Novel Approaches for Vaccination Against HPV-Induced Cancers

  • Emma KingEmail author
  • Christian Ottensmeier
  • Kevin G. J. PollockEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 405)


To date, more than 5 % of all cancers are as a result of human papillomavirus (HPV) infection, and this incidence is increasing. Early recognition of disease is associated with good survival, but late presentation results in devastating consequences. Prevention is better than cure, and there are now successful prophylactic vaccination programmes in place. We discuss these and the prospect of therapeutic vaccinations in the near future to address a growing need for improved therapeutic options.


Conflicts of Interest

None declared.


  1. Alcocer-González JM, Berumen J, Taméz-Guerra R et al (2006) In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol 19:481–491CrossRefPubMedGoogle Scholar
  2. Ali H, Donovan B, Wand H et al (2013) Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ 346:f2032CrossRefPubMedGoogle Scholar
  3. Anantharaman D, Gheit T, Waterboer T et al (2013) Human papillomavirus infections and upper aero-digestive tract cancers: the ARCAGE study. J Natl Cancer Inst 17:536–545CrossRefGoogle Scholar
  4. Arisa-Pulido H, Peyton CL, Joste NE et al (2006) Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J Clin Microbiol 44:1755–1762CrossRefGoogle Scholar
  5. Baldur-Felskov B, Dehlendorff C, Munk C et al (2014) Early impact of human papillomavirus vaccination on cervical neoplasia—nationwide follow-up of young Danish women. J Natl Cancer Inst 106:djt460Google Scholar
  6. Baldwin PJ, van der Burg SH, Boswell CM et al (2003) Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res 9:5205–5213PubMedGoogle Scholar
  7. Borzacchiello G, Roperto F, Campo MS et al (2010) 1st international workshop on papillomavirus E5 oncogene—a report. Virology 408:135–137CrossRefPubMedGoogle Scholar
  8. Bouvard V, Storey A, Pim D et al (1994) Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J 13:5451–5459PubMedPubMedCentralGoogle Scholar
  9. Bowyer HL, Marlow LA, Hibbitts S et al (2013) Knowledge and awareness of HPV and the HPV vaccine among young women in the first routinely vaccinated cohort in England. Vaccine 31:1051–1056CrossRefPubMedGoogle Scholar
  10. Brotherton JML, Fridman M, May CL et al (2011) Early effect of the HPV vaccination programme on cervical abnormalities in Victoria, Australia: an ecological study. Lancet 377:2085–2092CrossRefPubMedGoogle Scholar
  11. Bruggink SC, de Koning MN, Gussekloo J et al (2012) Cutaneous wart-associated HPV types: prevalence and relation with patient characteristics. J Clin Virol 55:250–255CrossRefPubMedGoogle Scholar
  12. Brun JL, Dalstein V, Leveque J et al (2011) Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol 204:169 [e161–e168]Google Scholar
  13. Burger EA, Sy S, Nygard M et al (2014) Prevention of HPV-related cancers in Norway: cost-effectiveness of expanding the HPV vaccination program to include pre-adolescent boys. PLoS One 9:e89974CrossRefPubMedPubMedCentralGoogle Scholar
  14. Campo MS, Roden RBS (2010) Papillomavirus prophylactic vaccines: established successes, new approaches. J Virol 84:1214–1220CrossRefPubMedGoogle Scholar
  15. Carter JJ, Koutsky LA, Hughes JP et al (2000) Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis 181:1911–1919CrossRefPubMedGoogle Scholar
  16. Chaturvedi AK, Engels EA, Pfeiffer RM et al (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29:4294–4301CrossRefPubMedPubMedCentralGoogle Scholar
  17. Conrad M, Bubb VJ, Schlegel R (1993) The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associated with the 16-kilodalton pore-forming protein. J Virol 67:6170–6178PubMedPubMedCentralGoogle Scholar
  18. Crowe E, Pandeya N, Brotherton JML et al (2014) Effectiveness of quadrivalent human papillomavirus vaccine for the prevention of cervical abnormalities: case-control study nested within a population based screening programme in Australia. BMJ Open 348:g1458Google Scholar
  19. Cuschieri K, Brewster DH, Williams ARW et al (2010) Distribution of HPV types associated with cervical cancers in Scotland and implications for the impact of HPV vaccines. Br J Cancer 102:930–932CrossRefPubMedPubMedCentralGoogle Scholar
  20. Daayana S, Elkord E, Winters U et al (2010) Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer 102:1129–1136CrossRefPubMedPubMedCentralGoogle Scholar
  21. Day PM, Kines RC, Thompson CD et al (2010) In vivo mechanisms of vaccine-induced protection against HPV infection. Cell Host Microbe 8:260–270CrossRefPubMedPubMedCentralGoogle Scholar
  22. de Vos van Steenwijk PJ, Ramwadhdoebe TH, Lowik MJ et al (2012) A placebo controlled randomized HPV16 synthetic long-peptide vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer Immunol Immunother CII 61:1485–1492Google Scholar
  23. Didierlaurent AM, Morel S, Lockman L (2009) AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 183:6186–6197CrossRefPubMedGoogle Scholar
  24. Dittmer C, Fischer D, Diedrich K et al (2012) Diagnosis and treatment options of vulvar cancer: a review. Arch Gynecol Obstet 285:183–193CrossRefPubMedGoogle Scholar
  25. Dziduszko A, Ozbun MA (2013) Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J Virol 87:7502–7515Google Scholar
  26. Fahey LM, Raff AB, Da Silva DM et al (2009) A major role for the minor capsid protein of human papillomavirus type 16 in immune escape. J Immunol 183:6151–6156CrossRefPubMedGoogle Scholar
  27. Felsani A, Mileo AM, Paggi MG (2006) Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25(38):5277–5285CrossRefPubMedGoogle Scholar
  28. Frattini MG, Laimins LA (1994) Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein. Proc Natl Acad Sci USA 91:12398–12402CrossRefPubMedPubMedCentralGoogle Scholar
  29. Frazer IH, Quinn M, Nicklin JL et al (2004) Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine 23:172–181CrossRefPubMedGoogle Scholar
  30. Gami B, Kubba F, Ziprin P (2014) Human papilloma virus and squamous cell carcinoma of the anus. Clin Med Insights Oncol 8:113–119CrossRefPubMedPubMedCentralGoogle Scholar
  31. Garland SM, Steben M, Sings HL et al (2009) Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. J Infect Dis 199(6):805–814CrossRefPubMedGoogle Scholar
  32. Garnett TO, Duerksen-Hughes PJ (2006) Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol 151:2321–2335CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ghittoni R, Accardi R, Hasan U et al (2010) The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40:1–13CrossRefPubMedGoogle Scholar
  34. Gillison ML, D’Souza G, Westra W et al (2008) Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst 100:407–420CrossRefPubMedGoogle Scholar
  35. Giuliano AR, Palefsky JM, Goldstone S et al (2011) Efficacy of quadrivalent HPV vaccine against HPV infection and disease in males. N Engl J Med 364(5):401–411Google Scholar
  36. Glaunsinger BA, Lee SS, Thomas M et al (2000) Interactions of the PDZprotein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19:5270–5280Google Scholar
  37. Harro CD, Pang YY, Roden RB et al (2001) Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J Natl Cancer Inst 93:284–492CrossRefPubMedGoogle Scholar
  38. Hartwig S, Syrjänen S, Dominiak-Felden G et al (2012) Estimation of the epidemiological burden of human papillomavirus-related cancers and non-malignant diseases in men in Europe: a review. BMC Cancer 12:30Google Scholar
  39. Herrero R, Quint W, Hildesheim A (2013) Reduced prevalence of oral human papillomavirus (HPV) 4 years after bivalent HPV vaccination in a randomized clinical trial in Costa Rica. PLoS One 8(7):e68329CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hildesheim A, Herrero R, Wacholder S et al (2007) Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298(7):743–753CrossRefPubMedGoogle Scholar
  41. Hopkins TG, Wood N (2013) Female human papillomavirus (HPV) vaccination: global uptake and the impact of attitudes. Vaccine 31:1673–1679CrossRefPubMedGoogle Scholar
  42. Howie HL, Katzenellenbogen RA, Galloway DA (2009) Papillomavirus E6 proteins. Virology 384:324–334CrossRefPubMedGoogle Scholar
  43. Howley PM, Lowy DR (2007) Papillomaviruses. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Wolters Kluwer/Lippincott Williams &Wilkins, Philadelphia, pp 2299–2354Google Scholar
  44. Huang CF, Monie A, Weng WH et al (2010) DNA vaccines for cervical cancer. Am J Transl Res 2:75–87Google Scholar
  45. Huibregtse JM, Scheffner M, Howley PM (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus type 16 or 18. EMBO J 10:4129–4135PubMedPubMedCentralGoogle Scholar
  46. Jemal A, Simard EP, Dorell C et al (2013) Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)—associated cancers and hpv vaccination coverage levels. J Natl Cancer Inst 105:175–201Google Scholar
  47. Jiang P, Yue Y (2014) Human papillomavirus oncoproteins and apoptosis (review). Exp Ther Med 7:3–7Google Scholar
  48. Jie HB, Gildener-Leapman N, Li J et al (2013) Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer 109(10):2629–2635CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jing M, Bohl J, Brimer N et al (2007) Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol 81:2231–2239CrossRefPubMedGoogle Scholar
  50. Karanam B, Jagu S, Huh WK et al (2009) Developing vaccines against minor capsid antigen L2 to prevent papillomavirus infection. Immunol Cell Biol 87:287–299CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kavanagh K, Pollock KGJ, Potts A et al (2014) Introduction and sustained high coverage of the HPV bivalent vaccine leads to a reduction in prevalence of HPV 16/18 and closely related HPV types. Br J Cancer doi: 10.1038/bjc.2014.198 (epub ahead of print)
  52. Kenter GG, Welters MJ, Valentijn AR et al (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361:1838–1847CrossRefPubMedGoogle Scholar
  53. Khleif SN, DeGregori J, Yee CL et al (1996) Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci USA 93:4350–4354CrossRefPubMedPubMedCentralGoogle Scholar
  54. Khoronenkova SV, Dianov GL (2011) The emerging role of Mule and ARF in the regulation of base exicision repair. FEBS Lett 585:2831–2835CrossRefPubMedGoogle Scholar
  55. Kines RC, Thompson CD, Lowy DR et al (2009) The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 106:20458–20463CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kiyono T, Hiraiwa A, Fujita M et al (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94:11612–11616CrossRefPubMedPubMedCentralGoogle Scholar
  57. Klingelhutz AJ, Foster SA, McDougall JK (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380:79–82Google Scholar
  58. Kreimer AR, González P, Katki HA et al (2011) Efficacy of a bivalent HPV 16/18 vaccine against anal HPV 16/18 infection among young women: a nested analysis within the Costa Rica vaccine trial. Lancet Oncol 12(9):862–870CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kreuter A, Wieland U (2013) Lack of efficacy in treating condyloma acuminate and preventing recurrences with the recombinant quadrivalent human papillomavirus vaccine in a case series of immunocompetent patients. J Am Acad Dermatol 68:179–180CrossRefPubMedGoogle Scholar
  60. Kreuter A, Waterboer T, Wieland U (2010) Regression of cutaneous warts in a patient with WILD syndrome following recombinant quadrivalent human papillomavirus vaccination. Arch Dermatol 146:1196–1197CrossRefPubMedGoogle Scholar
  61. Kumar A, Zhao Y, Meng G et al (2002) Human papillomovirus oncoperotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 22:5801–5812CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lee SS, Glaunsinger B, Mantovani F et al (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74:9680–9693CrossRefPubMedPubMedCentralGoogle Scholar
  63. Li W, Deng XM, Wang CX et al (2010) Down-regulation of HLA class I antigen in human papillomavirus type 16 E7 expressing HaCaT cells: correlate with TAP-1 expression. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc Feb 20:227–232Google Scholar
  64. Lorincz AT, Reid R, Jenson AB et al (1992) Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 79:328–337CrossRefPubMedGoogle Scholar
  65. Maciag PC, Radulovic S, Rothman J (2009) The first clinical use of a live attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27:3975–3983Google Scholar
  66. Maglennon GA, Doorbar J (2012) The biology of papillomavirus latency. Open Virol J 6:190–197CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mariani L, Venuti A (2010) HPV vaccine: an overview of immune response, clinical protection, and new approaches for the future. J Transl Med 8:105Google Scholar
  68. Markowitz LE, Dunne EF, Saraiya M et al (2007) Quadrivalent human papillomavirus vaccine: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep 56:1–24PubMedGoogle Scholar
  69. Matijevic M, Hedley ML, Urban RG et al (2011) Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol 270:62–69CrossRefPubMedGoogle Scholar
  70. Matoso A, Ross HM, Chen S et al (2014) Squamous neoplasia of the scrotum: a series of 29 cases. Am J Surg Pathol 38:973–981CrossRefPubMedGoogle Scholar
  71. McBride AA, Oliveira JG, McPhillips MG (2006) Partitioning viral genomes in mitosis: same idea, different targets. Cell Cycle 5:1499–1502Google Scholar
  72. McLaughlin-Drubin ME, Munger K (2009) Oncogenic activities of human papillomaviruses. Virus Res 143:195–208CrossRefPubMedPubMedCentralGoogle Scholar
  73. Moscicki AB, Schiffman M, Burchell A et al (2012) Updating the natural history of human papillomavirus and anogenital cancers. Vaccine 30:24–33CrossRefGoogle Scholar
  74. Muench P, Hiller T, Probst S et al (2009) Binding of PDZ proteins to HPV E6 proteins does neither correlate with epidemiological risk classification nor with the immortalization of foreskin keratinocytes. Virology 387:380–387CrossRefPubMedGoogle Scholar
  75. Münger K, Basile JR, Duensing S et al (2001) Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20:7888–7898CrossRefPubMedGoogle Scholar
  76. Nakagawa S, Huibregtse JM (2000) Human scribble (Vartul) is targeted for ubiquitinmediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20:8244–8253CrossRefPubMedPubMedCentralGoogle Scholar
  77. O’Brien PM, Saveria Campo M (2002) Evasion of host immunity directed by papillomavirus-encoded proteins. Virus Res 88:103–117CrossRefPubMedGoogle Scholar
  78. Olsen J, Jørgensen TR, Kofoed K et al (2012) Incidence and cost of anal, penile, vaginal and vulvar cancer in Denmark. BMC Public Health 12:1082CrossRefPubMedPubMedCentralGoogle Scholar
  79. Olthof NC, Speel EJ, Kolligs J et al (2014) Comprehensive analysis of HPV16 integration in OSCC reveals no significant impact of physical status on viral oncogene and virally disrupted human gene expression. PLoS One 9:e88718CrossRefPubMedPubMedCentralGoogle Scholar
  80. Paavonen J, Naud P, Salmeron J et al (2009) Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374:301–314CrossRefPubMedGoogle Scholar
  81. Pai SI, Westra WH (2009) Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Annu Rev Pathol 4:49–70CrossRefPubMedPubMedCentralGoogle Scholar
  82. Parkin DM, Bray F (2006) The burden of HPV-related cancers. Vaccine 24(Suppl 3):11–25CrossRefGoogle Scholar
  83. Pollock KG, Kavanagh K, Potts A (2014) Reduction of low- and high-grade cervical abnormalities associated with high uptake of the HPV bivalent vaccine in Scotland. Br J Cancer Sep 2. doi: 10.1038/bjc.2014.479. [Epub ahead of print]
  84. Ressing ME, van Driel WJ, Brandt RM et al (2000) Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J Immunother 23:255–266CrossRefPubMedGoogle Scholar
  85. Safaeian M, Porras C, Schiffman M et al (2010) Epidemiological study of anti-HPV16/18 seropositivity and subsequent risk of HPV16 and -18 infections. J Natl Cancer Inst 102(21):1653–1662CrossRefPubMedPubMedCentralGoogle Scholar
  86. Santin AD, Bellone S, Palmieri M et al (2008) Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial. J Virol 82:1968–1979CrossRefPubMedGoogle Scholar
  87. Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23(3):421–429CrossRefPubMedPubMedCentralGoogle Scholar
  88. Scheffner M, Huibregtse JM, Vierstra RD et al (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505CrossRefPubMedGoogle Scholar
  89. Schiffman M, Herrero R, Desalle R et al (2005) The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 337:76–84CrossRefPubMedGoogle Scholar
  90. Schoeneich G, Perabo FGE, Muller SC (1999) Squamous cell carcinoma of the penis. Andrologia 31(Suppl 1):17–20PubMedGoogle Scholar
  91. Scholefield JH, Harris D, Radcliffe A (2011) Guidelines for management of anal intraepithelial neoplasia. Colorectal Dis 13(Suppl 1):3–10CrossRefPubMedGoogle Scholar
  92. Sedman J, Stenlund A (1995) Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J 14:6218–6228PubMedPubMedCentralGoogle Scholar
  93. Sheets EE, Urban RG, Crum CP et al (2003) Immunotherapy of human cervical highgrade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol 188(4):916–926Google Scholar
  94. Shulzhenko N, Lyng H, Sanson GF et al (2014) Ménage à trois: an evolutionary interplay between human papillomavirus, a tumor, and a woman. Trends Microbiol 22(6):345–353CrossRefPubMedGoogle Scholar
  95. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29Google Scholar
  96. Silling S, Wieland U, Werner M et al (2014) Resolution of novel human papillomavirus-induced warts after HPV vaccination. Emerg Infect Dis 20:142–145CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sinka K, Kavanagh K, Gordon R et al (2014) Introduction, high and equitable coverage of adolescent HPV vaccine in Scotland. J Epidemiol Community Health 68:57–63CrossRefPubMedGoogle Scholar
  98. Smith JS, Lindsay L, Hoots B et al (2007) Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical cervical lesions: a meta-analysis update. Int J Cancer 21:621–632CrossRefGoogle Scholar
  99. Smyth LJ, Van Poelgeest MI, Davidson EJ et al (2004) Immunological responses in women with human papillomavirus type 16 (HPV-16)-associated anogenital intraepithelial neoplasia induced by heterologous prime-boost HPV-16 oncogene vaccination. Clin Cancer Res 10:2954–2961CrossRefPubMedGoogle Scholar
  100. Spencer AM, Roberts SA, Brabin L, Patnick J, Verma A (2014) Sociodemographic factors predicting mother’s cervical screening and daughter’s HPV vaccination uptake. J Epidemiol Community Health 68:571–577CrossRefPubMedGoogle Scholar
  101. Stanley M (2014) HPV vaccination in boys and men. Hum Vaccin Immunother 10:7CrossRefGoogle Scholar
  102. Stanley M, Pinto LA, Trimble C et al (2012) Human papillomavirus vaccines–immune responses. Vaccine 30(Suppl 5):F83–F87CrossRefPubMedGoogle Scholar
  103. Steger G, Corbach S (1997) Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol 71:50–58PubMedPubMedCentralGoogle Scholar
  104. Steinau M, Saralya M, Goodman T et al (2014) HPV prevalence in oropharyngeal cancer before vaccine introduction, United States. Emerg Infect Dis 20:822–828CrossRefPubMedPubMedCentralGoogle Scholar
  105. Stern PL, Brown M, Stacey SN et al (2000) Natural HPV immunity and vaccination strategies. J Clin Virol 19(1–2):57–66CrossRefPubMedGoogle Scholar
  106. Suzich JA, Ghim SJ, Palmer Hill FJ et al (1995) Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci USA 92:11553–11557Google Scholar
  107. Trimble CL, Piantadosi S, Gravitt P et al (2005) Spontaneous regression of high-grade cervical dysplasia: effects of human papillomavirus type and HLA phenotype. Clin Cancer Res 11:4717–4723CrossRefPubMedPubMedCentralGoogle Scholar
  108. Trimble CL, Peng S, Thoburn C et al (2009a) Naturally occurring systemic immune responses to HPV antigens do not predict regression of CIN2/3. Cancer Immunol Immunother 59(5):799–803Google Scholar
  109. Trimble CL, Peng S, Kos F et al (2009b) A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15(1):361–367CrossRefPubMedPubMedCentralGoogle Scholar
  110. Trimble CL, Clark RA, Thoburn C et al (2010) Human papillomavirus 16-associated cervical intraepithelial neoplasia in humans excludes CD8 T cells from dysplastic epithelium. J Immunol 185:7107–7114CrossRefPubMedPubMedCentralGoogle Scholar
  111. Tyler M, Tumban E, Dziduszko A et al (2014) Immunization with a consensus epitope from human papillomavirus L2 induces antibodies that are broadly neutralizing. Vaccine 32(34):4267–4274CrossRefPubMedPubMedCentralGoogle Scholar
  112. Um SH, Mundi N, Yoo J et al (2014) Variable expression of the forgotten oncogene E5 in HPV-positive oropharyngeal cancer. J Clin Virol 61(1):94–100CrossRefPubMedGoogle Scholar
  113. van Poelgeest MI, Nijhuis ER, Kwappenberg KM et al (2006) Distinct regulation and impact of type 1 T-cell immunity against HPV16 L1, E2 and E6 antigens during HPV16-induced cervical infection and neoplasia. Int J Cancer 118(3):675–683Google Scholar
  114. Vinokurova S, Wentzensen N, Kraus I et al (2008) Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res 68:307–313CrossRefPubMedGoogle Scholar
  115. Viscidi RP, Kotloff KL, Clayman B et al (1997) Prevalence of antibodies to human papillomavirus (HPV) type 16 virus-like particles in relation to cervical HPV infection among college women. Clin Diagn Lab Immunol 4:122–126PubMedPubMedCentralGoogle Scholar
  116. Voskens CJ, Sewell D, Hertzano R et al (2012) Induction of mage-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma. Head Neck 34(12):1734–1746Google Scholar
  117. Ward MJ, Thirdborough SM, Mellows T et al (2014a) Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br J Cancer 110(2):489–500CrossRefPubMedGoogle Scholar
  118. Ward MJ, Mellows T, Harris S et al (2014b) Staging and treatment of oropharyngeal cancer in the human papillomavirus era. Head Neck (epub ahead of print)Google Scholar
  119. Webster K, Parish J, Pandya M et al (2000) The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem 275:87–94CrossRefPubMedGoogle Scholar
  120. Welters MJ, Kenter GG, de Vos van Steenwijk PJ et al (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA 107(26):11895–11899Google Scholar
  121. Wood LM, Paterson Y (2014) Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect Microbiol 12(4):51Google Scholar
  122. Yoshida T, Sano T, Kanuma T et al (2008) Immunochemical analysis of HPV L1 capsid protein and p16 protein in liquid-based cytology samples from uterine cervical lesions. Cancer 114(2):83–88Google Scholar
  123. Zerfass K, Schulze A, Spitkovsky D et al (1995) Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol 69:6389–6399Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of SouthamptonSouthamptonUK
  2. 2.Health Protection ScotlandGlasgowScotland

Personalised recommendations