Advertisement

The Triple Threat of HIV-1 Protease Inhibitors

  • Marc Potempa
  • Sook-Kyung Lee
  • Richard Wolfenden
  • Ronald SwanstromEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 389)

Abstract

HIV Maturation. This illustration shows an immature virion in the process of maturation at bottom right and a nearly mature virion at upper left. HIV protease (A) is cleaving the Gag and Gag-Pol proteins into functional proteins

Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose–response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.

Keywords

Nuclear Pore Complex Cleavage Event Transition State Analog Reverse Transcription Complex Gp41 Fusion Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

HIV

Human immunodeficiency virus

PR

Protease

PI

Protease inhibitor

RT

Reverse transcriptase

IN

Integrase

TF

Transframe

MA

Matrix

CA

Capsid

NC

Nucleocapsid

SP1

Spacer peptide 1

SP2

Spacer peptide 2

Env

Envelope

CT

Cytoplasmic tail

DRV

Darunavir

TPV

Tipranavir

SQV

Saquinavir

NNRTI

Non-nucleoside reverse transcriptase inhibitor

NRTI

Nucleoside reverse transcriptase inhibitor

INSTI

Integrase strand transfer inhibitor

AZT

Zidovudine

RTC

Reverse transcription complex

RNP

Ribonucleoprotein

PIC

Pre-integration complex

NPC

Nuclear pore complex

Notes

Acknowledgments

We thank Dr. Nicolas Sluis-Cremer for providing NNRTI and NRTI Ki values. Our own work is supported by the National Institutes of Health (NIH). M.P. is supported, in part, by NIH Training Grant T32 AI 07001-36. We also thank Dr. Celia Schiffer for many helpful discussions.

References

  1. Abrahamyan LG, Mkrtchyan SR, Binley J, Lu M, Melikyan GB, Cohen FS (2005) The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 env from a late prebundle configuration into the six-helix bundle. J Virol 79:106–115PubMedCentralPubMedGoogle Scholar
  2. Alfadhli A, Barklis RL, Barklis E (2009) HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 387:466–472PubMedCentralPubMedGoogle Scholar
  3. Altman MD, Ali A, Reddy KK, Nalam MNL, Anjum SG, Cao H, Chellappan S, Kairys V, Fernandes MX, Gilson MK, Schiffer CA, Rana TM, Tidor B (2008) HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants. J Am Chem Soc 130:6099–6113PubMedCentralPubMedGoogle Scholar
  4. Ambrose Z, Julias JG, Boyer PL, KewalRamani VN, Hughes SH (2006) The level of reverse transcriptase (RT) in human immunodeficiency virus type 1 particles affects susceptibility to nonnucleoside RT inhibitors but not to Lamivudine. J Virol 80:2578–2581PubMedCentralPubMedGoogle Scholar
  5. Arfi V, Lienard J, Nguyen XN, Berger G, Rigal D, Darlix JL, Cimarelli A (2009) Characterization of the behavior of functional viral genomes during the early steps of human immunodeficiency virus type 1 infection. J Virol 83:7524–7535PubMedCentralPubMedGoogle Scholar
  6. Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherfod S, Prévost MC, Allen TD, Charneau P (2007) HIV-1 DNA flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 26:3025–3037PubMedCentralPubMedGoogle Scholar
  7. Arribas JR, Horban A, Gerstoft J, Fätkenheuer G, Nelson M, Clumeck N, Pulido F, Hill A, van Delft Y, Stark T, Moecklinghoff C (2010) The MONET trial: darunavir/ritonavir with or without nucleoside analogues, for patients with HIV RNA below 50 copies/ml. AIDS 24:223–230PubMedGoogle Scholar
  8. Arribas JR, Clumeck N, Nelson M, Hill A, Delft Y, Moecklinghoff C (2012) The MONET trial: week 144 analysis of the efficacy of darunavir/ritonavir (DRV/r) monotherapy versus DRV/r plus two nucleoside reverse transcriptase inhibitors, for patients with viral load <50 HIV-1 RNA copies/mL at baseline. HIV Med 13:398–405PubMedGoogle Scholar
  9. Arrildt KT, Joseph SB, Swanstrom R (2012) The HIV-1 env protein: a coat of many colors. Curr HIV/AIDS Rep 9:52–63PubMedCentralPubMedGoogle Scholar
  10. Babé LM, Rosé J, Craik CS (1995) Trans-dominant inhibitory human immunodeficiency virus type 1 protease monomers prevent protease activation and virion maturation. Proc Natl Acad Sci 92:10069–10073PubMedCentralPubMedGoogle Scholar
  11. Bally F, Martinez R, Peters S, Sudre P, Telenti A (2000) Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors. AIDS Res Hum Retroviruses 16:1209–1213PubMedGoogle Scholar
  12. Barat C, Schatz O, Le Grice S, Darlix JL (1993) Analysis of the interactions of HIV1 replication primer tRNALys,3 with nucleocapsid protein and reverse transcriptase. J Mol Biol 231:185–190PubMedGoogle Scholar
  13. Bathurst IC, Moen LK, Lujan MA, Gibson HL, Feucht PH, Pichuantes S, Craik CS, Santi DV, Barr PJ (1990) Characterization of the human immunodeficiency virus type-1 reverse transcriptase enzyme produced in yeast. Biochem Biophys Res Commun 171:589–595PubMedGoogle Scholar
  14. Bhattacharya J, Repik A, Clapham PR (2006) Gag regulates association of human immunodeficiency virus type 1 envelope with detergent-resistant membranes. J Virol 80:5292–5300PubMedCentralPubMedGoogle Scholar
  15. Bieniasz PD (2009) The cell biology of HIV-1 virion genesis. Cell Host Microbe 5:550–558PubMedCentralPubMedGoogle Scholar
  16. Bierman WFW, van Agtmael MA, Nijhuis M, Danner SA, Boucher CAB (2009) HIV monotherapy with ritonavir-boosted protease inhibitors: a systematic review. AIDS 23:279–291PubMedGoogle Scholar
  17. Bleiber G, Munoz M, Ciuffi A, Meylan P, Telenti A (2001) Individual contributions of mutant protease and reverse transcriptase to viral infectivity, replication, and protein maturation of antiretroviral drug-resistant human immunodeficiency virus type 1. J Virol 75:3291–3300PubMedCentralPubMedGoogle Scholar
  18. Blumenthal R, Durell S, Viard M (2012) HIV entry and envelope glycoprotein-mediated fusion. J Biol Chem 287:40841–40849PubMedCentralPubMedGoogle Scholar
  19. Boyer PL, Sarafianos SG, Arnold E, Hughes SH (2001) Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J Virol 75:4832–4842PubMedCentralPubMedGoogle Scholar
  20. Brandano L, Stevenson M (2012) A highly conserved residue in the C-terminal helix of HIV-1 matrix is required for envelope incorporation into virus particles. J Virol 86:2347–2359PubMedCentralPubMedGoogle Scholar
  21. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926PubMedGoogle Scholar
  22. Braz VA, Holladay LA, Barkley MD (2010) Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers. Biochemistry 49:601–610PubMedCentralPubMedGoogle Scholar
  23. Briggs JAG, Simon MN, Gross I, Kräusslich H-G, Fuller SD, Vogt VM, Johnson MC (2004) The stoichiometry of gag protein in HIV-1. Nat Struct Mol Biol 11:672–675PubMedGoogle Scholar
  24. Bryant M, Ratner L (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA 87:523–527PubMedCentralPubMedGoogle Scholar
  25. Buckman JS, Bosche WJ, Gorelick RJ (2003) Human immunodeficiency virus type 1 nucleocapsid Zn2+ fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA. J Virol 77:1469–1480PubMedCentralPubMedGoogle Scholar
  26. Bukrinskaya A, Brichacek B, Mann A, Stevenson M (1998) Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med 188:2113–2125PubMedCentralPubMedGoogle Scholar
  27. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci 89:6580–6584PubMedCentralPubMedGoogle Scholar
  28. Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA 90:6125–6129PubMedCentralPubMedGoogle Scholar
  29. Carlson L-A, Briggs JAG, Glass B, Riches JD, Simon MN, Johnson MC, Müller B, Grünewald K, Kräusslich H-G (2008) Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4:592–599PubMedCentralPubMedGoogle Scholar
  30. Carr JM, Coolen C, Davis AJ, Burrell CJ, Li P (2008) Human immunodeficiency virus 1 (HIV-1) virion infectivity factor (Vif) is part of reverse transcription complexes and acts as an accessory factor for reverse transcription. Virology 372:147–156PubMedGoogle Scholar
  31. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273PubMedGoogle Scholar
  32. Chattopadhyay D, Evans DB, Deibel MR Jr, Vosters AF, Eckenrode FM, Einspahr HM, Hui JO, Tomasselli AG, Zurcher-Neely HA, Heinrikson RL, Sharma SK (1992) Purification and characterization of heterodimeric human immunodeficiency virus type 1 (HIV-1) reverse transcriptase produced by in vitro processing of p66 with recombinant HIV-1 protease. J Biol Chem 267:14227–14232PubMedGoogle Scholar
  33. Checkley MA, Luttge BG, Soheilian F, Nagashima K, Freed EO (2010) The capsid-spacer peptide 1 gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation. Virology 400:137–144PubMedCentralPubMedGoogle Scholar
  34. Checkley MA, Luttge BG, Freed EO (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410:582–608PubMedCentralPubMedGoogle Scholar
  35. Chertova E, Bess JW, Crise BJ, Sowder Ii RC, Schaden TM, Hilburn JM, Hoxie JA, Benveniste RE, Lifson JD, Henderson LE, Arthur LO (2002) Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 76:5315–5325PubMedCentralPubMedGoogle Scholar
  36. Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M, Schneider J, Muller B, Hell SW, Krausslich HG (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338:524–528PubMedGoogle Scholar
  37. Coren LV, Thomas JA, Chertova E, Sowder RC, Gagliardi TD, Gorelick RJ, Ott DE (2007) Mutational analysis of the C-terminal gag cleavage sites in human immunodeficiency virus type 1. J Virol 81:10047–10054PubMedCentralPubMedGoogle Scholar
  38. Cruceanu M, Gorelick RJ, Musier-Forsyth K, Rouzina I, Williams MC (2006a) Rapid kinetics of protein–nucleic acid interaction is a major component of HIV-1 nucleocapsid protein’s nucleic acid chaperone function. J Mol Biol 363:867–877PubMedGoogle Scholar
  39. Cruceanu M, Urbaneja MA, Hixson CV, Johnson DG, Datta SA, Fivash MJ, Stephen AG, Fisher RJ, Gorelick RJ, Casas-Finet JR, Rein A, Rouzina I, Williams MC (2006b) Nucleic acid binding and chaperone properties of HIV-1 gag and nucleocapsid proteins. Nucleic Acids Res 34:593–605PubMedCentralPubMedGoogle Scholar
  40. Dam E, Quercia R, Glass B, Descamps D, Launay O, Duval X, Kräusslich HG, Hance AJ, Clavel F, Group AS (2009) Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors in highly drug-experienced patients besides compensating for fitness loss. PLoS Pathog 5: e1000345Google Scholar
  41. Darke PL, Nutt RF, Brady SF, Garsky VM, Ciccarone TM, Leu CT, Lumma PK, Freidinger RM, Veber DF, Sigal IS (1988) HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins. Biochem Biophys Res Commun 156:297–303PubMedGoogle Scholar
  42. Davis DA, Soule EE, Davidoff KS, Daniels SI, Naiman NE, Yarchoan R (2012) Activity of human immunodeficiency virus type 1 protease inhibitors against the initial autocleavage in Gag-Pol polyprotein processing. Antimicrob Agents Chemother 56:3620–3628PubMedCentralPubMedGoogle Scholar
  43. de la Carriére LC, Paulous S, Clavel F, Mammano F (1999) Effects of human immunodeficiency virus type 1 resistance to protease inhibitors on reverse transcriptase processing, activity, and drug sensitivity. J Virol 73:3455–3459PubMedCentralPubMedGoogle Scholar
  44. de Marco A, Müller B, Glass B, Riches JD, Kräusslich HG, Briggs JAG (2010) Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 6:e1001215PubMedCentralPubMedGoogle Scholar
  45. de Marco A, Heuser AM, Glass B, Krausslich HG, Muller B, Briggs JAG (2012) Role of the SP2 domain and its proteolytic cleavage in HIV-1 structural maturation and infectivity. J Virol 86:13708–13716PubMedCentralPubMedGoogle Scholar
  46. de Rocquigny H, Petitjean P, Tanchou V, Decimo D, Drouot L, Delaunay T, Darlix JL, Roques BP (1997) The zinc fingers of HIV nucleocapsid protein NCp7 direct interacts with the viral regulatory protein vpr. J Biol Chem 272:30753–30759PubMedGoogle Scholar
  47. Dorfman T, Mammano F, Haseltine WA, Göttlinger HG (1994) Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68:1689–1696PubMedCentralPubMedGoogle Scholar
  48. Doyon L, Croteau G, Thibeault D, Poulin F, Pilote L, Lamarre D (1996) Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J Virol 70:3763PubMedCentralPubMedGoogle Scholar
  49. Dreyer GB, Metcalf BW, Tomaszek TA Jr, Carr TJ, Chandler AC III, Hyland L, Fakhoury SA, Magaard VW, Moore ML, Strickler JE, Debouck C, Meek TD (1989) Inhibition of human immunodeficiency virus 1 protease in vitro: rational design of substrate analogue inhibitors. Proc Natl Acad Sci USA 86:9752–9756PubMedCentralPubMedGoogle Scholar
  50. Edwards TG, Wyss S, Reeves JD, Zolla-Pazner S, Hoxie JA, Doms RW, Baribaud F (2002) Truncation of the cytoplasmic domaini Induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J Virol 76:2683–2691PubMedCentralPubMedGoogle Scholar
  51. Engelman A, Englund G, Orenstein JM, Martin MA, Craigie R (1995) Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69:2729–2736PubMedCentralPubMedGoogle Scholar
  52. Erickson-Viitanen S, Manfredi J, Viitanen P, Tribe DE, Tritch R, Hutchinson CA III, Loeb DD, Swanstrom R (1989) Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res Hum Retroviruses 5:577–591PubMedGoogle Scholar
  53. Fassati A (2012) Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Res 170:15–24PubMedGoogle Scholar
  54. Fassati A, Goff SP (2001) Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 75:3626–3635PubMedCentralPubMedGoogle Scholar
  55. Fitzon T, Leschonsky B, Bieler K, Paulus C, Schröder J, Wolf H, Wagner R (2000) Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology 268:294–307PubMedGoogle Scholar
  56. Fletcher RS, Holleschak G, Nagy E, Arion D, Borkow G, Gu Z, Wainbeg MA, Parniak MA (1996) Single-step purification of recombinant wild-type and mutant HIV-1 reverse transcriptase. Protein Expr Purif 7:27–32PubMedGoogle Scholar
  57. Forshey BM, Aiken C (2003) Disassembly of human immunodeficiency virus type 1 cores in vitro reveals association of Nef with the subviral ribonucleoprotein complex. J Virol 77:4409–4414PubMedCentralPubMedGoogle Scholar
  58. Forshey BM, von Schwedler U, Sundquist WI, Aiken C (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76:5667–5677PubMedCentralPubMedGoogle Scholar
  59. Forshey BM, Shi J, Aiken C (2005) Structural requirements for recognition of the human immunodeficiency virus type 1 core during host restriction in owl monkey cells. J Virol 79:869–875PubMedCentralPubMedGoogle Scholar
  60. Freed EO, Martin MA (1995) Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 69:1984–1989PubMedCentralPubMedGoogle Scholar
  61. Freed EO, Myers DJ, Risser R (1990) Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci USA 87:4650–4654PubMedCentralPubMedGoogle Scholar
  62. Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283:80–83PubMedGoogle Scholar
  63. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217PubMedCentralPubMedGoogle Scholar
  64. García Lerma JG, Yamamoto S, Gómez-Cano M, Soriano V, Green TA, Busch MP, Folks TM, Heneine W (1998) Measurement of human immunodeficiency virus type 1 plasma virus load based on reverse transcriptase (RT) activity: evidence of variabilities in levels of virion-associated RT. J Infect Dis 177:1221–1229PubMedGoogle Scholar
  65. Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219PubMedGoogle Scholar
  66. Gelderblom HR, Hausmann EHS, Özel M, Pauli G, Koch MA (1987) Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156:171–176PubMedGoogle Scholar
  67. Göttlinger HG, Sodroski JG, Haseltine WA (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86:5781–5785PubMedCentralPubMedGoogle Scholar
  68. Gulick RM, Mellors JW, Havlir D, Eron JJ, Gonzalez C, McMahon D, Richman DD, Valentine FT, Jonas L, Meibohm A, Emini EA, Chodakewitz JA (1997) Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 337:735–739Google Scholar
  69. Haffar OK, Dowbenko DJ, Berman PW (1988) Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes. J Cell Biol 107:1677–1687PubMedGoogle Scholar
  70. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358–361PubMedGoogle Scholar
  71. Heinzinger NK, Bukrinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci 91:7311–7315PubMedCentralPubMedGoogle Scholar
  72. Henderson GJ, Lee SK, Irlbeck DM, Harris J, Kline M, Pollom E, Parkin N, Swanstrom R (2012) Interplay between single resistance-associated mutations in the HIV-1 protease and viral infectivity, protease activity, and inhibitor sensitivity. Antimicrob Agents Chemother 56:623–633PubMedCentralPubMedGoogle Scholar
  73. Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sudquist WI (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA 93:3099–3104PubMedCentralPubMedGoogle Scholar
  74. Hogue IB, Grover JR, Soheilian F, Nagashima K, Ono A (2011) Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol 85:9749–9766PubMedCentralPubMedGoogle Scholar
  75. Hu WS, Hughes SH (2012) HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2:a006882PubMedCentralPubMedGoogle Scholar
  76. Hulme AE, Perez O, Hope TJ (2011) Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci 108:9975–9980PubMedCentralPubMedGoogle Scholar
  77. Iordanskiy S, Berro R, Altieri M, Kashanchi F, Bukrinsky M (2006) Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology 3:4PubMedCentralPubMedGoogle Scholar
  78. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE (1988) Characterization of ribosomal frameshifting in HIV-1 Gag-Pol expression. Nature 331:280–283PubMedGoogle Scholar
  79. Jiang J, Aiken C (2006) Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages. Virology 346:460–468PubMedGoogle Scholar
  80. Jilek BL, Zarr M, Sampah ME, Rabi SA, Bullen CK, Lai J, Shen L, Siliciano RF (2012) A quantitative basis for antiretroviral therapy for HIV-1 infection. Nature Med 18:446–451PubMedCentralPubMedGoogle Scholar
  81. Joyner AS, Willis JR, Crowe JE Jr, Aiken C (2011) Maturation-induced cloaking of neutralization epitopes on HIV-1 particles. PLoS Pathog 7:e1002234PubMedCentralPubMedGoogle Scholar
  82. Julias JG, Ferris AL, Boyer PL, Hughes SH (2001) Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. J Virol 75:6537–6546PubMedCentralPubMedGoogle Scholar
  83. Kafaie J, Dolatshahi M, Ajamian L, Song R, Mouland AJ, Rouiller I, Laughrea M (2009) Role of capsid sequence and immature nucleocapsid proteins p9 and p15 in human immunodeficiency virus type 1 genomic RNA dimerization. Virology 385:233–244PubMedGoogle Scholar
  84. Kaldor SW, Kalish VJ, Davis JF, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH (1997) Viracept (Nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40:3979–3985PubMedGoogle Scholar
  85. Kalia V, Sarkar S, Gupta P, Montelaro RC (2005) Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41. J Virol 79:2097–2107PubMedCentralPubMedGoogle Scholar
  86. Kaplan AH, Zack JA, Knigge M, Paul DA, Kempf DJ, Norbeck DW, Swanstrom R (1993) Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol 67:4050–4055PubMedCentralPubMedGoogle Scholar
  87. Kaplan AH, Manchester M, Swanstrom R (1994) The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68:6782–6786PubMedCentralPubMedGoogle Scholar
  88. Karageorgos L, Li P, Burrell C (1993) Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Hum Retroviruses 9:817–823PubMedGoogle Scholar
  89. Kawamura M, Shimano R, Inubushi R, Amano K, Ogasawara T, Akari H, Adachi A (1997) Cleavage of gag precursor is required for early replication phase of HIV-1. FEBS Lett 415:227–230PubMedGoogle Scholar
  90. Keller PW, Adamson CS, Heymann JB, Freed EO, Steven AC (2011) HIV-1 maturation inhibitor Bevirimat stabilizes the immature gag lattice. J Virol 85:1420–1428PubMedCentralPubMedGoogle Scholar
  91. Kempf DJ, Marsh KC, Denissen JF, McDonald E, Vasavanonda S, Flentge CA, Green BE, Fino L, Park CH, Kong XP, Wideburg NE, Saldivar A, Ruiz L, Kati WM, Sham HL, Robins T, Stewart KD, Hsu A, Plattner JJ, Leonard JM, Norbeck DW (1995) ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability. Proc Natl Acad Sci USA 92:2484–2488PubMedCentralPubMedGoogle Scholar
  92. Khorchid A, Halwani R, Wainberg MA, Kleiman L (2002) Role of RNA in facilitating Gag/Gag-Pol interaction. J Virol 76:4131–4137PubMedCentralPubMedGoogle Scholar
  93. Kolli M, Stawiski E, Chappey C, Schiffer CA (2009) Human immunodeficiency virus type 1 protease-correlated cleavage site mutations enhance inhibitor resistance. J Virol 83:11027–11042PubMedCentralPubMedGoogle Scholar
  94. König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang C-Y, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60PubMedCentralPubMedGoogle Scholar
  95. Kotov A, Zhou J, Flicker P, Aiken C (1999) Association of Nef with the human immunodeficiency virus type 1 core. J Virol 73:8824–8830PubMedCentralPubMedGoogle Scholar
  96. Krishnan L, Engelman A (2012) Retroviral integrase proteins and HIV-1 DNA integration. J Biol Chem 287:40858–40866PubMedCentralPubMedGoogle Scholar
  97. Kröhn A, Redshaw S, Ritchie JC (1991) Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isotere. J Med Chem 34:3340–3342PubMedGoogle Scholar
  98. Kutluay SB, Bieniasz PD (2010) Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog 6:e1001200PubMedCentralPubMedGoogle Scholar
  99. Le Grice SFJ (2012) Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem 287:40850–40857PubMedCentralPubMedGoogle Scholar
  100. Lee SK, Harris J, Swanstrom R (2009) A strongly transdominant mutation in the human immunodeficiency virus type 1 gag gene defines an achilles heel in the virus life cycle. J Virol 83:8536–8543PubMedCentralPubMedGoogle Scholar
  101. Lee SK, Potempa M, Kolli M, Ozen A, Schiffer CA, Swanstrom R (2012) Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 gag and gag-pro-pol polyprotein precursors by viral protease. J Biol Chem 287:13279–13290PubMedCentralPubMedGoogle Scholar
  102. Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM, Allaway GP, Freed EO, Wild CT (2003) PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in gag processing. Proc Natl Acad Sci 100:13555–13560PubMedCentralPubMedGoogle Scholar
  103. Lindhofer H, von der Helm K, Nitschko H (1995) In vivo processing of Pr160 Gag-Pol from human immunodeficiency virus type 1 (HIV) in acutely infected, cultured human T-lymphocytes. Virology 214:624–627PubMedGoogle Scholar
  104. Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113PubMedCentralPubMedGoogle Scholar
  105. Lori F, Scovassi AI, Zella D, Achilli G, Cattaneo E, Casoli C, Bertazzoni U (1998) Enzymatically active forms of reverse transcriptase of the human immunodeficiency virus. AIDS Res Hum Retroviruses 4:393–398Google Scholar
  106. Louis JM, Clore GM, Gronenborn AM (1999a) Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat Struct Biol 6:868–875PubMedGoogle Scholar
  107. Louis JM, Wondrak EM, Kimmel AR, Wingfield PT, Nashed NT (1999b) Proteolytic processing of HIV-1 protease precursor, kinetics and mechanism. J Biol Chem 274:23437–23442PubMedGoogle Scholar
  108. Louis JM, Aniana A, Weber IT, Sayer JM (2011) Inhibition of autoprocessing of natural variants and multidrug resistant mutant precursors of HIV-1 protease by clinical inhibitors. Proc Natl Acad Sci 108:9072–9077PubMedCentralPubMedGoogle Scholar
  109. Lowe DM, Aitken A, Bradley C, Darby GK, Larder BA, Powell KL, Purifoy DJM, Tisdale M, Stammers DK (1988) HIV-1 reverse transcriptase: crystallization and analysis of domain structure by limited proteolysis. Biochemistry 27:8884–8889PubMedGoogle Scholar
  110. Lucas TM, Lyddon TD, Grosse SA, Johnson MC (2010) Two distinct mechanisms regulate recruitment of murine leukemia virus envelope protein to retroviral assembly sites. Virology 405:548–555PubMedCentralPubMedGoogle Scholar
  111. Lyonnais S, Gorelick RJ, Heniche-Boukhalfa F, Bouaziz S, Parissi V, Mouscadet J-F, Restle T, Gatell JM, Le Cam E, Mirambeau G (2013) A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: from nucleocapsid-condensed RNA to Vpr-bridged DNA. Virus Res 171:287–303PubMedCentralPubMedGoogle Scholar
  112. Mammano F, Kondo E, Sodroski J, Bukovsky A, Göttlinger HG (1995) Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J Virol 69:3824–3830PubMedCentralPubMedGoogle Scholar
  113. Mammano F, Petit C, Clavel F (1998) Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients. J Virol 72:7632–7637PubMedCentralPubMedGoogle Scholar
  114. Marozsan AJ, Fraundorf E, Abraha A, Baird H, Moore D, Troyer R, Nankja I, Arts EJ (2004) Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates. J Virol 78:11130–11141PubMedCentralPubMedGoogle Scholar
  115. Matreyek KA, Engelman A (2011) The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection Is determined by the viral capsid. J Virol 85:7818–7827PubMedCentralPubMedGoogle Scholar
  116. Matreyek KA, Engelman A (2013) Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5:2483–2511PubMedCentralPubMedGoogle Scholar
  117. McDonald D, Vodicka MA, Svitkina TM, Borisy GG, Emerman M, Hope TJ (2002) Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159:441–452PubMedCentralPubMedGoogle Scholar
  118. Meek TD, Lambert DM, Dreyer GB, Carr TJ, Tomaszek TA, Moore ML, Strickler JE, Debouck C, Hyland LJ, Matthews TJ, Metcalf BW, Petteway SR (1990) Inhibition of HIV-1 protease in infected T-lymphocytes by synthetic peptide analogues. Nature 343:90–92PubMedGoogle Scholar
  119. Mehandru S, Markowitz M (2003) Tipranavir: a novel non-peptidic protease inhibitor for the treatment of HIV infection. Expert Opin Investig Drugs 12:1821–1828PubMedGoogle Scholar
  120. Meyer PR, Matsuura SE, Mian AM, So AG, Scott WA (1999) A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 4:35–43PubMedGoogle Scholar
  121. Miller M (2010) The early years of retroviral protease crystal structures. Biopolymers 94:521–529PubMedCentralPubMedGoogle Scholar
  122. Miller M, Scheneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SBH, Wlodawer A (1989) Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Å resolution. Science 246:1149–1152PubMedGoogle Scholar
  123. Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71:5382–5390PubMedCentralPubMedGoogle Scholar
  124. Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Justome A, Delain E, Gorelick RJ, Le Cam E (2006) Transmission electron microscopy reveals an optimal HIV-1 nucleocapsid aggregation with single-stranded nucleic acids and the mature HIV-1 nucleocapsid protein. J Mol Biol 364:496–511PubMedGoogle Scholar
  125. Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Borde I, Reboud-Ravaux M, Restle T, Gorelick RJ, Le Cam E (2007) HIV-1 protease and reverse transcriptase control the architecture of their nucleocapsid partner. PLoS ONE 2:e669PubMedCentralPubMedGoogle Scholar
  126. Mirambeau G, Lyonnais S, Gorelick RJ (2010) Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol 7:724–734PubMedCentralPubMedGoogle Scholar
  127. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC (2014) IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:428–432PubMedCentralPubMedGoogle Scholar
  128. Moore MD, Fu W, Soheilian F, Nagashima K, Ptak RG, Pathak VK, Hu W-S (2008) Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: effects on virion morphogenesis and RNA maturation. Virology 379:152–160PubMedCentralPubMedGoogle Scholar
  129. Moore MD, Nikolaitchik OA, Chen J, Hammarskjöld ML, Rekosh D, Hu WS (2009) Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses. PLoS Pathog 5:e1000627PubMedCentralPubMedGoogle Scholar
  130. Müller B, Anders M, Akiyama H, Welsch S, Glass B, Nikovics K, Clavel F, Tervo HM, Keppler OT, Krausslich HG (2009) HIV-1 gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J Biol Chem 284:29692–29703PubMedCentralPubMedGoogle Scholar
  131. Murakami T, Freed EO (2000) Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and α-helix 2 of the gp41 cytoplasmic tail. J Virol 74:3548–3554PubMedCentralPubMedGoogle Scholar
  132. Murakami T, Ablan S, Freed EO, Tanaka Y (2004) Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 78:1026–1031PubMedCentralPubMedGoogle Scholar
  133. Muranyi W, Malkusch S, Müller B, Heilemann M, Kräusslich H-G (2013) Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog 9:e1003198PubMedCentralPubMedGoogle Scholar
  134. Muriaux D, Mirro J, Harvin D, Rein A (2001) RNA is a structural element in retrovirus particles. Proc Natl Acad Sci 98:5246–5251PubMedCentralPubMedGoogle Scholar
  135. Navia MA, Fitzgerald PMD, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337:615–620PubMedGoogle Scholar
  136. Nermut MV, Fassati A (2003) Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes. J Virol 77:8196–8206PubMedCentralPubMedGoogle Scholar
  137. Ohishi M, Nakano T, Sakuragi S, Shioda T, Sano K, Sakuragi JI (2011) The relationship between HIV-1 genome RNA dimerization, virion maturation and infectivity. Nucleic Acids Res 39:3404–3417PubMedCentralPubMedGoogle Scholar
  138. Ono A, Freed EO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci 98:13925–13930PubMedCentralPubMedGoogle Scholar
  139. Özen A, Haliloğlu T, Schiffer CA (2011) Dynamics of preferential substrate recognition in HIV-1 protease: redefining the substrate envelope. J Mol Biol 410:726–744PubMedCentralPubMedGoogle Scholar
  140. Paine PL, Moore LC, Horowitz SB (1975) Nuclear envelop permeability. Nature 254:109–114PubMedGoogle Scholar
  141. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD, Investigators HOS (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 338:853–860PubMedGoogle Scholar
  142. Panté N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of ~39 nm. Mol Biol Cell 13:425–434PubMedCentralPubMedGoogle Scholar
  143. Partin K, Zybarth G, Ehrlich L, DeCrombrugghe M, Wimmer E, Carter C (1991) Deletion of sequences upstream of the proteinase improves the proteolytic processing of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 88:4776–4780PubMedCentralPubMedGoogle Scholar
  144. Pearl LH, Taylor WR (1987) A structural model for the retroviral proteases. Nature 329:351–354PubMedGoogle Scholar
  145. Pettit SC, Simsic J, Loeb DD, Everitt L, Hutchison CA III, Swanstrom R (1991) Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem 266:14539–14547PubMedGoogle Scholar
  146. Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R (1994) The p2 domain of human immunodeficiency virus type 1 gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68:8017–8027PubMedCentralPubMedGoogle Scholar
  147. Pettit SC, Henderson GJ, Schiffer CA, Swanstrom R (2002) Replacement of the P1 amino acid of human immunodeficiency virus type 1 gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J Virol 76:10226–10233PubMedCentralPubMedGoogle Scholar
  148. Pettit SC, Everitt LE, Choudhury S, Dunn BM, Kaplan AH (2004) Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by Its activated protease occurs by an intramolecular mechanism. J Virol 78:8477–8485PubMedCentralPubMedGoogle Scholar
  149. Pettit SC, Lindquist JN, Kaplan AH, Swanstrom R (2005) Processing sites in the human immunodeficiency virus type 1 (HIV-1) gag-pro-pol precursor are cleaved by the viral protease at different rates. Retrovirology 2:66–71PubMedCentralPubMedGoogle Scholar
  150. Prabu-Jeyabalan M, Nalivaika E, Schiffer CA (2002) Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 10:369–381PubMedGoogle Scholar
  151. Qi M, Yang R, Aiken C (2008) Cyclophilin A-dependent restriction of human immunodeficiency virus type 1 capsid mutants for infection of nondividing cells. J Virol 82:12001–12008PubMedCentralPubMedGoogle Scholar
  152. Quashie PK, Mesplede T, Han YS, Veres T, Osman N, Hassounah S, Sloan RD, Xu HT, Wainberg MA (2013) Biochemical analysis of the role of G118R-linked dolutegravir drug resistance substitutions in HIV-1 integrase. Antimicrob Agents Chemother 57:6223–6235PubMedCentralPubMedGoogle Scholar
  153. Rabi SA, Laird GM, Durand CM, Laskey S, Shan L, Bailey JR, Chioma S, Moore RD, Siliciano RF (2013) Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J Clin Invest 123:3848–3860PubMedGoogle Scholar
  154. Radzicka A, Wolfenden R (1996) Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. J Am Chem Soc 118:6105–6109Google Scholar
  155. Rein A, Mirro J, Haynes JG, Ernst SM, Nagashima K (1994) Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus env protein. J Virol 68:1773–1781PubMedCentralPubMedGoogle Scholar
  156. Roberts NA, Martin JA, Kinchington D, Broadhurst AV, Craig JC, Duncan IB, Galpin SA, Handa BK, Kay J, Kröhn A, Lambert RW, Merrett JH, Mills JS, Parkes KEB, Redshaw S, Ritchie AJ, Taylor DL, Thomas GJ, Machin PJ (1990) Rational design of peptide-based HIV proteinase inhibitors. Science 248:358–361PubMedGoogle Scholar
  157. Roy NH, Chan J, Lambele M, Thali M (2013) Clustering and mobility of HIV-1 env at viral assembly sites predict its propensity to induce cell-cell fusion. J Virol 87:7516–7525PubMedCentralPubMedGoogle Scholar
  158. Rulli SJ, Muriaux D, Nagashima K, Mirro J, Oshima M, Baumann JG, Rein A (2006) Mutant murine leukemia virus gag proteins lacking proline at the N-terminus of the capsid domain block infectivity in virions containing wild-type gag. Virology 347:364–371PubMedGoogle Scholar
  159. Sampah MES, Shen L, Jilek BL, Siliciano RF (2011) Dose–response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proc Natl Acad Sci 108:7613–7618PubMedCentralPubMedGoogle Scholar
  160. Sattentau QJ, Moore JP (1991) Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med 174:407–415PubMedGoogle Scholar
  161. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hué S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ (2011) HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 7:e1002439PubMedCentralPubMedGoogle Scholar
  162. Schatz O, Cromme FV, Grüninger-Leitch F, Le Grice SFJ (1989) Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function. FEBS Lett 257:311–314PubMedGoogle Scholar
  163. Schuckmann MM, Marchand B, Hachiya A, Kodama EN, Kirby KA, Singh K, Sarafianos SG (2010) The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase decreases binding to Nevirapine. J Biol Chem 285:38700–38709PubMedCentralPubMedGoogle Scholar
  164. Sekar V, Lavreys L, Van de Casteele T, Berckmans C, Spinosa-Guzman S, Vangeneugden T, De Pauw M, Hoetelmans R (2010) Pharmacokinetics of darunavir/ritonavir and rifabutin coadministered in HIV-negative healthy volunteers. Antimicrob Agents Chemother 54:4440–4445PubMedCentralPubMedGoogle Scholar
  165. Shehu-Xhilaga M, Kraeusslich HG, Pettit S, Swanstrom R, Lee JY, Marshall JA, Crowe SM, Mak J (2001) Proteolytic processing of the p2/nucleocapsid cleavage site is critical for human immunodeficiency virus type 1 RNA dimer maturation. J Virol 75:9156–9164PubMedCentralPubMedGoogle Scholar
  166. Shehu-Xhilaga M, Hill M, Marshall JA, Kappes J, Crowe SM, Mak J (2002) The conformation of the mature dimeric human immunodeficiency virus type 1 RNA genome requires packaging of pol protein. J Virol 76:4331–4340PubMedCentralPubMedGoogle Scholar
  167. Shen L, Peterson S, Sedaghat AR, McMahon MA, Callender M, Zhang H, Zhou Y, Pitt E, Anderson KS, Acosta EP, Siliciano RF (2008) Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 14:762–766PubMedCentralPubMedGoogle Scholar
  168. Shen L, Rabi SA, Sedaghat AR, Shan L, Lai J, Xing S, Siliciano RF (2011) A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs. Sci Transl Med 3: 91ra63Google Scholar
  169. Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR, Hachiya A, Parniak MA, Xu HT, Wainberg MA, Sarafianos SG (2012) Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem 287:38110–38123PubMedCentralPubMedGoogle Scholar
  170. Sluis-Cremer N, Arion D, Abram ME, Parniak MA (2004) Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation. Int J Biochem Cell Biol 36:1836–1847PubMedGoogle Scholar
  171. Steckbeck JD, Craigo JK, Barnes CO, Montelaro RC (2011) Highly conserved structural properties of the C-terminal tail of HIV-1 gp41 protein despite substantial sequence variation among diverse clades: implications for functions in viral replication. J Biol Chem 286:27156–27166PubMedCentralPubMedGoogle Scholar
  172. Stoll V, Qin W, Stewart KD, Jakob C, Park C, Walter K, Simmer RL, Helfrich R, Bussiere D, Kao J, Kempf D, Sham HL, Norbeck DW (2002) X-ray crystallographic structure of ABT-378 (Lopinavir) bound to HIV-1 protease. Bioorg Med Chem 10:2803–2806PubMedGoogle Scholar
  173. Stremlau M, Owens CM, Perron MJ, Klessling M, Autissler P, Sodroski J (2004) The cytoplasmic body component TRIM5α restricts HIV-1 infection in old world monkeys. Nature 427:848–853PubMedGoogle Scholar
  174. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5 restriction factor. Proc Natl Acad Sci 103:5514–5519PubMedCentralPubMedGoogle Scholar
  175. Sundquist WI, Krausslich HG (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2:a006924PubMedCentralPubMedGoogle Scholar
  176. Suzuki Y, Craigie R (2007) The road to chromatin— nuclear entry of retroviruses. Nat Rev Microbiol 5:187–196PubMedGoogle Scholar
  177. Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  178. Tang S, Murakami T, Agresta BE, Campbell S, Freed EO, Levin JG (2001) Human immunodeficiency virus type 1 N-terminal capsid mutants that exhibit aberrant core morphology and are blocked in initiation of reverse transcription in infected cells. J Virol 75:9357–9366PubMedCentralPubMedGoogle Scholar
  179. Tang C, Louis JM, Aniana A, Suh J-Y, Clore GM (2008) Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature 455:693–696PubMedCentralPubMedGoogle Scholar
  180. Tedbury PR, Ablan SD, Freed EO (2013) Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure. PLoS Pathog 9:e1003739PubMedCentralPubMedGoogle Scholar
  181. Thaisrivongs S, Strohbach JW (1999) Structure-based discovery of Tipranavir disodium (PNU-140690E): a potent, orally bioavailable, nonpeptidic HIV proteased inhibitors. Biopolymers 51:51–58PubMedGoogle Scholar
  182. Thomas JA, Gagliardi TD, Alvord WG, Lubomirski M, Bosche WJ, Gorelick RJ (2006) Human immunodeficiency virus type 1 nucleocapsid zinc-finger mutations cause defects in reverse transcription and integration. Virology 353:41–51PubMedGoogle Scholar
  183. Tözsér J, Bláha I, Copeland TD, Wondrak EM, Oroszlan S (1991) Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in gag and gag-pol polyproteins. FEBS Lett 281:77–80PubMedGoogle Scholar
  184. Turner SR, Strohbach JW, Tommasi RA, Aristoff PA, Johnson PD, Skulnick HI, Dolak LA, Seest EP, Tomich PK, Bohanon MJ, Horng MM, Lynn JC, Chong KT, Hinshow RR, Watenpaugh KD, Janakiraman MN, Thaisrivongs S (1998) Tirpanavir (PNU-140690): a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. J Med Chem 41:3467–3476PubMedGoogle Scholar
  185. Venezia CF, Howard KJ, Ignatov ME, Holladay LA, Barkley MD (2006) Effects of Efavirenz binding on the subunit equilibria of HIV-1 reverse transcriptase. Biochemistry 45:2779–2789PubMedGoogle Scholar
  186. Venezia CF, Meany BJ, Braz VA, Barkley MD (2009) Kinetics of association and dissociation of HIV-1 reverse transcriptase subunits. Biochemistry 48:9084–9093PubMedCentralPubMedGoogle Scholar
  187. von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, Sundquist WI (1998) Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17:1555–1568Google Scholar
  188. Wang J, Bambara RA, Demeter LM, Dykes C (2010) Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. J Virol 84:9377–9389PubMedCentralPubMedGoogle Scholar
  189. Wapling J, Moore KL, Sonza S, Mak J, Tachedjian G (2005) Mutations that abrogate human immunodeficiency virus type 1 reverse transcriptase dimerization affect maturation of the reverse transcriptase heterodimer. J Virol 79:10247–10257PubMedCentralPubMedGoogle Scholar
  190. Warren K, Wei T, Li D, Qin F, Warrilow D, Lin MH, Sivakumaran H, Apolloni A, Abbott CM, Jones A, Anderson JL, Harrich D (2012) Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors. Proc Natl Acad Sci 109:9587–9592PubMedCentralPubMedGoogle Scholar
  191. Weiss ER, Göttlinger H (2011) The role of cellular factors in promoting HIV budding. J Mol Biol 410:525–533PubMedCentralPubMedGoogle Scholar
  192. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430PubMedGoogle Scholar
  193. Welker R, Hohenberg H, Tessmer U, Huckagel C, Kräusslich HG (2000) Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J Virol 74:1168–1177PubMedCentralPubMedGoogle Scholar
  194. White KL, Margot NA, Ly JK, Chen JM, Ray AS, Pavelko M, Wang R, McDermott M, Swaminathan S, Miller MD (2005) A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT. AIDS 19:1751–1760PubMedGoogle Scholar
  195. White TA, Bartesaghi A, Borgnia MJ, Meyerson JR, de la Cruz MJV, Bess JW, Nandwani R, Hoxie JA, Lifson JD, Milne JLS, Subramaniam S (2010) Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathog 6:e1001249PubMedCentralPubMedGoogle Scholar
  196. Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Kräusslich HG (1998) Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual gag polyprotein cleavage sites. J Virol 72:2846–2854PubMedCentralPubMedGoogle Scholar
  197. Wilen CB, Tilton JC, Doms RW (2012) HIV: cell binding and entry. Cold Spring Harb Perspect Med 2:a006866PubMedCentralPubMedGoogle Scholar
  198. Wlodawer A, Erickson JW (1993) Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 62:543–585PubMedGoogle Scholar
  199. Wolfenden R (1972) Analog approaches to the structure of the transition state in enzyme reactions. Acc Chem Res 5:10–18Google Scholar
  200. Wondrak WM, Nashed NT, Haber MT, Jerina DM, Louis JM (1996) A transient precursor of the HIV-1 protease: isolation, characterization, and kinetics of maturation. J Biol Chem 271:4477–4481PubMedGoogle Scholar
  201. Wu X, Liu H, Xiao H, Conway JA, Hehl E, Kalpana GV, Prasad V, Kappes JC (1999) Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through interactions with the nucleoprotein reverse transcription complex. J Virol 73:2126–2135PubMedCentralPubMedGoogle Scholar
  202. Wu T, Datta SAK, Mitra M, Gorelick RJ, Rein A, Levin JG (2010) Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and gag or gag-derived proteins: biological implications. Virology 405:556–567PubMedCentralPubMedGoogle Scholar
  203. Wyma DJ, Kotov A, Aiken C (2000) Evidence for a stable interaction of gp41 with Pr55Gag in immature human immunodeficiency virus type 1 particles. J Virol 74:9381–9387PubMedCentralPubMedGoogle Scholar
  204. Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C (2004) Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78:3429–3435PubMedCentralPubMedGoogle Scholar
  205. Wyss S, Dimitrov AS, Baribaud F, Edwards TG, Blumenthal R, Hoxie JA (2005) Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 79:12231–12241PubMedCentralPubMedGoogle Scholar
  206. Yamashita M, Emerman M (2004) Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 78:5670–5678PubMedCentralPubMedGoogle Scholar
  207. Yamashita M, Emerman M (2009) Cellular restriction targeting viral capsids perturbs human immunodeficiency virus type 1 infection of nondividing cells. J Virol 83:9835–9843PubMedCentralPubMedGoogle Scholar
  208. Yamashita M, Perez O, Hope TJ, Emerman M (2007) Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog 3:e156PubMedCentralGoogle Scholar
  209. Yang Y, Fricke T, Diaz-Griffero F (2013) Inhibition of reverse transcriptase activity increases stability of the HIV-1 core. J Virol 87:683–687PubMedCentralPubMedGoogle Scholar
  210. Yeung ML, Houzet L, Yedavalli VSRK, Jeang KT (2009) A genome-wide short hairpin RNA screening of Jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 284:19463–19473PubMedCentralPubMedGoogle Scholar
  211. Yu X, Yuan X, Matsuda Z, Lee TH, Essex M (1992) The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 66:4966–4971PubMedCentralPubMedGoogle Scholar
  212. Zennou V, Mammano F, Paulous S, Mathez D, Clavel F (1998) Loss of viral fitness associated with multiple gag and gag-pol processing defects in human immunodeficiency virus type 1 variants selected for resistance to protease inhibitors in vivo. J Virol 72:3300–3306PubMedCentralPubMedGoogle Scholar
  213. Zhang H, Dornadula G, Pomerantz RJ (1996) Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenvironments: an important stage for viral infection of nondividing cells. J Virol 79:2809–2824Google Scholar
  214. Zhang S, Pointer D, Singer G, Feng Y, Park K, Zhao LJ (1998) Direct binding to nucleic acids by vpr of human immunodeficiency virus type 1. Gene 212:157–166PubMedGoogle Scholar
  215. Zheng X, Pedersen LC, Gabel SA, Mueller GA, Cuneo MJ, DeRose EF, Krahn JM, London RE (2014) Selective unfolding of one ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation. Nucleic Acids Res 2:5361–5377Google Scholar
  216. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504PubMedGoogle Scholar
  217. Zhou L, Sokolskaja E, Jolly C, James W, Cowley SA, Fassati A (2011) Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration. PLoS Pathog 7:e1002194PubMedCentralPubMedGoogle Scholar
  218. Zhu P, Chertova E, Bess J, Lifson JD, Arthur LO, Liu J, Taylor KA, Roux KH (2003) Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci 100:15812–15817PubMedCentralPubMedGoogle Scholar
  219. Zhu P, Liu J, Bess J, Chertova E, Lifson JD, Grisé H, Ofek GA, Taylor KA, Roux KH (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:847–852PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marc Potempa
    • 1
  • Sook-Kyung Lee
    • 2
  • Richard Wolfenden
    • 2
  • Ronald Swanstrom
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Microbiology and ImmunologyUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillUSA
  3. 3.UNC Center for AIDS ResearchUniversity of North CarolinaChapel HillUSA
  4. 4.Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations