept is introduced by means of a simple theoretical model that uses as little chemical kinetics and mathematics as possible but fully in the spirit of Albert Einstein who said: “Things should be made as simple as possible but not simpler.” More elaborate treatments follow in the forthcoming chapters. It is shown that the most important results of the theory, in particular the existence of error thresholds, are not dependent on simplifying assumptions concerning the distribution of fitness values. Error thresholds are regularly found on landscapes with large and irregular scatter of fitness. After the introduction to theory, it will be shown how experimental data on the evolution of molecules or viruses may be fit to the theoretical model.

Keywords

Mutation Rate Center Manifold Viral Population Mutant Spectrum Error Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Peter Schuster wishes to acknowledge support by the University of Vienna, Wien, Austria and the Santa Fe Institute, Santa Fe, USA. Esteban Domingo acknowledges the support of grants BFU 2011-23604 and SAF2014-52400-R from Ministerio de Economía y Competitividad, grant S2013/ABI-2906 (PLATESA) from Comunidad Autónoma de Madrid, CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas) which is funded by Instituto de Salud Carlos III, and Fundación Ramón Areces.

References

  1. Alves D, Fontanari JF (1998) Error threshold in finite populations. Phys Rev E 57:7008–7013CrossRefGoogle Scholar
  2. Arias A, Lazaro E, Escarmis C, Domingo E (2001) Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. J Gen Virol 82:1049–1060CrossRefPubMedGoogle Scholar
  3. Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog 5(5):e1000421CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bateman DA, Wickner RB (2013) The [PSI+] prion exists as a dynamic cloud of variants. PLoS Genet 9(1):e1003257CrossRefPubMedPubMedCentralGoogle Scholar
  5. Batschelet E, Domingo E, Weissmann C (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1:27–32CrossRefPubMedGoogle Scholar
  6. Bernacki JP, Murphy RM (2009) Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys J 96(7):2871–2887CrossRefPubMedPubMedCentralGoogle Scholar
  7. Biebricher CK (1983) Darwinian selection of self-replicating RNA molecules. Evol Biol 16:1–52CrossRefGoogle Scholar
  8. Biebricher CK, Eigen M, Gardiner WC Jr (1983) Kinetics of RNA replication. Biochemistry 22:2544–2559CrossRefPubMedGoogle Scholar
  9. Billeter M (1978) Sequence and location of large RNase T1 oligonucleotides in bacteriophage Qβ RNA. J Biol Chem 253:8381–8389PubMedGoogle Scholar
  10. Carr J (1981) Applications of centre manifold theory. Springer, BerlinCrossRefGoogle Scholar
  11. Castilla J, Morales R, Saa P, Barria M, Gambetti P, Soto C (2008) Cell-free propagation of prion strins. EMBO J 27(19):2557–2566CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castro C, Arnold JJ, Cameron CE (2005) Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res 107:141–149CrossRefPubMedGoogle Scholar
  13. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York (Reprinted at The Blackburn Press, Caldwell, NJ, 2009)Google Scholar
  14. Derrida B, Peliti L (1991) Evolution in a flat fitness landscape. Bull Math Biol 53:355–382CrossRefGoogle Scholar
  15. Domingo E, Flavell RA, Weissmann C (1976) In vitro site-directed mutagenesis: generation and properties of an infectious extracistronic mutant of bacteriophage Qβ. Gene 1:3–25CrossRefPubMedGoogle Scholar
  16. Domingo E, Sabo D, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744CrossRefPubMedGoogle Scholar
  17. Domingo E, Davila M, Ortin J (1980) Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth-disease virus. Gene 11:333–346CrossRefPubMedGoogle Scholar
  18. Domingo E, Martínez-Salas E, Sobrino F, de la Torre JC, Portela A, Ortín J, López-Galindez C, Pérez-Breña P, Villanueva N, Nájera R, VandePol S, Steinhauer D, DePolo N, Holland JJ (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance–a review. Gene 40:1–8CrossRefPubMedGoogle Scholar
  19. Domingo E, Holland JJ, Ahlquist P (1988) RNA genetics. CRC Press, Boca RatonGoogle Scholar
  20. Domingo E, Holland JJ, Biebricher C, Eigen M (1995) Quasispecies: the concept and the word. In: Gibbs A, Calisher C, García-Arenal F (eds) Molecular evolution of the viruses. Cambridge University Press, Cambridge, pp 171–180Google Scholar
  21. Domingo E, Biebricher C, Eigen M, Holland JJ (2001) Quasispecies and RNA virus evolution: principles and consequences. Landes Bioscience, AustinGoogle Scholar
  22. Domingo E, Ruiz-Jarabo CM, Arias A, Garcia-Arriaza JF, Escarmís C (2004) Quasispecies dynamics and evolution of foot-and-mouth disease virus. In: Sobrino F, Domingo E (eds) Foot-and-mouth disease. Horizon Bioscience, WymondhamGoogle Scholar
  23. Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76:159–216CrossRefPubMedPubMedCentralGoogle Scholar
  24. Drake JW (1993) Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA 90:4171–4175CrossRefPubMedPubMedCentralGoogle Scholar
  25. Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58:465–523CrossRefPubMedGoogle Scholar
  27. Eigen M (2000) Natural selection: a phase transition? Biophys Chem 85:101–123CrossRefPubMedGoogle Scholar
  28. Eigen M, Schuster P (1977) The hypercycle—a principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64:541–565Google Scholar
  29. Eigen M, Schuster P (1978a) The hypercycle—a principle of natural self-organization. Part B: The abstract hypercycle. Naturwissenschaften 65:7–41Google Scholar
  30. Eigen M, Schuster P (1978b) The hypercycle—a principle of natural self-organization. Part C: The realistic hypercycle. Naturwissenschaften 65:341–369Google Scholar
  31. Eigen M, Schuster P (1979) The hypercycle. A principle of natural self-organization, Springer, BerlinCrossRefGoogle Scholar
  32. Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Ahlquist P, Holland JJ (eds) RNA genetics. CRC Press Inc, Boca Raton, FL., pp 211–245Google Scholar
  33. Eigen M, McCaskill J, Schuster P (1989) The molecular quasispecies. Adv Chem Phys 75:149–263Google Scholar
  34. Flavell RA, Sabo DL, Bandle EF, Weissmann C (1974) Site-directed mutagenesis: generation of an extracistronic mutation in bacteriophage Q beta RNA. J Mol Biol 89:255–272CrossRefPubMedGoogle Scholar
  35. Fox EJ, Loeb LA (2010) Lethal mutagenesis: targeting the phenotype in cancer. Semin Cancer Biol 20(5):353–359CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gago S, Elena SF, Flores R, Sanjuan R (2009) Extremely high mutation rate of a hammerhead viroid. Science 323:1308CrossRefPubMedGoogle Scholar
  37. Gatenby RA, Frieden BR (2002) Application of information theory and extreme physical information to carcinogenesis. Cancer Res 62(13):3675–3684PubMedGoogle Scholar
  38. Gatenby RA, Silva AS, Gilles RJ, Frieden BR (2009) Adaptive therapy. Cancer Res 69(11):4894–4903CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ghaemmaghami S, Ahn M, Lessard P, Giles K, Legname G, DeArmond SJ, Prusiner SB (2009) Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog 5(11):e1000673CrossRefPubMedPubMedCentralGoogle Scholar
  40. Holland JJ (2006) Transitions in understanding of RNA viruses: an historical perspective. Curr Top Microbiol Immunol 299:371–401PubMedGoogle Scholar
  41. Holland JJ, Grabau EA, Jones CL, Semler BL (1979) Evolution of multiple genome mutations during long-term persistent infection by vesicular stomatitis virus. Cell 16:495–504CrossRefPubMedGoogle Scholar
  42. Holland JJ, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585CrossRefPubMedGoogle Scholar
  43. Huynen MA, Stadler PF, Fontana W (1996) Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci USA 93:397–401Google Scholar
  44. Jones BL, Enns RH, Rangnekar SS (1976) On the theory of selection of coupled macromolecular systems. Bull Math Biol 38:15–28CrossRefGoogle Scholar
  45. Kouyos RD, Leventhal GE, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Bonhoeffer S (2012) Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet 8:e1002551CrossRefPubMedPubMedCentralGoogle Scholar
  46. Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327:869–872CrossRefPubMedPubMedCentralGoogle Scholar
  47. Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mahal SP, Browning S, Li J, Suponitsky-Kroyter I, Weissmann C (2010) Transfer of a prion strain to different hosts leads to emergence of strain varriants. Proc Natl Acad Sci USA 107(52):22653–22658CrossRefPubMedPubMedCentralGoogle Scholar
  49. Marin A, Tejero H, Nuño JC, Montero F (2012) Characteristic time in quasispecies evolution. J Theor Biol 303:25–32CrossRefPubMedGoogle Scholar
  50. Mas A, Lopez-Galíndez C, Cacho I, Gomez J, Martínez MA (2010) Unfinished stories on viral quasispecies and Darwinian views of evolution. J Mol Biol 397(4):865–877CrossRefPubMedGoogle Scholar
  51. Mills DR, Peterson RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci USA 58:217–224CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nicolson GL (1987) Tumor cell instability, diversification, and progression to the metastatic phenotype. From oncogene to oncophetal expression. Cancer Res 47(6):1473–1487PubMedGoogle Scholar
  53. Nowak MA (2006) Evolutionary Dynamics. The Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  54. Nowak M, Schuster P (1989) Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. J Theor Biol 137:375–395CrossRefPubMedGoogle Scholar
  55. Nowell P (1976) The clonal evolution of tumor cell populations. Science 194:23–28CrossRefPubMedGoogle Scholar
  56. Ochoa G (2006) Error thresholds in genetic algorithms. Evol Comput 14:157–182CrossRefPubMedGoogle Scholar
  57. Oelschlegel AM, Weissmann C (2013) Acquisition of drug resistance and dependence by prions. PLoS Pathog 9:e1003158CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ojosnegros S, Perales C, Mas A, Domingo E (2011) Quasispecies as a matter of fact: viruses and beyond. Virus Res 162:203–215CrossRefPubMedGoogle Scholar
  59. Park JM, Munoz E, Deem MW (2010) Quasispecies theory for finite populations. Phys Rev 81:011902Google Scholar
  60. Saakian DB, Hu CK (2006) Exact solution of the Eigen model with general fitness functions and degradation rates. Proc Natl Acad Sci USA 103:4935–4939CrossRefPubMedPubMedCentralGoogle Scholar
  61. Saakian DB, Munoz E, Hu CK, Deem MW (2006) Quasispecies theory for multiple-peak fitness landscapes. Phys Rev E 73:041913CrossRefGoogle Scholar
  62. Saakian DB, Biebricher CK, Hu CK (2009) Phase diagram for the Eigen quasispecies theory with a truncated fitness landscape. Phys Rev 79:041905Google Scholar
  63. Schuster P (2006) Prediction of RNA secondary structures: from theory to models and real molecules. Rep Prog Phys 69:1419–1477CrossRefGoogle Scholar
  64. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84:9733–9748CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schuster P (2010a) Genotypes and phenotypes in the evolution of molecules. In: Caetono-Anolles G (ed) Evolutionary genomics and systems biology. Wiley-Blackwell, New Jersey, pp 123–152Google Scholar
  66. Schuster P (2010b) Mathematical modeling of evolution. Solved and open problems. Theory Biosci 130:71–89CrossRefPubMedGoogle Scholar
  67. Schuster P (2012) Evolution on ‘realistic’ fitness landscapes. Phase transitions, strong quasispecies, and neutrality. Santa Fe Institute working paper #12-06-006, Santa Fe Institute, Santa FeGoogle Scholar
  68. Sobrino F, Dávila M, Ortín J, Domingo E (1983) Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128:310–318CrossRefPubMedGoogle Scholar
  69. Solé RV, Deisboeck TS (2004) An error catastrophe in cancer? J Theor Biol 228(1):47–54CrossRefPubMedGoogle Scholar
  70. Solé RV, Valverde S, Rodriguez-Caso C, Sardanyés J (2014) Can a minimal replicating construct be identified as the embodiment of cancer? BioEssays 36:503–512CrossRefPubMedGoogle Scholar
  71. Spiess EB (1977) Genes in populations. Wiley, New YorkGoogle Scholar
  72. Steinhauer DA, Holland JJ (1986) Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J Virol 57:219–228PubMedPubMedCentralGoogle Scholar
  73. Takeuchi N, Hogeweg P (2007) Error-threshold exists in fitness landscapes with lethal mutants. BMC Evol Biol 7(15):author reply 15Google Scholar
  74. Thompson CJ, McBride JL (1974) On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math Biosci 21:127–142CrossRefGoogle Scholar
  75. Vanni I, Di Bari MA, Pirisinu L, D’Agostino C, Agrimi U, Nonno R (2014) In vitro replication highlights the mutability of prions. Prion 8:154–160CrossRefPubMedGoogle Scholar
  76. Ward CD, Flanegan JB (1992) Determination of the poliovirus RNA polymerase error frequency at eight sites in the viral genome. J Virol 66:3784–3793PubMedPubMedCentralGoogle Scholar
  77. Weissmann C (2012) Mutation and selection of prions. PLoS Pathog 8:e1002582CrossRefPubMedPubMedCentralGoogle Scholar
  78. Weissmann C, Tanaguchi T, Domingo E, Sabo D, Flavell RA (1977) Site-directed mutagenesis as a tool in genetics. In: Schultz J, Brada Z (eds) Genetic manipulation as it affects the cancer problem. Academic Press, New York, pp 11–36Google Scholar
  79. Weissmann C, Li J, Mahal SP, Browning S (2011) Prions on the move. EMBO Rep 12:1109–1117CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wilke CO (2005) Quasispecies theory in the context of population genetics. BMC Evol Biol 5:44CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wilke CO, Ronnewinkel C, Martinetz T (2001) Dynamic fitness landscapes in molecular evolution. Phys Rep 349:395–446CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)BarcelonaSpain
  3. 3.Institut für Theoretische Chemie der Universität WienViennaAustria
  4. 4.The Santa Fe InstituteSanta FeUSA

Personalised recommendations