HIV-1 Gag: An Emerging Target for Antiretroviral Therapy

  • Philip R. Tedbury
  • Eric O. FreedEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 389)


The advances made in the treatment of HIV-1 infection represent a major success of modern biomedical research, prolonging healthy life and reducing virus transmission. There remain, however, many challenges relating primarily to side effects of long-term therapy and the ever-present danger of the emergence of drug-resistant strains. To counter these threats, there is a continuing need for new and better drugs, ideally targeting multiple independent steps in the HIV-1 replication cycle. The most successful current drugs target the viral enzymes: protease (PR), reverse transcriptase (RT), and integrase (IN). In this review, we outline the advances made in targeting the Gag protein and its mature products, particularly capsid and nucleocapsid, and highlight possible targets for future pharmacological intervention.


Nuclear Import Betulinic Acid Basic Patch Nucleic Acid Chaperone Major Homology Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aberham C, Weber S, Phares W (1996) Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins. J Virol 70(6):3536–3544PubMedCentralPubMedGoogle Scholar
  2. Adamson CS, Ablan SD, Boeras I, Goila-Gaur R, Soheilian F, Nagashima K, Li F, Salzwedel K, Sakalian M, Wild CT, Freed EO (2006) In vitro resistance to the human immunodeficiency virus type 1 maturation inhibitor PA-457 (Bevirimat). J Virol 80(22):10957–10971. doi: 10.1128/JVI.01369-06 PubMedCentralPubMedGoogle Scholar
  3. Adamson CS, Freed EO (2008) Recent progress in antiretrovirals–lessons from resistance. Drug Discov Today 13(9–10):424–432. doi: 10.1016/j.drudis.2008.02.003 S1359-6446(08)00044-5PubMedCentralPubMedGoogle Scholar
  4. Adamson CS, Sakalian M, Salzwedel K, Freed EO (2010) Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV-1 maturation inhibitor bevirimat. Retrovirology 7:36. doi: 10.1186/1742-4690-7-36 PubMedCentralPubMedGoogle Scholar
  5. Adamson CS, Waki K, Ablan SD, Salzwedel K, Freed EO (2009) Impact of human immunodeficiency virus type 1 resistance to protease inhibitors on evolution of resistance to the maturation inhibitor bevirimat (PA-457). J Virol 83(10):4884–4894. doi: 10.1128/JVI.02659-08 PubMedCentralPubMedGoogle Scholar
  6. Akari H, Fukumori T, Adachi A (2000) Cell-dependent requirement of human immunodeficiency virus type 1 gp41 cytoplasmic tail for Env incorporation into virions. J Virol 74(10):4891–4893PubMedCentralPubMedGoogle Scholar
  7. Alfadhli A, Barklis RL, Barklis E (2009) HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 387(2):466–472. doi: 10.1016/j.virol.2009.02.048 PubMedCentralPubMedGoogle Scholar
  8. Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prevost MC, Allen TD, Charneau P (2007) HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 26(12):3025–3037. doi: 10.1038/sj.emboj.7601740 PubMedCentralPubMedGoogle Scholar
  9. Arts EJ, Hazuda DJ (2012) HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspect Med 2(4):a007161. doi: 10.1101/cshperspect.a007161 Google Scholar
  10. Ballantyne AD, Perry CM (2013) Dolutegravir: first global approval. Drugs 73(14):1627–1637. doi: 10.1007/s40265-013-0121-4 PubMedGoogle Scholar
  11. Bell NM, Lever AM (2013) HIV Gag polyprotein: processing and early viral particle assembly. Trends Microbiol 21(3):136–144. doi: 10.1016/j.tim.2012.11.006 PubMedGoogle Scholar
  12. Bharat TA, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M, Sachse C, Ruml T, Briggs JA (2012) Structure of the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature 487(7407):385–389. doi: 10.1038/nature11169 PubMedGoogle Scholar
  13. Bhattacharya S, Zhang H, Debnath AK, Cowburn D (2008) Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid. J Biol Chem 283(24):16274–16278. doi: 10.1074/jbc.C800048200 PubMedCentralPubMedGoogle Scholar
  14. Bichel K, Price AJ, Schaller T, Towers GJ, Freund SM, James LC (2013) HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology 10:81. doi: 10.1186/1742-4690-10-81 PubMedCentralPubMedGoogle Scholar
  15. Blair WS, Cao J, Fok-Seang J, Griffin P, Isaacson J, Jackson RL, Murray E, Patick AK, Peng Q, Perros M, Pickford C, Wu H, Butler SL (2009) New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation. Antimicrob Agents Chemother 53(12):5080–5087. doi: 10.1128/AAC.00759-09 PubMedCentralPubMedGoogle Scholar
  16. Blair WS, Pickford C, Irving SL, Brown DG, Anderson M, Bazin R, Cao J, Ciaramella G, Isaacson J, Jackson L, Hunt R, Kjerrstrom A, Nieman JA, Patick AK, Perros M, Scott AD, Whitby K, Wu H, Butler SL (2010) HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog 6(12):e1001220. doi: 10.1371/journal.ppat.1001220 PubMedCentralPubMedGoogle Scholar
  17. Bocanegra R, Nevot M, Domenech R, Lopez I, Abian O, Rodriguez-Huete A, Cavasotto CN, Velazquez-Campoy A, Gomez J, Martinez MA, Neira JL, Mateu MG (2011) Rationally designed interfacial peptides are efficient in vitro inhibitors of HIV-1 capsid assembly with antiviral activity. PloS ONE 6(9):e23877. doi: 10.1371/journal.pone.0023877 PubMedCentralPubMedGoogle Scholar
  18. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319(5865):921–926. doi: 10.1126/science.1152725 PubMedGoogle Scholar
  19. Breuer S, Chang MW, Yuan J, Torbett BE (2012) Identification of HIV-1 inhibitors targeting the nucleocapsid protein. J Med Chem 55(11):4968–4977. doi: 10.1021/jm201442t PubMedCentralPubMedGoogle Scholar
  20. Briggs JA, Krausslich HG (2011) The molecular architecture of HIV. J Mol Biol 410(4):491–500. doi: 10.1016/j.jmb.2011.04.021 PubMedGoogle Scholar
  21. Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG (2009) Structure and assembly of immature HIV. Proc Nat Acad Sci USA 106(27):11090–11095. doi: 10.1073/pnas.0903535106 PubMedCentralPubMedGoogle Scholar
  22. Checkley MA, Luttge BG, Freed EO (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410(4):582–608. doi: 10.1016/j.jmb.2011.04.042 S0022-2836(11)00471-2PubMedCentralPubMedGoogle Scholar
  23. Checkley MA, Luttge BG, Mercredi PY, Kyere SK, Donlan J, Murakami T, Summers MF, Cocklin S, Freed EO (2013) Reevaluation of the requirement for TIP47 in human immunodeficiency virus type 1 envelope glycoprotein incorporation. J Virol 87(6):3561–3570. doi: 10.1128/JVI.03299-12 PubMedCentralPubMedGoogle Scholar
  24. Checkley MA, Luttge BG, Soheilian F, Nagashima K, Freed EO (2010) The capsid-spacer peptide 1 Gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation. Virology 400(1):137–144. doi: 10.1016/j.virol.2010.01.028 PubMedCentralPubMedGoogle Scholar
  25. Chukkapalli V, Hogue IB, Boyko V, Hu WS, Ono A (2008) Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding. J Virol 82(5):2405–2417PubMedCentralPubMedGoogle Scholar
  26. Chukkapalli V, Ono A (2011) Molecular determinants that regulate plasma membrane association of HIV-1 Gag. J Mol Biol 410(4):512–524. doi: 10.1016/j.jmb.2011.04.015 PubMedCentralPubMedGoogle Scholar
  27. Coric P, Turcaud S, Souquet F, Briant L, Gay B, Royer J, Chazal N, Bouaziz S (2013) Synthesis and biological evaluation of a new derivative of bevirimat that targets the Gag CA-SP1 cleavage site. Eur J Med Chem 62:453–465. doi: 10.1016/j.ejmech.2013.01.013 PubMedGoogle Scholar
  28. Craigie R, Bushman FD (2012) HIV DNA integration. Cold Spring Harb Perspect Med 2(7):a006890. doi: 10.1101/cshperspect.a006890 PubMedCentralPubMedGoogle Scholar
  29. Dang Z, Ho P, Zhu L, Qian K, Lee KH, Huang L, Chen CH (2013) New betulinic acid derivatives for bevirimat-resistant human immunodeficiency virus type-1. J Med Chem 56(5):2029–2037. doi: 10.1021/jm3016969 PubMedCentralPubMedGoogle Scholar
  30. Dang Z, Qian K, Ho P, Zhu L, Lee KH, Huang L, Chen CH (2012) Synthesis of betulinic acid derivatives as entry inhibitors against HIV-1 and bevirimat-resistant HIV-1 variants. Bioorg Med Chem Lett 22(16):5190–5194. doi: 10.1016/j.bmcl.2012.06.080 PubMedCentralPubMedGoogle Scholar
  31. Datta SA, Temeselew LG, Crist RM, Soheilian F, Kamata A, Mirro J, Harvin D, Nagashima K, Cachau RE, Rein A (2011) On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? J Virol 85(9):4111–4121. doi: 10.1128/JVI.00006-11 PubMedCentralPubMedGoogle Scholar
  32. De Iaco A, Luban J (2011) Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus. Retrovirology 8:98. doi: 10.1186/1742-4690-8-98 PubMedCentralPubMedGoogle Scholar
  33. De Iaco A, Luban J (2014) Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA. Retrovirology 11:11. doi: 10.1186/1742-4690-11-11 PubMedCentralPubMedGoogle Scholar
  34. De Iaco A, Santoni F, Vannier A, Guipponi M, Antonarakis S, Luban J (2013) TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology 10:20. doi: 10.1186/1742-4690-10-20 PubMedCentralPubMedGoogle Scholar
  35. de Marco A, Heuser AM, Glass B, Krausslich HG, Muller B, Briggs JA (2012) Role of the SP2 domain and its proteolytic cleavage in HIV-1 structural maturation and infectivity. J Virol 86(24):13708–13716. doi: 10.1128/JVI.01704-12 PubMedCentralPubMedGoogle Scholar
  36. de Rocquigny H, Shvadchak V, Avilov S, Dong CZ, Dietrich U, Darlix JL, Mely Y (2008) Targeting the viral nucleocapsid protein in anti-HIV-1 therapy. Mini Rev Med Chem 8(1):24–35PubMedGoogle Scholar
  37. Demirov DG, Orenstein JM, Freed EO (2002) The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J Virol 76(1):105–117PubMedCentralPubMedGoogle Scholar
  38. Fader LD, Bethell R, Bonneau P, Bos M, Bousquet Y, Cordingley MG, Coulombe R, Deroy P, Faucher AM, Gagnon A, Goudreau N, Grand-Maitre C, Guse I, Hucke O, Kawai SH, Lacoste JE, Landry S, Lemke CT, Malenfant E, Mason S, Morin S, O’Meara J, Simoneau B, Titolo S, Yoakim C (2011) Discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly. Bioorg Med Chem Lett 21(1):398–404. doi: 10.1016/j.bmcl.2010.10.131 S0960-894X(10)01592-1PubMedGoogle Scholar
  39. Fisher RD, Chung HY, Zhai Q, Robinson H, Sundquist WI, Hill CP (2007) Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128(5):841–852. doi: 10.1016/j.cell.2007.01.035 PubMedGoogle Scholar
  40. Flexner C (2007) HIV drug development: the next 25 years. Nat Rev Drug Discov 6(12):959–966. doi: 10.1038/nrd2336 PubMedGoogle Scholar
  41. Flisiak R, Horban A, Gallay P, Bobardt M, Selvarajah S, Wiercinska-Drapalo A, Siwak E, Cielniak I, Higersberger J, Kierkus J, Aeschlimann C, Grosgurin P, Nicolas-Metral V, Dumont JM, Porchet H, Crabbe R, Scalfaro P (2008) The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. Hepatology 47(3):817–826. doi: 10.1002/hep.22131 PubMedGoogle Scholar
  42. Fonner VA, Denison J, Kennedy CE, O’Reilly K, Sweat M (2012) Voluntary counseling and testing (VCT) for changing HIV-related risk behavior in developing countries. Cochrane Database Syst Rev 9:CD001224. doi: 10.1002/14651858.CD001224.pub4
  43. Forshey BM, von Schwedler U, Sundquist WI, Aiken C (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76(11):5667–5677PubMedCentralPubMedGoogle Scholar
  44. Franke EK, Yuan HE, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372(6504):359–362. doi: 10.1038/372359a0 PubMedGoogle Scholar
  45. Freed EO (1998) HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251(1):1–15PubMedGoogle Scholar
  46. Freed EO, Martin MA (1995) Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 69(3):1984–1989PubMedCentralPubMedGoogle Scholar
  47. Freed EO, Martin MA (2013) HIVs and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1502–1560Google Scholar
  48. Freed EO, Orenstein JM, Buckler-White AJ, Martin MA (1994) Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol 68(8):5311–5320PubMedCentralPubMedGoogle Scholar
  49. Fujii K, Munshi UM, Ablan SD, Demirov DG, Soheilian F, Nagashima K, Stephen AG, Fisher RJ, Freed EO (2009) Functional role of Alix in HIV-1 replication. Virology 391(2):284–292. doi: 10.1016/j.virol.2009.06.016 S0042-6822(09)00363-8PubMedCentralPubMedGoogle Scholar
  50. Fun A, van Maarseveen NM, Pokorna J, Maas RE, Schipper PJ, Konvalinka J, Nijhuis M (2011) HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat. Retrovirology 8:70. doi: 10.1186/1742-4690-8-70 PubMedCentralPubMedGoogle Scholar
  51. Gallay PA, Ptak RG, Bobardt MD, Dumont JM, Vuagniaux G, Rosenwirth B (2013) Correlation of naturally occurring HIV-1 resistance to DEB025 with capsid amino acid polymorphisms. Viruses-Basel 5(3):981–997. doi: 10.3390/V5030981 Google Scholar
  52. Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP (1997) Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278(5339):849–853PubMedGoogle Scholar
  53. Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, Yeager M (2011) Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci USA 108(2):534–539. doi: 10.1073/pnas.1013426108 PubMedCentralPubMedGoogle Scholar
  54. Ganser-Pornillos BK, Cheng A, Yeager M (2007) Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131(1):70–79PubMedGoogle Scholar
  55. Garzon MT, Lidon-Moya MC, Barrera FN, Prieto A, Gomez J, Mateu MG, Neira JL (2004) The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: a biophysical characterization. Protein Sci 13(6):1512–1523. doi: 10.1110/ps.03555304 (a publication of the Protein Society)PubMedCentralPubMedGoogle Scholar
  56. Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI (1996) Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273(5272):231–235PubMedGoogle Scholar
  57. Goel A, Mazur SJ, Fattah RJ, Hartman TL, Turpin JA, Huang M, Rice WG, Appella E, Inman JK (2002) Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors. Bioorg Med Chem Lett 12(5):767–770 (S0960894X02000070)PubMedGoogle Scholar
  58. Gottlieb GS, Eholie SP, Nkengasong JN, Jallow S, Rowland-Jones S, Whittle HC, Sow PS (2008) A call for randomized controlled trials of antiretroviral therapy for HIV-2 infection in West Africa. Aids 22(16):2069–2072. doi: 10.1097/QAD.0b013e32830edd44 (discussion 2073–2064)
  59. Gottlinger HG, Dorfman T, Sodroski JG, Haseltine WA (1991) Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci USA 88(8):3195–3199PubMedCentralPubMedGoogle Scholar
  60. Goudreau N, Hucke O, Faucher AM, Grand-Maitre C, Lepage O, Bonneau PR, Mason SW, Titolo S (2013a) Discovery and structural characterization of a new inhibitor series of HIV-1 nucleocapsid function: NMR solution structure determination of a ternary complex involving a 2:1 inhibitor/NC stoichiometry. J Mol Biol 425(11):1982–1998. doi: 10.1016/j.jmb.2013.02.022 PubMedGoogle Scholar
  61. Goudreau N, Lemke CT, Faucher AM, Grand-Maitre C, Goulet S, Lacoste JE, Rancourt J, Malenfant E, Mercier JF, Titolo S, Mason SW (2013b) Novel inhibitor binding site discovery on HIV-1 capsid N-terminal domain by NMR and X-ray crystallography. ACS Chem Biol 8(5):1074–1082. doi: 10.1021/cb400075f PubMedGoogle Scholar
  62. Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, Hue S, Barclay WS, Schulz R, Malim MH (2013) Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502(7472):559–562. doi: 10.1038/nature12542 PubMedGoogle Scholar
  63. Haqqani AA, Tilton JC (2013) Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res 98(2):158–170. doi: 10.1016/j.antiviral.2013.03.017 PubMedGoogle Scholar
  64. Hemelaar J, Gouws E, Ghys PD, Osmanov S, Isolation W-UNfH, Characterisation (2011) Global trends in molecular epidemiology of HIV-1 during 2000–2007. Aids 25(5):679–689. doi: 10.1097/QAD.0b013e328342ff93
  65. Hermida-Matsumoto L, Resh MD (1999) Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA. J Virol 73(3):1902–1908PubMedCentralPubMedGoogle Scholar
  66. Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA 93(7):3099–3104PubMedCentralPubMedGoogle Scholar
  67. Hu WS, Hughes SH (2012) HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2(10):37–58. doi: 10.1101/cshperspect.a006882
  68. Huang M, Orenstein JM, Martin MA, Freed EO (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69(11):6810–6818PubMedCentralPubMedGoogle Scholar
  69. Hulme AE, Perez O, Hope TJ (2011) Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci USA 108(24):9975–9980. doi: 10.1073/pnas.1014522108 PubMedCentralPubMedGoogle Scholar
  70. Im YJ, Kuo L, Ren X, Burgos PV, Zhao XZ, Liu F, Burke TR Jr, Bonifacino JS, Freed EO, Hurley JH (2010) Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure 18(11):1536–1547. doi: 10.1016/j.str.2010.08.010 S0969-2126(10)00348-5PubMedCentralPubMedGoogle Scholar
  71. Johnson MC (2011) Mechanisms for Env glycoprotein acquisition by retroviruses. AIDS Res Hum Retroviruses 27(3):239–247. doi: 10.1089/AID.2010.0350 PubMedCentralPubMedGoogle Scholar
  72. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, Bieniasz PD (2013) MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502(7472):563–566. doi: 10.1038/nature12653 PubMedCentralPubMedGoogle Scholar
  73. Karn J, Stoltzfus CM (2012) Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2(2):a006916. doi: 10.1101/cshperspect.a006916 PubMedCentralPubMedGoogle Scholar
  74. Keller PW, Adamson CS, Heymann JB, Freed EO, Steven AC (2011) HIV-1 maturation inhibitor bevirimat stabilizes the immature Gag lattice. J Virol 85(4):1420–1428. doi: 10.1128/JVI.01926-10 PubMedCentralPubMedGoogle Scholar
  75. Keller PW, Huang RK, England MR, Waki K, Cheng N, Heymann JB, Craven RC, Freed EO, Steven AC (2013) A two-pronged structural analysis of retroviral maturation indicates that core formation proceeds by a disassembly-reassembly pathway rather than a displacive transition. J Virol 87(24):13655–13664. doi: 10.1128/JVI.01408-13 PubMedCentralPubMedGoogle Scholar
  76. Kelly BN, Kyere S, Kinde I, Tang C, Howard BR, Robinson H, Sundquist WI, Summers MF, Hill CP (2007) Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein. J Mol Biol 373(2):355–366. doi: 10.1016/j.jmb.2007.07.070 PubMedCentralPubMedGoogle Scholar
  77. Kiernan RE, Ono A, Englund G, Freed EO (1998) Role of matrix in an early postentry step in the human immunodeficiency virus type 1 life cycle. J Virol 72(5):4116–4126PubMedCentralPubMedGoogle Scholar
  78. Kogan M, Rappaport J (2011) HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology 8:25. doi: 10.1186/1742-4690-8-25 PubMedCentralPubMedGoogle Scholar
  79. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135(1):49–60. doi: 10.1016/j.cell.2008.07.032 PubMedCentralPubMedGoogle Scholar
  80. Krishnan L, Engelman A (2012) Retroviral integrase proteins and HIV-1 DNA integration. J Biol Chem 287(49):40858–40866. doi: 10.1074/jbc.R112.397760 PubMedCentralPubMedGoogle Scholar
  81. Krishnan L, Matreyek KA, Oztop I, Lee K, Tipper CH, Li X, Dar MJ, Kewalramani VN, Engelman A (2010) The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol 84(1):397–406. doi: 10.1128/JVI.01899-09 PubMedCentralPubMedGoogle Scholar
  82. Lamorte L, Titolo S, Lemke CT, Goudreau N, Mercier JF, Wardrop E, Shah VB, von Schwedler UK, Langelier C, Banik SS, Aiken C, Sundquist WI, Mason SW (2013) Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes. Antimicrob Agents Chemother 57(10):4622–4631. doi: 10.1128/AAC.00985-13 PubMedCentralPubMedGoogle Scholar
  83. Landi A, Iannucci V, Nuffel AV, Meuwissen P, Verhasselt B (2011) One protein to rule them all: modulation of cell surface receptors and molecules by HIV Nef. Curr HIV Res 9(7):496–504PubMedCentralPubMedGoogle Scholar
  84. Le Tortorec A, Willey S, Neil SJ (2011) Antiviral inhibition of enveloped virus release by tetherin/BST-2: action and counteraction. Viruses 3(5):520–540. doi: 10.3390/v3050520 PubMedCentralPubMedGoogle Scholar
  85. Lederman MM, Smeaton L, Smith KY, Rodriguez B, Pu M, Wang H, Sevin A, Tebas P, Sieg SF, Medvik K, Margolis DM, Pollard R, Ertl HC, Valdez H (2006) Cyclosporin A provides no sustained immunologic benefit to persons with chronic HIV-1 infection starting suppressive antiretroviral therapy: results of a randomized, controlled trial of the AIDS Clinical Trials Group A5138. J Infect Dis 194(12):1677–1685. doi: 10.1086/509261 PubMedGoogle Scholar
  86. Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraaff N, Baumann JG, Wang R, Yuen W, Takemura T, Shelton K, Taniuchi I, Li Y, Sodroski J, Littman DR, Coffin JM, Hughes SH, Unutmaz D, Engelman A, KewalRamani VN (2010) Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7(3):221–233. doi: 10.1016/j.chom.2010.02.007 PubMedCentralPubMedGoogle Scholar
  87. Lee S, Joshi A, Nagashima K, Freed EO, Hurley JH (2007) Structural basis for viral late-domain binding to Alix. Natl Struct Mol Biol 14(3):194–199Google Scholar
  88. Lee SK, Harris J, Swanstrom R (2009) A strongly transdominant mutation in the human immunodeficiency virus type 1 Gag gene defines an Achilles heel in the virus life cycle. J Virol. doi: 10.1128/JVI.00317-09 Google Scholar
  89. Lee SK, Potempa M, Kolli M, Ozen A, Schiffer CA, Swanstrom R (2012) Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 Gag and Gag-Pro-Pol polyprotein precursors by viral protease. J Biol Chem 287(16):13279–13290. doi: 10.1074/jbc.M112.339374 PubMedCentralPubMedGoogle Scholar
  90. Lemke CT, Titolo S, von Schwedler U, Goudreau N, Mercier JF, Wardrop E, Faucher AM, Coulombe R, Banik SS, Fader L, Gagnon A, Kawai SH, Rancourt J, Tremblay M, Yoakim C, Simoneau B, Archambault J, Sundquist WI, Mason SW (2012) Distinct effects of two HIV-1 capsid assembly inhibitor families that bind the same site within the N-terminal domain of the viral CA protein. J Virol 86(12):6643–6655. doi: 10.1128/JVI.00493-12 PubMedCentralPubMedGoogle Scholar
  91. Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K (2010) Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 7(6):754–774PubMedCentralPubMedGoogle Scholar
  92. Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM, Allaway GP, Freed EO, Wild CT (2003) PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100(23):13555–13560PubMedCentralPubMedGoogle Scholar
  93. Li F, Zoumplis D, Matallana C, Kilgore NR, Reddick M, Yunus AS, Adamson CS, Salzwedel K, Martin DE, Allaway GP, Freed EO, Wild CT (2006) Determinants of activity of the HIV-1 maturation inhibitor PA-457. Virology 356(1–2):217–224. doi: 10.1016/j.virol.2006.07.023 S0042-6822(06)00497-1PubMedGoogle Scholar
  94. Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C (2013) The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14(4):398–410. doi: 10.1016/j.chom.2013.08.015 PubMedGoogle Scholar
  95. Lopez-Verges S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C (2006) Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 103(40):14947–14952. doi: 10.1073/pnas.0602941103 PubMedCentralPubMedGoogle Scholar
  96. Lu K, Heng X, Summers MF (2011) Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 410(4):609–633. doi: 10.1016/j.jmb.2011.04.029 PubMedCentralPubMedGoogle Scholar
  97. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73(6):1067–1078PubMedGoogle Scholar
  98. Malim MH, Emerman M (2008) HIV-1 accessory proteins–ensuring viral survival in a hostile environment. Cell Host Microbe 3(6):388–398. doi: 10.1016/j.chom.2008.04.008 PubMedGoogle Scholar
  99. Margot NA, Gibbs CS, Miller MD (2009) Phenotyphic susceptibility to bevirimat among HIV-infected patient isolates without prior exposure to bevirimat. Paper presented at the 16th conference on retroviruses and opportunistic infections, Montreal, 8–11 Feb 2011Google Scholar
  100. Markowitz M, Vaida F, Hare CB, Boden D, Mohri H, Hecht FM, Kalayjian RC, Conrad A, Mildvan D, Aberg J, Hogan C, Kilby JM, Balfour HH Jr, Schafer K, Richman D, Little S (2010) The virologic and immunologic effects of cyclosporine as an adjunct to antiretroviral therapy in patients treated during acute and early HIV-1 infection. J Infect Dis 201(9):1298–1302. doi: 10.1086/651664 PubMedCentralPubMedGoogle Scholar
  101. Martin DE, Blum R, Doto J, Galbraith H, Ballow C (2007a) Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin Pharmacokinet 46(7):589–598. doi: 10.2165/00003088-200746070-00004 PubMedGoogle Scholar
  102. Martin DE, Blum R, Wilton J, Doto J, Galbraith H, Burgess GL, Smith PC, Ballow C (2007b) Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob Agents Chemother 51(9):3063–3066. doi: 10.1128/AAC.01391-06 PubMedCentralPubMedGoogle Scholar
  103. Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, Sundquist WI (1994) Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J Mol Biol 244(2):198–223. doi: 10.1006/jmbi.1994.1719 S0022-2836(84)71719-0PubMedGoogle Scholar
  104. Mateu MG (2009) The capsid protein of human immunodeficiency virus: intersubunit interactions during virus assembly. FEBS J 276(21):6098–6109. doi: 10.1111/j.1742-4658.2009.07313.x PubMedGoogle Scholar
  105. Matreyek KA, Engelman A (2013) Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5(10):2483–2511. doi: 10.3390/v5102483 PubMedCentralPubMedGoogle Scholar
  106. Matreyek KA, Yucel SS, Li X, Engelman A (2013) Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog 9(10):e1003693. doi: 10.1371/journal.ppat.1003693 PubMedCentralPubMedGoogle Scholar
  107. McCullough J, Colf LA, Sundquist WI (2013) Membrane fission reactions of the mammalian ESCRT pathway. Ann Rev Biochem 82:663–692. doi: 10.1146/annurev-biochem-072909-101058 PubMedCentralPubMedGoogle Scholar
  108. Miller Jenkins LM, Ott DE, Hayashi R, Coren LV, Wang D, Xu Q, Schito ML, Inman JK, Appella DH, Appella E (2010) Small-molecule inactivation of HIV-1 NCp7 by repetitive intracellular acyl transfer. Natl Chem Biol 6(12):887–889. doi: 10.1038/nchembio.456 Google Scholar
  109. Morcock DR, Thomas JA, Gagliardi TD, Gorelick RJ, Roser JD, Chertova EN, Bess JW Jr, Ott DE, Sattentau QJ, Frank I, Pope M, Lifson JD, Henderson LE, Crise BJ (2005) Elimination of retroviral infectivity by N-ethylmaleimide with preservation of functional envelope glycoproteins. J Virol 79(3):1533–1542. doi: 10.1128/JVI.79.3.1533-1542.2005 PubMedCentralPubMedGoogle Scholar
  110. Morgan D, Mahe C, Mayanja B, Okongo JM, Lubega R, Whitworth JA (2002) HIV-1 infection in rural Africa: is there a difference in median time to AIDS and survival compared with that in industrialized countries? Aids 16(4):597–603PubMedGoogle Scholar
  111. Muller B, Anders M, Akiyama H, Welsch S, Glass B, Nikovics K, Clavel F, Tervo HM, Keppler OT, Krausslich HG (2009) HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J Biol Chem 284(43):29692–29703. doi: 10.1074/jbc.M109.027144 PubMedCentralPubMedGoogle Scholar
  112. Murakami T, Ablan S, Freed EO, Tanaka Y (2004) Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 78(2):1026–1031PubMedCentralPubMedGoogle Scholar
  113. Murakami T, Freed EO (2000) The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci USA 97(1):343–348PubMedCentralPubMedGoogle Scholar
  114. Muriaux D, Darlix JL (2010) Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol 7(6):744–753PubMedCentralPubMedGoogle Scholar
  115. Nakagawa F, Lodwick RK, Smith CJ, Smith R, Cambiano V, Lundgren JD, Delpech V, Phillips AN (2012) Projected life expectancy of people with HIV according to timing of diagnosis. Aids 26(3):335–343. doi: 10.1097/QAD.0b013e32834dcec9 PubMedGoogle Scholar
  116. Nguyen AT, Feasley CL, Jackson KW, Nitz TJ, Salzwedel K, Air GM, Sakalian M (2011) The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles. Retrovirology 8:101. doi: 10.1186/1742-4690-8-101 PubMedCentralPubMedGoogle Scholar
  117. Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC (2013) Comparing HIV-1 and HIV-2 infection: lessons for viral immunopathogenesis. Rev Med Virol 23(4):221–240. doi: 10.1002/rmv.1739 PubMedGoogle Scholar
  118. Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci USA 101(41):14889–14894PubMedCentralPubMedGoogle Scholar
  119. Ono A, Freed EO (1999) Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. J Virol 73(5):4136–4144PubMedCentralPubMedGoogle Scholar
  120. Ono A, Freed EO (2004) Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body. J Virol 78(3):1552–1563PubMedCentralPubMedGoogle Scholar
  121. Ono A, Freed EO (2005) Role of lipid rafts in virus replication. Adv Virus Res 64:311–358PubMedGoogle Scholar
  122. Ono A, Orenstein JM, Freed EO (2000) Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J Virol 74(6):2855–2866PubMedCentralPubMedGoogle Scholar
  123. Palmer S (2013) Advances in detection and monitoring of plasma viremia in HIV-infected individuals receiving antiretroviral therapy. Curr Opin HIV AIDS 8(2):87–92. doi: 10.1097/COH.0b013e32835d80af PubMedGoogle Scholar
  124. Planelles V, Barker E (2010) Roles of Vpr and Vpx in modulating the virus-host cell relationship. Mol Aspects Med 31(5):398–406. doi: 10.1016/j.mam.2010.05.002 PubMedCentralPubMedGoogle Scholar
  125. Pornillos O, Alam SL, Davis DR, Sundquist WI (2002) Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Natl Struct Biol 9(11):812–817. doi: 10.1038/nsb856 Google Scholar
  126. Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP, Yeager M (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137(7):1282–1292. doi: 10.1016/j.cell.2009.04.063 S0092-8674(09)00580-7PubMedCentralPubMedGoogle Scholar
  127. Price AJ, Fletcher AJ, Schaller T, Elliott T, Lee K, KewalRamani VN, Chin JW, Towers GJ, James LC (2012) CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog 8(8):e1002896. doi: 10.1371/journal.ppat.1002896 PubMedCentralPubMedGoogle Scholar
  128. Ptak RG, Gallay PA, Jochmans D, Halestrap AP, Ruegg UT, Pallansch LA, Bobardt MD, de Bethune MP, Neyts J, De Clercq E, Dumont JM, Scalfaro P, Besseghir K, Wenger RM, Rosenwirth B (2008) Inhibition of human immunodeficiency virus type 1 replication in human cells by Debio-025, a novel cyclophilin binding agent. Antimicrob Agents Chemother 52(4):1302–1317. doi: 10.1128/AAC.01324-07 PubMedCentralPubMedGoogle Scholar
  129. Qi M, Williams JA, Chu H, Chen X, Wang JJ, Ding L, Akhirome E, Wen X, Lapierre LA, Goldenring JR, Spearman P (2013) Rab11-FIP1C and Rab14 direct plasma membrane sorting and particle incorporation of the HIV-1 envelope glycoprotein complex. PLoS Pathog 9(4):e1003278. doi: 10.1371/journal.ppat.1003278 PubMedCentralPubMedGoogle Scholar
  130. Qian K, Bori ID, Chen CH, Huang L, Lee KH (2012) Anti-AIDS agents 90. novel C-28 modified bevirimat analogues as potent HIV maturation inhibitors. J Med Chem 55(18):8128–8136. doi: 10.1021/jm301040s PubMedCentralPubMedGoogle Scholar
  131. Rao Z, Belyaev AS, Fry E, Roy P, Jones IM, Stuart DI (1995) Crystal structure of SIV matrix antigen and implications for virus assembly. Nature 378(6558):743–747. doi: 10.1038/378743a0 PubMedGoogle Scholar
  132. Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL, James LC, Noursadeghi M, Towers GJ (2013) HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503(7476):402–405. doi: 10.1038/nature12769 PubMedCentralPubMedGoogle Scholar
  133. Rein A (2010) Nucleic acid chaperone activity of retroviral Gag proteins. RNA Biol 7(6):700–705PubMedCentralPubMedGoogle Scholar
  134. Rice WG, Schaeffer CA, Harten B, Villinger F, South TL, Summers MF, Henderson LE, Bess JW Jr, Arthur LO, McDougal JS et al (1993) Inhibition of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. Nature 361(6411):473–475. doi: 10.1038/361473a0 PubMedGoogle Scholar
  135. Rice WG, Supko JG, Malspeis L, Buckheit RW Jr, Clanton D, Bu M, Graham L, Schaeffer CA, Turpin JA, Domagala J, Gogliotti R, Bader JP, Halliday SM, Coren L, Sowder RC 2nd, Arthur LO, Henderson LE (1995) Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science 270(5239):1194–1197PubMedGoogle Scholar
  136. Rihn SJ, Wilson SJ, Loman NJ, Alim M, Bakker SE, Bhella D, Gifford RJ, Rixon FJ, Bieniasz PD (2013) Extreme genetic fragility of the HIV-1 capsid. PLoS Pathog 9(6):e1003461. doi: 10.1371/journal.ppat.1003461 PubMedCentralPubMedGoogle Scholar
  137. Romani B, Cohen EA (2012) Lentivirus Vpr and Vpx accessory proteins usurp the cullin4-DDB1 (DCAF1) E3 ubiquitin ligase. Curr Opin Virol 2(6):755–763. doi: 10.1016/j.coviro.2012.09.010 PubMedCentralPubMedGoogle Scholar
  138. Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 103(30):11364–11369PubMedCentralPubMedGoogle Scholar
  139. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430(6999):569–573. doi: 10.1038/nature02777 PubMedGoogle Scholar
  140. Seclen E, Mdel MG, Corral A, de Mendoza C, Soriano V, Poveda E (2010) High prevalence of natural polymorphisms in Gag (CA-SP1) associated with reduced response to bevirimat, an HIV-1 maturation inhibitor. Aids 24(3):467–469. doi: 10.1097/QAD.0b013e328335ce07 PubMedGoogle Scholar
  141. Sharkey M (2013) Restriction of retroviral infection of macrophages. Curr Top Microbiol Immunol 371:105–122. doi: 10.1007/978-3-642-37765-5_4 PubMedGoogle Scholar
  142. Sharp PM, Hahn BH (2011) Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 1(1):a006841. doi: 10.1101/cshperspect.a006841 PubMedCentralPubMedGoogle Scholar
  143. Shi J, Zhou J, Shah VB, Aiken C, Whitby K (2011) Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 85(1):542–549. doi: 10.1128/JVI.01406-10 PubMedCentralPubMedGoogle Scholar
  144. Shvadchak V, Sanglier S, Rocle S, Villa P, Haiech J, Hibert M, Van Dorsselaer A, Mely Y, de Rocquigny H (2009) Identification by high throughput screening of small compounds inhibiting the nucleic acid destabilization activity of the HIV-1 nucleocapsid protein. Biochimie 91(7):916–923. doi: 10.1016/j.biochi.2009.04.014 S0300-9084(09)00110-2PubMedGoogle Scholar
  145. Smith PF, Ogundele A, Forrest A, Wilton J, Salzwedel K, Doto J, Allaway GP, Martin DE (2007) Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-o-(3′,3′-dimethylsuccinyl)betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob Agents Chemother 51(10):3574–3581PubMedCentralPubMedGoogle Scholar
  146. Sticht J, Humbert M, Findlow S, Bodem J, Muller B, Dietrich U, Werner J, Krausslich HG (2005) A peptide inhibitor of HIV-1 assembly in vitro. Natl Struct Mol Biol 12(8):671–677. doi: 10.1038/nsmb964 Google Scholar
  147. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427(6977):848–853. doi: 10.1038/nature02343 PubMedGoogle Scholar
  148. Sundquist WI, Krausslich HG (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2(7):a006924. doi: 10.1101/cshperspect.a006924 PubMedCentralPubMedGoogle Scholar
  149. Swanstrom R, Coffin J (2012) HIV-1 pathogenesis: the virus. Cold Spring Harb Perspect Med 2(12):a007443. doi: 10.1101/cshperspect.a007443 PubMedCentralPubMedGoogle Scholar
  150. Tang C, Loeliger E, Kinde I, Kyere S, Mayo K, Barklis E, Sun Y, Huang M, Summers MF (2003) Antiviral inhibition of the HIV-1 capsid protein. J Mol Biol 327(5):1013–1020PubMedGoogle Scholar
  151. Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF (2004) Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci USA 101(2):517–522. doi: 10.1073/pnas.0305665101 PubMedCentralPubMedGoogle Scholar
  152. Tang C, Ndassa Y, Summers MF (2002) Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Natl Struct Biol 9(7):537–543. doi: 10.1038/nsb806 Google Scholar
  153. Tedbury PR, Ablan SD, Freed EO (2013) Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure. PLoS Pathog 9(11):e1003739. doi: 10.1371/journal.ppat.1003739 PubMedCentralPubMedGoogle Scholar
  154. Telenti A, Johnson WE (2012) Host genes important to HIV replication and evolution. Cold Spring Harb Perspect Med 2(4):a007203. doi: 10.1101/cshperspect.a007203 PubMedCentralPubMedGoogle Scholar
  155. Ternois F, Sticht J, Duquerroy S, Krausslich HG, Rey FA (2005) The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Natl Struct Mol Biol 12(8):678–682. doi: 10.1038/nsmb967 Google Scholar
  156. Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Gottlinger HG (1994) Functional association of cyclophilin A with HIV-1 virions. Nature 372(6504):363–365. doi: 10.1038/372363a0 PubMedGoogle Scholar
  157. Urano E, Kuramochi N, Ichikawa R, Murayama SY, Miyauchi K, Tomoda H, Takebe Y, Nermut M, Komano J, Morikawa Y (2011) Novel postentry inhibitor of human immunodeficiency virus type 1 replication screened by yeast membrane-associated two-hybrid system. Antimicrob Agents Chemother 55(9):4251–4260. doi: 10.1128/aac.00299-11 PubMedCentralPubMedGoogle Scholar
  158. Valle-Casuso JC, Di Nunzio F, Yang Y, Reszka N, Lienlaf M, Arhel N, Perez P, Brass AL, Diaz-Griffero F (2012) TNPO3 is required for HIV-1 replication after nuclear import but prior to integration and binds the HIV-1 core. J Virol 86(10):5931–5936. doi: 10.1128/JVI.00451-12 PubMedCentralPubMedGoogle Scholar
  159. Van Baelen K, Salzwedel K, Rondelez E, Van Eygen V, De Vos S, Verheyen A, Steegen K, Verlinden Y, Allaway GP, Stuyver LJ (2009) HIV-1 susceptibility to the maturation inhibitor bevirimat is modulated by baseline polymorphisms in Gag SP1. Antimicrob Agents Chemother 53(5):2185–8. doi: 10.1128/AAC.01650-08
  160. Verheyen J, Verhofstede C, Knops E, Vandekerckhove L, Fun A, Brunen D, Dauwe K, Wensing AM, Pfister H, Kaiser R, Nijhuis M (2010) High prevalence of bevirimat resistance mutations in protease inhibitor-resistant HIV isolates. Aids 24(5):669–673. doi: 10.1097/QAD.0b013e32833160fa PubMedGoogle Scholar
  161. Votteler J, Sundquist WI (2013) Virus budding and the ESCRT pathway. Cell Host Microbe 14(3):232–241. doi: 10.1016/j.chom.2013.08.012 PubMedGoogle Scholar
  162. Waheed AA, Freed EO (2010) The role of lipids in retrovirus replication. Viruses 2(5):1146–1180. doi: 10.3390/v2051146 PubMedCentralPubMedGoogle Scholar
  163. Waki K, Durell SR, Soheilian F, Nagashima K, Butler SL, Freed EO (2012) Structural and functional insights into the HIV-1 maturation inhibitor binding pocket. PLoS Pathog 8(11):e1002997. doi: 10.1371/journal.ppat.1002997 PubMedCentralPubMedGoogle Scholar
  164. Wallace GS, Cheng-Mayer C, Schito ML, Fletcher P, Jenkins LMM, Hayashi R, Neurath AR, Appella E, Shattock RJ (2009) Human immunodeficiency virus type 1 nucleocapsid inhibitors impede trans infection in cellular and explant models and protect nonhuman primates from infection. J Virol 83(18):9175–9182. doi: 10.1128/JVI.00820-09 PubMedCentralPubMedGoogle Scholar
  165. Weiss ER, Gottlinger H (2011) The role of cellular factors in promoting HIV budding. J Mol Biol 410(4):525–533. doi: 10.1016/j.jmb.2011.04.055
  166. Wilen CB, Tilton JC, Doms RW (2012) HIV: cell binding and entry. Cold Spring Harb Perspect Med 2(8):23–36. doi: 10.1101/cshperspect.a006866
  167. Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C (2004) Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78(7):3429–3435PubMedCentralPubMedGoogle Scholar
  168. Yamashita M, Perez O, Hope TJ, Emerman M (2007) Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog 3(10):1502–1510. doi: 10.1371/journal.ppat.0030156 PubMedGoogle Scholar
  169. Yebra G, Holguin A (2008) The maturation inhibitor bevirimat (PA-457) can be active in patients carrying HIV type-1 non-B subtypes and recombinants. Antiviral Ther 13(8):1083–1085Google Scholar
  170. Zentner I, Sierra LJ, Fraser AK, Maciunas L, Mankowski MK, Vinnik A, Fedichev P, Ptak RG, Martin-Garcia J, Cocklin S (2013a) Identification of a small-molecule inhibitor of HIV-1 assembly that targets the phosphatidylinositol (4,5)-bisphosphate binding site of the HIV-1 matrix protein. Chem Med Chem 8(3):426–432. doi: 10.1002/cmdc.201200577 PubMedGoogle Scholar
  171. Zentner I, Sierra LJ, Maciunas L, Vinnik A, Fedichev P, Mankowski MK, Ptak RG, Martin-Garcia J, Cocklin S (2013b) Discovery of a small-molecule antiviral targeting the HIV-1 matrix protein. Bioorg Med Chem Lett 23(4):1132–1135. doi: 10.1016/j.bmcl.2012.11.041 PubMedCentralPubMedGoogle Scholar
  172. Zhai Q, Fisher RD, Chung HY, Myszka DG, Sundquist WI, Hill CP (2008) Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Natl Struct Mol Biol 15(1):43–49. doi: 10.1038/nsmb1319 Google Scholar
  173. Zhang H, Curreli F, Waheed AA, Mercredi PY, Mehta M, Bhargava P, Scacalossi D, Tong X, Lee S, Cooper A, Summers MF, Freed EO, Debnath AK (2013) Dual-acting stapled peptides target both HIV-1 entry and assembly. Retrovirology 10:136. doi: 10.1186/1742-4690-10-136 PubMedCentralPubMedGoogle Scholar
  174. Zhang H, Curreli F, Zhang X, Bhattacharya S, Waheed AA, Cooper A, Cowburn D, Freed EO, Debnath AK (2011) Antiviral activity of alpha-helical stapled peptides designed from the HIV-1 capsid dimerization domain. Retrovirology 8:28. doi: 10.1186/1742-4690-8-28 PubMedCentralPubMedGoogle Scholar
  175. Zhang H, Zhao Q, Bhattacharya S, Waheed AA, Tong X, Hong A, Heck S, Curreli F, Goger M, Cowburn D, Freed EO, Debnath AK (2008) A cell-penetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol 378(3):565–580. doi: 10.1016/j.jmb.2008.02.066 PubMedCentralPubMedGoogle Scholar
  176. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, Ahn J, Gronenborn AM, Schulten K, Aiken C, Zhang P (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497(7451):643–646. doi: 10.1038/nature12162 PubMedCentralPubMedGoogle Scholar
  177. Zhou J, Chen CH, Aiken C (2006) Human immunodeficiency virus type 1 resistance to the small molecule maturation inhibitor 3-O-(3′,3′-dimethylsuccinyl)-betulinic acid is conferred by a variety of single amino acid substitutions at the CA-SP1 cleavage site in Gag. J Virol 80(24):12095–12101PubMedCentralPubMedGoogle Scholar
  178. Zhou W, Resh MD (1996) Differential membrane binding of the human immunodeficiency virus type 1 matrix protein. J Virol 70(12):8540–8548PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer InstituteCenter for Cancer ResearchFrederickUSA

Personalised recommendations