Skip to main content

Reaction Mechanism of Mono-ADP-Ribosyltransferase Based on Structures of the Complex of Enzyme and Substrate Protein

  • Chapter
  • First Online:
Endogenous ADP-Ribosylation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 384))

Abstract

Mono-ADP-ribosylation is a post-translational protein modification catalyzed by bacterial toxins and exoenzymes that function as ADP-ribosyltransferases. Despite the importance of this modification, the reaction mechanism remains poorly understood due to a lack of information on the crystal structure of these enzymes in complex with a substrate protein. Recently, the structures of two such complexes became available, which shed new light on the mechanisms of mono-ADP-ribosylation. In this review, we consider the reaction mechanism based on the structures of ADP-ribosyltransferases in complex with a substrate protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322(6077):390–392

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Braun U, Rosener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158(1):209–213

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Frevert J (1987) ADP-ribosylation of a 21-24 kDa eukaryotic protein(s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J 247(2):363–368

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278(23):4526–4543

    Article  PubMed  CAS  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Nat. Acad Sci USA 98(18):10037–10041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barth H, Preiss JC, Hofmann F, Aktories K (1998) Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 273(45):29506–29511

    Article  PubMed  CAS  Google Scholar 

  • Berti PJ, Blanke SR, Schramm VL (1997) Transition state structure for the hydrolysis of NAD catalyzed by diphtheria toxin. J Am Chem Soc 119(50):12079–12088

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bokoch GM, Katada T, Northup JK, Hewlett EL, Gilman AG (1983) Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem 258(4):2072–2075

    PubMed  CAS  Google Scholar 

  • Bubb MR, Govindasamy L, Yarmola EG, Vorobiev SM, Almo SC, Somasundaram T, Chapman MS, Agbandje-McKenna M, McKenna R (2002) Polylysine induces an antiparallel actin dimer that nucleates filament assembly: crystal structure at 3.5-Å resolution. J Biol Chem 277(23):20999–21006

    Article  PubMed  CAS  Google Scholar 

  • Buckley N, Handlon AL, Malby D, Burlingame AL, Oppenheimer NJ (1994) J Org Chem 59:3609–3615

    Article  CAS  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Nat Acad Sci USA 75(6):2669–2673

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chung DW, Collier RJ (1977) Enzymatically active peptide from the adenosine diphosphate-ribosylating toxin of Pseudomonas aeruginosa. Infect Immun 16(3):832–841

    PubMed  CAS  PubMed Central  Google Scholar 

  • Domenighini M, Magagnoli C, Pizza M, Rappuoli R (1994) Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Mol Microbiol 14(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Domenighini M, Rappuoli R (1996) Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol 21(4):667–674

    Article  PubMed  CAS  Google Scholar 

  • Dominguez R (2004) Actin-binding proteins—a unifying hypothesis. Trends Biochem Sci 29(11):572–578

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    Article  PubMed  CAS  Google Scholar 

  • Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR (2003) The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J Biol Chem 278(46):45924–45930

    Article  PubMed  CAS  Google Scholar 

  • Ferro AM, Oppenheimer NJ (1978) Structure of a poly (adenosine diphosphoribose) monomer: 2’-(5”-hosphoribosyl)-5’-adenosine monophosphate. Proc Nat Acad Sci USA 75(2):809–813

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447(7142):284–288

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Iwane AH, Yanagida T, Namba K (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467(7316):724–728

    Article  PubMed  CAS  Google Scholar 

  • Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Nat Acad Sci USA 96(17):9459–9464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gebeyehu G, Marquez VE, Kelley JA, Cooney DA, Jayaram HN, Johns DG (1983) Synthesis of thiazole-4-carboxamide adenine dinucleotide. A powerful inhibitor of IMP dehydrogenase. J Med Chem 26(6):922–925

    Article  PubMed  CAS  Google Scholar 

  • Han S, Arvai AS, Clancy SB, Tainer JA (2001) Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J Mol Biol 305(1):95–107

    Article  PubMed  CAS  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6(10):932–936

    Article  PubMed  CAS  Google Scholar 

  • Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev: MMBR 70(3):789–829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hochmann H, Pust S, von Figura G, Aktories K, Barth H (2006) Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Biochemistry 45(4):1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Holbourn KP, Sutton JM, Evans HR, Shone CC, Acharya KR (2005) Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase. Proc Nat Acad Sci USA 102(15):5357–5362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347(6288):44–49

    Article  PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243(12):3553–3555

    PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Kato I, Hayaishi O (1971) Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis by diphtheria toxin. J Biol Chem 246(13):4251–4260

    PubMed  CAS  Google Scholar 

  • Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219

    Article  PubMed  CAS  Google Scholar 

  • Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Nat Acad Sci USA 72(6):2284–2288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jank T, Aktories K (2013) Strain-alleviation model of ADP-ribosylation. Proc Nat Acad Sci USA 110(11):4163–4164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jørgensen R, Merrill AR, Yates SP, Marquez VE, Schwan AL, Boesen T, Andersen GR (2005) Exotoxin A-eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature 436(7053):979–984

    Article  PubMed  Google Scholar 

  • Jørgensen R, Wang Y, Visschedyk D, Merrill AR (2008) The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep 9(8):802–809

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347(6288):37–44

    Article  PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1986) The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261(17):7906–7911

    PubMed  CAS  Google Scholar 

  • Katada T, Ui M (1982) ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J Biol Chem 257(12):7210–7216

    PubMed  CAS  Google Scholar 

  • Kimoto H, Fujii Y, Hirano S, Yokota Y, Taketo A (2006) Genetic and biochemical properties of streptococcal NAD-glycohydrolase inhibitor. J Biol Chem 281(14):9181–9189

    Article  PubMed  CAS  Google Scholar 

  • Koch-Nolte F, Kernstock S, Mueller-Dieckmann C, Weiss MS, Haag F (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci: J Virtual Libr 13:6716–6729

    Article  CAS  Google Scholar 

  • Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327(5969):1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Margarit SM, Davidson W, Frego L, Stebbins CE (2006) A steric antagonism of actin polymerization by a salmonella virulence protein. Structure 14(8):1219–1229

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Gooch JT, Mannherz HG, Weeds AG (1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364(6439):685–692

    Article  PubMed  CAS  Google Scholar 

  • Menetrey J, Flatau G, Stura EA, Charbonnier JB, Gas F, Teulon JM, Le Du MH, Boquet P, Menez A (2002) NAD binding induces conformational changes in Rho ADP-ribosylating Clostridium botulinum C3 exoenzyme. J Biol Chem 277(34):30950–30957

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Garrison S, Oppenheimer NJ, Richardson SH (1979a) NAD-dependent ADP-ribosylation of arginine and proteins by Escherichia coli heat-labile enterotoxin. J Biol Chem 254(14):6270–6272

    PubMed  CAS  Google Scholar 

  • Moss J, Stanley SJ, Oppenheimer NJ (1979b) Substrate specificity and partial purification of a stereospecific NAD- and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J Biol Chem 254(18):8891–8894

    PubMed  CAS  Google Scholar 

  • Moss J, Stanley SJ, Vaughan M, Tsuji T (1993) Interaction of ADP-ribosylation factor with Escherichia coli enterotoxin that contains an inactivating lysine 112 substitution. J Biol Chem 268(9):6383–6387

    PubMed  CAS  Google Scholar 

  • Murakami K, Yasunaga T, Noguchi TQ, Gomibuchi Y, Ngo KX, Uyeda TQ, Wakabayashi T (2010) Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 143(2):275–287

    Article  PubMed  CAS  Google Scholar 

  • Nagahama M, Sakaguchi Y, Kobayashi K, Ochi S, Sakurai J (2000) Characterization of the enzymatic component of Clostridium perfringens iota-toxin. J Bacteriol 182(8):2096–2103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Noda M, Tsai SC, Adamik R, Moss J, Vaughan M (1990) Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein. Biochim Biophys Acta 1034(2):195–199

    Article  PubMed  CAS  Google Scholar 

  • O’Neal CJ, Jobling MG, Holmes RK, Hol WG (2005) Structural basis for the activation of cholera toxin by human ARF6-GTP. Science 309(5737):1093–1096

    Article  PubMed  Google Scholar 

  • Oppenheimer NJ (1994) NAD hydrolysis: chemical and enzymatic mechanisms. Mol Cell Biochem 138(1–2):245–251

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer NJ, Bodley JW (1981) Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J Biol Chem 256(16):8579–8581

    PubMed  CAS  Google Scholar 

  • Otterbein LR, Cosio C, Graceffa P, Dominguez R (2002) Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system. Proc Nat Acad Sci USA 99(12):8003–8008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perelle S, Domenighini M, Popoff MR (1996) Evidence that Arg-295, Glu-378, and Glu-380 are active-site residues of the ADP-ribosyltransferase activity of iota toxin. FEBS Lett 395(2–3):191–194

    Article  PubMed  CAS  Google Scholar 

  • Pintilie GD, Zhang J, Goddard TD, Chiu W, Gossard DC (2010) Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J Struct Biol 170(3):427–438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Popoff MR, Milward FW, Bancillon B, Boquet P (1989) Purification of the Clostridium spiroforme binary toxin and activity of the toxin on HEp-2 cells. Infect Immun 57(8):2462–2469

    PubMed  CAS  PubMed Central  Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56(9):2299–2306

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364(4):705–715

    Article  PubMed  CAS  Google Scholar 

  • Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U (1993) The structure of crystalline profilin-beta-actin. Nature 365(6449):810–816

    Article  PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264(15):8602–8605

    PubMed  CAS  Google Scholar 

  • Shniffer A, Visschedyk DD, Ravulapalli R, Suarez G, Turgeon ZJ, Petrie AA, Chopra AK, Merrill AR (2012) Characterization of an actin-targeting ADP-ribosyltransferase from Aeromonas hydrophila. J Biol Chem 287(44):37030–37041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sixma TK, Pronk SE, Kalk KH, Wartna ES, van Zanten BA, Witholt B, Hol WG (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351(6325):371–377

    Article  PubMed  CAS  Google Scholar 

  • Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259(22):13806–13813

    PubMed  CAS  Google Scholar 

  • Sun J, Maresso AW, Kim JJ, Barbieri JT (2004) How bacterial ADP-ribosylating toxins recognize substrates. Nat Struct Mol Biol 11(9):868–876

    Article  PubMed  CAS  Google Scholar 

  • Sundriyal A, Roberts AK, Shone CC, Acharya KR (2009) Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile. J Biol Chem 284(42):28713–28719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuge H, Nagahama M, Nishimura H, Hisatsune J, Sakaguchi Y, Itogawa Y, Katunuma N, Sakurai J (2003) Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J Mol Biol 325(3):471–483

    Article  PubMed  CAS  Google Scholar 

  • Tsuge H, Nagahama M, Oda M, Iwamoto S, Utsunomiya H, Marquez VE, Katunuma N, Nishizawa M, Sakurai J (2008) Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin. Proc Nat Acad Sci USA 105(21):7399–7404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsurumura T, Tsumori Y, Qiu H, Oda M, Sakurai J, Nagahama M, Tsuge H (2013) Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc Nat Acad Sci USA 110(11):4267–4272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vandekerckhove J, Schering B, Barmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225(1–2):48–52

    Article  PubMed  CAS  Google Scholar 

  • Visschedyk D, Rochon A, Tempel W, Dimov S, Park HW, Merrill AR (2012) Certhrax toxin, an anthrax-related ADP-ribosyltransferase from Bacillus cereus. J Biol Chem 287(49):41089–41102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vogelsgesang M, Stieglitz B, Herrmann C, Pautsch A, Aktories K (2008) Crystal structure of the Clostridium limosum C3 exoenzyme. FEBS Lett 582(7):1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Wilde C, Just I, Aktories K (2002) Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus. Biochemistry 41(5):1539–1544

    Article  PubMed  CAS  Google Scholar 

  • Zhang RG, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, Westbrook EM (1995) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251(4):563–573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

H.T. appreciates Masahiro Nagahama, Masataka Oda, and Jun Sakurai, who support our work on the structure of ART, and Nobuhiko Katunuma for his continuous research support. This work was supported in part by a Strategic Research Foundation Grant-aided Project for Private Universities and Grant-in-Aid for Scientific Research on Innovative Areas, MEXT/JSPS KAKENHI Grant Number: 25121733 of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Tsuge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsuge, H., Tsurumura, T. (2014). Reaction Mechanism of Mono-ADP-Ribosyltransferase Based on Structures of the Complex of Enzyme and Substrate Protein. In: Koch-Nolte, F. (eds) Endogenous ADP-Ribosylation. Current Topics in Microbiology and Immunology, vol 384. Springer, Cham. https://doi.org/10.1007/82_2014_415

Download citation

Publish with us

Policies and ethics