Skip to main content

Molecular Determinants of Influenza Virus Pathogenesis in Mice

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY,volume 385)

Abstract

Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abed Y, Pizzorno A, Hamelin ME, Leung A, Joubert P, Couture C, Kobasa D, Boivin G (2011) The 2009 pandemic H1N1 D222G hemagglutinin mutation alters receptor specificity and increases virulence in mice but not in ferrets. J Infect Dis 204:1008–1016. doi:10.1093/infdis/jir483

    PubMed  CAS  Google Scholar 

  • Alberts R, Srivastava B, Wu H, Viegas N, Geffers R, Klawonn F, Novoselova N, do Valle TZ, Panthier JJ, Schughart K (2010) Gene expression changes in the host response between resistant and susceptible inbred mouse strains after influenza A infection. Microbes Infect 12:309–318. doi:10.1016/j.micinf.2010.01.008

    PubMed  CAS  Google Scholar 

  • Alymova IV, Green AM, van de Velde N, McAuley JL, Boyd KL, Ghoneim HE, McCullers JA (2011) Immunopathogenic and antibacterial effects of H3N2 influenza A virus PB1-F2 map to amino acid residues 62, 75, 79, and 82. J Virol 85:12324–12333. doi:10.1128/JVI.05872-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alymova IV, Samarasinghe A, Vogel P, Green AM, Weinlich R, McCullers JA (2014) A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. J Virol 88:503–515. doi:10.1128/JVI.01373-13

    PubMed  CAS  PubMed Central  Google Scholar 

  • Andrewes CH, Laidlaw PP, Smith W (1934) The susceptibility of mice to the viruses of human and swine influenza. The Lancet 224:859–862

    Google Scholar 

  • Askovich PS, Sanders CJ, Rosenberger CM, Diercks AH, Dash P, Navarro G, Vogel P, Doherty PC, Thomas PG, Aderem A (2013) Differential host response, rather than early viral replication efficiency, correlates with pathogenicity caused by influenza viruses. PLoS One 8:e74863. doi:10.1371/journal.pone.0074863

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baldanti F, Campanini G, Piralla A, Rovida F, Braschi A, Mojoli F, Iotti G, Belliato M, Conaldi PG, Arcadipane A, Pariani E, Zanetti A, Minoli L, Emmi V (2011) Severe outcome of influenza A/H1N1/09v infection associated with 222G/N polymorphisms in the haemagglutinin: a multicentre study. Clin Microbiol Infect 17:1166–1169. doi:10.1111/j.1469-0691.2010.03403.x

    PubMed  CAS  Google Scholar 

  • Barnard DL (2009) Animal models for the study of influenza pathogenesis and therapy. Antiviral Res 82:A110–A122. doi:10.1016/j.antiviral.2008.12.014

    PubMed  CAS  PubMed Central  Google Scholar 

  • Basler CF, Aguilar PV (2008) Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses. Antiviral Res 79:166–178. doi:10.1016/j.antiviral.2008.04.006

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beaudette FR, Byrne RJ, Kaschula VR (1957) The adaptation of equine influenza virus to infant mice by the intracerebral route. Cornell Vet 47:137–143

    PubMed  CAS  Google Scholar 

  • Belser JA, Jayaraman A, Raman R, Pappas C, Zeng H, Cox NJ, Katz JM, Sasisekharan R, Tumpey TM (2011) Effect of D222G mutation in the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. PLoS One 6:e25091. doi:10.1371/journal.pone.0025091

    PubMed  CAS  PubMed Central  Google Scholar 

  • Belser JA, Tumpey TM (2014) Mammalian models for the study of H7 virus pathogenesis and transmission. Current Topics in Microbiology and Immunology (in press)

    Google Scholar 

  • Belser JA, Wadford DA, Pappas C, Gustin KM, Maines TR, Pearce MB, Zeng H, Swayne DE, Pantin-Jackwood M, Katz JM, Tumpey TM (2010) Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in mice. J Virol 84:4194–4203. doi:10.1128/JVI.02742-09

    PubMed  CAS  PubMed Central  Google Scholar 

  • Belser JA, Wadford DA, Xu J, Katz JM, Tumpey TM (2009) Ocular infection of mice with influenza A (H7) viruses: a site of primary replication and spread to the respiratory tract. J Virol 83:7075–7084. doi:10.1128/JVI.00535-09

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blazejewska P, Koscinski L, Viegas N, Anhlan D, Ludwig S, Schughart K (2011) Pathogenicity of different PR8 influenza A virus variants in mice is determined by both viral and host factors. Virology 412:36–45. doi:10.1016/j.virol.2010.12.047

    PubMed  CAS  Google Scholar 

  • Bloom JD, Gong LI, Baltimore D (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328:1272–1275. doi:10.1126/science.1187816

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bodewes R, Rimmelzwaan GF, Osterhaus AD (2010) Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Rev Vaccines 9:59–72. doi:10.1586/erv.09.148

    PubMed  Google Scholar 

  • Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R, Vidal SM (2012) Mapping of clinical and expression quantitative trait loci in a sex-dependent effect of host susceptibility to mouse-adapted influenza H3N2/HK/1/68. J Immunol 188:3949–3960. doi:10.4049/jimmunol.1103320

    PubMed  CAS  Google Scholar 

  • Boon AC, Finkelstein D, Zheng M, Liao G, Allard J, Klumpp K, Webster R, Peltz G, Webby RJ (2011) H5N1 influenza virus pathogenesis in genetically diverse mice is mediated at the level of viral load. MBio 2. doi:10.1128/mBio.00171, 10.1128/mBio.00171

  • Bosch FX, Garten W, Klenk HD, Rott R (1981) Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 113:725–735

    PubMed  CAS  Google Scholar 

  • Bottomly D, Ferris MT, Aicher LD, Rosenzweig E, Whitmore A, Aylor DL, Haagmans BL, Gralinski LE, Bradel-Tretheway BG, Bryan JT, Threadgill DW, de Villena FP, Baric RS, Katze MG, Heise M, McWeeney SK (2012) Expression quantitative trait Loci for extreme host response to influenza a in pre-collaborative cross mice. G3 (Bethesda) 2: 213–221. doi: 10.1534/g3.111.001800

  • Bouvier NM, Lowen AC (2010) Animal models for influenza virus pathogenesis and transmission. Viruses 2:1530–1563. doi:10.3390/v20801530

    PubMed  PubMed Central  Google Scholar 

  • Brandes M, Klauschen F, Kuchen S, Germain RN (2013) A systems analysis identifies a feed forward inflammatory circuit leading to lethal influenza infection. Cell 154:197–212. doi:10.1016/j.cell.2013.06.013

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown EG (1990) Increased virulence of a mouse-adapted variant of influenza A/FM/1/47 virus is controlled by mutations in genome segments 4, 5, 7, and 8. J Virol 64:4523–4533

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown EG, Bailly JE (1999) Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA, PB1, and PB2 genes in virulence. Virus Res 61:63–76

    PubMed  CAS  Google Scholar 

  • Brown EG, Liu H, Kit LC, Baird S, Nesrallah M (2001) Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc Natl Acad Sci U S A 98:6883–6888. doi:10.1073/pnas.111165798

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castrucci MR, Kawaoka Y (1993) Biologic importance of neuraminidase stalk length in influenza A virus. J Virol 67:759–764

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen H, Bright RA, Subbarao K, Smith C, Cox NJ, Katz JM, Matsuoka Y (2007) Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus Res 128:159–163. doi:10.1016/j.virusres.2007.04.017

    PubMed  CAS  Google Scholar 

  • Chutinimitkul S, Herfst S, Steel J, Lowen AC, Ye J, van Riel D, Schrauwen EJ, Bestebroer TM, Koel B, Burke DF, Sutherland-Cash KH, Whittleston CS, Russell CA, Wales DJ, Smith DJ, Jonges M, Meijer A, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Garcia-Sastre A, Perez DR, Fouchier RA (2010) Virulence-associated substitution D222G in hemagglutinin of 2009 pandemic influenza a (H1N1) virus affects receptor binding. J Virol. doi:10.1128/JVI.01136-10

    Google Scholar 

  • Cilloniz C, Pantin-Jackwood MJ, Ni C, Goodman AG, Peng X, Proll SC, Carter VS, Rosenzweig ER, Szretter KJ, Katz JM, Korth MJ, Swayne DE, Tumpey TM, Katze MG (2010) Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection. J Virol 84:7613–7624. doi:10.1128/JVI.00553-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conenello GM, Palese P (2007) Influenza A virus PB1-F2: a small protein with a big punch. Cell Host Microbe 2:207–209. doi:10.1016/j.chom.2007.09.010

    PubMed  CAS  Google Scholar 

  • Conenello GM, Tisoncik JR, Rosenzweig E, Varga ZT, Palese P, Katze MG (2011) A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J Virol 85:652–662. doi:10.1128/JVI.01987-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3:1414–1421. doi:10.1371/journal.ppat.0030141

    PubMed  CAS  Google Scholar 

  • Dankar SK, Miranda E, Forbes NE, Pelchat M, Tavassoli A, Selman M, Ping J, Jia J, Brown EG (2013) Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30. Virol J 10:243. doi:10.1186/1743-422X-10-243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dankar SK, Wang S, Ping J, Forbes NE, Keleta L, Li Y, Brown EG (2011) Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence. Virol J 8:13. doi:10.1186/1743-422X-8-13

    PubMed  CAS  PubMed Central  Google Scholar 

  • Das SR, Hensley SE, David A, Schmidt L, Gibbs JS, Puigbo P, Ince WL, Bennink JR, Yewdell JW (2011) Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc Natl Acad Sci U S A 108:E1417–E1422. doi:10.1073/pnas.1108754108

    PubMed  CAS  PubMed Central  Google Scholar 

  • de Jong RM, Stockhofe-Zurwieden N, Verheij ES, de Boer-Luijtze EA, Ruiter SJ, de Leeuw OS, Cornelissen LA (2013) Rapid emergence of a virulent PB2 E627K variant during adaptation of highly pathogenic avian influenza H7N7 virus to mice. Virol J 10:276. doi:10.1186/1743-422X-10-276

    PubMed  PubMed Central  Google Scholar 

  • Ding M, Lu L, Toth LA (2008) Gene expression in lung and basal forebrain during influenza infection in mice. Genes Brain Behav 7:173–183. doi:10.1111/j.1601-183X.2007.00335.x

    PubMed  CAS  Google Scholar 

  • Donelan N, Basler C, Garcia-Sastre A (2003) A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol 77:13257–13266

    PubMed  CAS  PubMed Central  Google Scholar 

  • Driskell EA, Jones CA, Stallknecht DE, Howerth EW, Tompkins SM (2010) Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virology 399:280–289. doi:10.1016/j.virol.2010.01.005

    PubMed  CAS  Google Scholar 

  • Dudek SE, Wixler L, Nordhoff C, Nordmann A, Anhlan D, Wixler V, Ludwig S (2011) The influenza virus PB1-F2 protein has interferon antagonistic activity. Biol Chem 392:1135–1144. doi:10.1515/BC.2011.174

    PubMed  CAS  Google Scholar 

  • Eaton MD (1940) Transmission of epidemic influenza virus in mice by contact. Journal of Bacteriology 39:229–241

    PubMed  CAS  PubMed Central  Google Scholar 

  • Edenborough KM, Gilbertson BP, Brown LE (2012) A mouse model for the study of contact-dependent transmission of influenza A virus and the factors that govern transmissibility. J Virol 86:12544–12551. doi:10.1128/JVI.00859-12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith SE, Chin CR, Feeley EM, Sims JS, Adams DJ, Wise HM, Kane L, Goulding D, Digard P, Anttila V, Baillie JK, Walsh TS, Hume DA, Palotie A, Xue Y, Colonna V, Tyler-Smith C, Dunning J, Gordon SB, Gen II, Investigators M, Smyth RL, Openshaw PJ, Dougan G, Brass AL, Kellam P (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484:519–523. doi:10.1038/nature10921

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fan S, Deng G, Song J, Tian G, Suo Y, Jiang Y, Guan Y, Bu Z, Kawaoka Y, Chen H (2009) Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 384:28–32. doi:10.1016/j.virol.2008.11.044

    PubMed  CAS  Google Scholar 

  • Fan S, Macken CA, Li C, Ozawa M, Goto H, Iswahyudi NF, Nidom CA, Chen H, Neumann G, Kawaoka Y (2013) Synergistic effect of the PDZ and p85beta-binding domains of the NS1 protein on virulence of an avian H5N1 influenza A virus. J Virol 87:4861–4871. doi:10.1128/JVI.02608-12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ferraris O, Escuret V, Bouscambert M, Casalegno JS, Jacquot F, Raoul H, Caro V, Valette M, Lina B, Ottmann M (2012) H1N1 influenza A virus neuraminidase modulates infectivity in mice. Antiviral Res 93:374–380. doi:10.1016/j.antiviral.2012.01.008

    PubMed  CAS  Google Scholar 

  • Ferris MT, Aylor DL, Bottomly D, Whitmore AC, Aicher LD, Bell TA, Bradel-Tretheway B, Bryan JT, Buus RJ, Gralinski LE, Haagmans BL, McMillan L, Miller DR, Rosenzweig E, Valdar W, Wang J, Churchill GA, Threadgill DW, McWeeney SK, Katze MG, Pardo-Manuel de Villena F, Baric RS, Heise MT (2013) Modeling host genetic regulation of influenza pathogenesis in the collaborative cross. PLoS Pathog 9:e1003196. doi:10.1371/journal.ppat.1003196

    PubMed  PubMed Central  Google Scholar 

  • Fonville JM, Burke DF, Lewis NS, Katzelnick LC, Russell CA (2013) Quantifying the fitness advantage of polymerase substitutions in Influenza A/H7N9 viruses during adaptation to humans. PLoS One 8:e76047. doi:10.1371/journal.pone.0076047

    PubMed  CAS  PubMed Central  Google Scholar 

  • Forbes NE, Ping J, Dankar SK, Jia JJ, Selman M, Keleta L, Zhou Y, Brown EG (2012) Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse. PLoS One 7:e31839. doi:10.1371/journal.pone.0031839

    PubMed  CAS  PubMed Central  Google Scholar 

  • Francis T Jr (1934) Transmission of influenza by a filterable virus. Science 80:457–459. doi:10.1126/science.80.2081.457-a

    PubMed  Google Scholar 

  • Francis T, Magill TP (1935) Immunological studies with the virus of influenza. J Exp Med 62:505–516

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gabriel G, Abram M, Keiner B, Wagner R, Klenk HD, Stech J (2007) Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol 81:9601–9604. doi:10.1128/JVI.00666-07

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gabriel G, Czudai-Matwich V, Klenk HD (2013) Adaptive mutations in the H5N1 polymerase complex. Virus Res 178:53–62. doi:10.1016/j.virusres.2013.05.010

    PubMed  CAS  Google Scholar 

  • Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 102:18590–18595. doi:10.1073/pnas.0507415102

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gabriel G, Herwig A, Klenk HD (2008) Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog 4:e11. doi:10.1371/journal.ppat.0040011

    PubMed  PubMed Central  Google Scholar 

  • Gabriel G, Klingel K, Otte A, Thiele S, Hudjetz B, Arman-Kalcek G, Sauter M, Shmidt T, Rother F, Baumgarte S, Keiner B, Hartmann E, Bader M, Brownlee GG, Fodor E, Klenk HD (2011) Differential use of importin-alpha isoforms governs cell tropism and host adaptation of influenza virus. Nat Commun 2:156. doi:10.1038/ncomms1158

    PubMed  PubMed Central  Google Scholar 

  • Gao P, Watanabe S, Ito T, Goto H, Wells K, McGregor M, Cooley AJ, Kawaoka Y (1999) Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol 73:3184–3189

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252:324–330

    PubMed  CAS  Google Scholar 

  • Garten W, Klenk HD (1999) Understanding influenza virus pathogenicity. Trends Microbiol 7:99–100

    PubMed  CAS  Google Scholar 

  • Ge S, Wang Z (2011) An overview of influenza A virus receptors. Crit Rev Microbiol 37:157–165. doi:10.3109/1040841X.2010.536523

    PubMed  CAS  Google Scholar 

  • Gen F, Yamada S, Kato K, Akashi H, Kawaoka Y, Horimoto T (2013) Attenuation of an influenza A virus due to alteration of its hemagglutinin-neuraminidase functional balance in mice. Arch Virol 158:1003–1011. doi:10.1007/s00705-012-1577-3

    PubMed  CAS  Google Scholar 

  • Gibson HG, Connor JI (1918) A filterable virus as the cause of the early stage of the present epidemic of influenza: (A preliminary note). Br Med J 2:645–646

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goto H, Kawaoka Y (1998) A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci U S A 95:10224–10228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Govorkova EA, Gambaryan AS, Claas EC, Smirnov YA (2000) Amino acid changes in the hemagglutinin and matrix proteins of influenza a (H2) viruses adapted to mice. Acta Virol 44:241–248

    PubMed  CAS  Google Scholar 

  • Grimm D, Staeheli P, Hufbauer M, Koerner I, Martinez-Sobrido L, Solorzano A, Garcia-Sastre A, Haller O, Kochs G (2007) Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc Natl Acad Sci U S A 104:6806–6811. doi:10.1073/pnas.0701849104

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gubareva LV, McCullers JA, Bethell RC, Webster RG (1998) Characterization of influenza A/HongKong/156/97 (H5N1) virus in a mouse model and protective effect of zanamivir on H5N1 infection in mice. J Infect Dis 178:1592–1596. doi:JID980456

    Google Scholar 

  • Gustin KM, Belser JA, Katz JM, Tumpey TM, Maines TR (2012) Innovations in modeling influenza virus infections in the laboratory. Trends Microbiol 20:275–281. doi:10.1016/j.tim.2012.03.006

    PubMed  CAS  Google Scholar 

  • Hale B, Steel J, Manicassamy B, Medina R, Ye J, Hickman D, Lowen A, Perez D, Garcia-Sastre A (2010) Mutations in the NS1 C-terminal tail do not enhance replication or virulence of the 2009 pandemic H1N1 influenza A virus. J Gen Virol 91:1737–1742

    Google Scholar 

  • Hale BG, Randall RE, Ortin J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89:2359–2376. doi:10.1099/vir.0.2008/004606-0

    PubMed  CAS  Google Scholar 

  • Haller O (1981) Inborn resistance of mice to orthomyxoviruses. Curr Top Microbiol Immunol 92:25–52

    PubMed  CAS  Google Scholar 

  • Haller O, Stertz S, Kochs G (2007) The Mx GTPase family of interferon-induced antiviral proteins. Microbes Infect 9:1636–1643. doi:10.1016/j.micinf.2007.09.010

    PubMed  CAS  Google Scholar 

  • Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842. doi:10.1126/science.1062882

    PubMed  CAS  Google Scholar 

  • Hiromoto Y, Saito T, Lindstrom S, Nerome K (2000) Characterization of low virulent strains of highly pathogenic A/Hong Kong/156/97 (H5N1) virus in mice after passage in embryonated hens’ eggs. Virology 272:429–437. doi:10.1006/viro.2000.0371

    PubMed  CAS  Google Scholar 

  • Hirst GK (1947) Studies on the Mechanism of Adaptation of Influenza Virus to Mice. J Exp Med 86:357–366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Horby P, Nguyen NY, Dunstan SJ, Baillie JK (2012) The role of host genetics in susceptibility to influenza: a systematic review. PLoS One 7:e33180. doi:10.1371/journal.pone.0033180

    PubMed  CAS  PubMed Central  Google Scholar 

  • Horby P, Nguyen NY, Dunstan SJ, Baillie JK (2013) An updated systematic review of the role of host genetics in susceptibility to influenza. Influenza Other Respir Viruses 7(Suppl 2):37–41. doi:10.1111/irv.12079

    PubMed  Google Scholar 

  • Hu J, Zhao K, Liu X, Wang X, Chen Z, Liu X (2012) Two Highly Pathogenic Avian Influenza H5N1 Viruses of Clade 2.3.2.1 with similar genetic background but with different pathogenicity in Mice and Ducks. Transbound Emerg Dis. doi:10.1111/j.1865-1682.2012.01325.x

  • Huber VC (2012) Can surveillance of the influenza virus PB1-F2 gene be used to predict the severity of secondary bacterial infections? Virulence 3:523–524. doi:10.4161/viru.21811

    PubMed  PubMed Central  Google Scholar 

  • Hudjetz B, Gabriel G (2012) Human-like PB2 627K influenza virus polymerase activity is regulated by importin-alpha1 and -alpha7. PLoS Pathog 8:e1002488. doi:10.1371/journal.ppat.1002488

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hughes AL, Packer B, Welch R, Chanock SJ, Yeager M (2005) High level of functional polymorphism indicates a unique role of natural selection at human immune system loci. Immunogenetics 57:821–827. doi:10.1007/s00251-005-0052-7

    PubMed  CAS  Google Scholar 

  • Hutchinson EC, Fodor E (2012) Nuclear import of the influenza A virus transcriptional machinery. Vaccine 30:7353–7358. doi:10.1016/j.vaccine.2012.04.085

    PubMed  CAS  Google Scholar 

  • Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, Brown EG, Holtzman MJ, Brody SL (2006) Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol 80:7469–7480. doi:10.1128/JVI.02677-05

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ilyushina NA, Khalenkov AM, Seiler JP, Forrest HL, Bovin NV, Marjuki H, Barman S, Webster RG, Webby RJ (2010) Adaptation of pandemic H1N1 influenza viruses in mice. J Virol. doi:10.1128/JVI.00159-10

    Google Scholar 

  • Imai M, Kawaoka Y (2012) The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr Opin Virol 2:160–167. doi:10.1016/j.coviro.2012.03.003

    PubMed  CAS  Google Scholar 

  • Ison MG, Mishin VP, Braciale TJ, Hayden FG, Gubareva LV (2006) Comparative activities of oseltamivir and A-322278 in immunocompetent and immunocompromised murine models of influenza virus infection. J Infect Dis 193:765–772. doi:10.1086/500464

    PubMed  CAS  Google Scholar 

  • Iverson AR, Boyd KL, McAuley JL, Plano LR, Hart ME, McCullers JA (2011) Influenza virus primes mice for pneumonia from Staphylococcus aureus. J Infect Dis 203:880–888. doi:10.1093/infdis/jiq113

    PubMed  PubMed Central  Google Scholar 

  • Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA (2008) A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci U S A 105:4381–4386. doi:10.1073/pnas.0800482105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y, Chen H (2008) A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82:1146–1154. doi:10.1128/JVI.01698-07

    PubMed  CAS  PubMed Central  Google Scholar 

  • Job ER, Deng YM, Barfod KK, Tate MD, Caldwell N, Reddiex S, Maurer-Stroh S, Brooks AG, Reading PC (2013) Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. J Immunol 190:2169–2177. doi:10.4049/jimmunol.1202433

    PubMed  CAS  Google Scholar 

  • Josset L, Belser JA, Pantin-Jackwood MJ, Chang JH, Chang ST, Belisle SE, Tumpey TM, Katze MG (2012) Implication of inflammatory macrophages, nuclear receptors, and interferon regulatory factors in increased virulence of pandemic 2009 H1N1 influenza A virus after host adaptation. J Virol 86:7192–7206. doi:10.1128/JVI.00563-12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O, Thomas MJ, Basler CF, Palese P, Taubenberger JK, Garcia-Sastre A, Swayne DE, Katze MG (2006) Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443:578–581. doi:10.1038/nature05181

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105. doi:10.1038/nature04734

    PubMed  CAS  Google Scholar 

  • Katz JM, Lu X, Tumpey TM, Smith CB, Shaw MW, Subbarao K (2000) Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J Virol 74:10807–10810

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaverin NV, Rudneva IA, Ilyushina NA, Varich NL, Lipatov AS, Smirnov YA, Govorkova EA, Gitelman AK, Lvov DK, Webster RG (2002) Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83:2497–2505

    PubMed  CAS  Google Scholar 

  • Keleta L, Ibricevic A, Bovin NV, Brody SL, Brown EG (2008) Experimental evolution of human influenza virus H3 hemagglutinin in the mouse lung identifies adaptive regions in HA1 and HA2. J Virol 82:11599–11608. doi:10.1128/JVI.01393-08

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kilander A, Rykkvin R, Dudman SG, Hungnes O (2010) Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill 15(9):6–8

    Google Scholar 

  • Kilbourne ED, Schulman JL, Schild GC, Schloer G, Swanson J, Bucher D (1971) Correlated studies of a recombinant influenza-virus vaccine. I. Derivation and characterization of virus and vaccine. J Infect Dis 124:449–462

    PubMed  CAS  Google Scholar 

  • Kim J, Hatta M, Watanabe S, Neumann G, Watanabe T, Kawaoka Y (2010) Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J Gen Virol 91:1284–1289

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39–43

    PubMed  CAS  Google Scholar 

  • Kobasa D, Takada A, Shinya K, Hatta M, Halfmann P, Theriault S, Suzuki H, Nishimura H, Mitamura K, Sugaya N, Usui T, Murata T, Maeda Y, Watanabe S, Suresh M, Suzuki T, Suzuki Y, Feldmann H, Kawaoka Y (2004) Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431:703–707. doi:10.1038/nature02951

    PubMed  CAS  Google Scholar 

  • Koerner I, Matrosovich MN, Haller O, Staeheli P, Kochs G (2012) Altered receptor specificity and fusion activity of the haemagglutinin contribute to high virulence of a mouse-adapted influenza A virus. J Gen Virol 93:970–979. doi:10.1099/vir.0.035782-0

    PubMed  CAS  Google Scholar 

  • Korth MJ, Tchitchek N, Benecke AG, Katze MG (2013) Systems approaches to influenza-virus host interactions and the pathogenesis of highly virulent and pandemic viruses. Semin Immunol 25:228–239. doi:10.1016/j.smim.2012.11.001

    PubMed  CAS  Google Scholar 

  • Krenn BM, Egorov A, Romanovskaya-Romanko E, Wolschek M, Nakowitsch S, Ruthsatz T, Kiefmann B, Morokutti A, Humer J, Geiler J, Cinatl J, Michaelis M, Wressnigg N, Sturlan S, Ferko B, Batishchev OV, Indenbom AV, Zhu R, Kastner M, Hinterdorfer P, Kiselev O, Muster T, Romanova J (2011) Single ha2 mutation increases the infectivity and immunogenicity of a live attenuated H5N1 intranasal influenza vaccine candidate lacking NS1. PLoS One 6:e18577. doi:10.1371/journal.pone.0018577

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krumbholz A, Philipps A, Oehring H, Schwarzer K, Eitner A, Wutzler P, Zell R (2011) Current knowledge on PB1-F2 of influenza A viruses. Med Microbiol Immunol 200:69–75. doi:10.1007/s00430-010-0176-8

    PubMed  CAS  Google Scholar 

  • Le Goffic R, Bouguyon E, Chevalier C, Vidic J, Da Costa B, Leymarie O, Bourdieu C, Decamps L, Dhorne-Pollet S, Delmas B (2010) Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells. J Immunol 185:4812–4823. doi:10.4049/jimmunol.0903952

    PubMed  Google Scholar 

  • Leymarie O, Jouvion G, Herve PL, Chevalier C, Lorin V, Lecardonnel J, Da Costa B, Delmas B, Escriou N, Le Goffic R (2013) Kinetic characterization of PB1-F2-mediated immunopathology during highly pathogenic avian H5N1 influenza virus infection. PLoS One 8:e57894. doi:10.1371/journal.pone.0057894

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li J, Ishaq M, Prudence M, Xi X, Hu T, Liu Q, Guo D (2009) Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res 144:123–129. doi:10.1016/j.virusres.2009.04.008

    PubMed  CAS  Google Scholar 

  • Li S, Schulman J, Itamura S, Palese P (1993) Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol 67:6667–6673

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79:12058–12064. doi:10.1128/JVI.79.18.12058-12064.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liedmann S, Hrincius ER, Anhlan D, McCullers JA, Ludwig S, Ehrhardt C (2013) new virulence determinants contribute to the enhanced immune response and reduced virulence of an influenza A virus A/PR8/34 variant. J Infect Dis. doi:10.1093/infdis/jit463

    PubMed  Google Scholar 

  • Lindenmann J (1964) Inheritance of resistance to influenza virus in mice. Proc Soc Exp Biol Med 116:506–509

    PubMed  CAS  Google Scholar 

  • Long JX, Peng DX, Liu YL, Wu YT, Liu XF (2008) Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes 36:471–478. doi:10.1007/s11262-007-0187-8

    PubMed  CAS  Google Scholar 

  • Lowen AC, Mubareka S, Tumpey TM, Garcia-Sastre A, Palese P (2006) The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci U S A 103:9988–9992. doi:10.1073/pnas.0604157103

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu X, Tumpey TM, Morken T, Zaki SR, Cox NJ, Katz JM (1999) A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol 73:5903–5911

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maines T, Jayaraman A, Belser J, Wadford D, Pappas C, Zeng H, Gustin K, Pearce M, Viswanathan K, Shriver Z, Raman R, Cox N, Sasisekharan R, Katz J, Tumpey T (2009) Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 325:484–487

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maines TR, Lu XH, Erb SM, Edwards L, Guarner J, Greer PW, Nguyen DC, Szretter KJ, Chen LM, Thawatsupha P, Chittaganpitch M, Waicharoen S, Nguyen DT, Nguyen T, Nguyen HH, Kim JH, Hoang LT, Kang C, Phuong LS, Lim W, Zaki S, Donis RO, Cox NJ, Katz JM, Tumpey TM (2005) Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol 79:11788–11800. doi:10.1128/JVI.79.18.11788-11800.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mancini N, Solforosi L, Clementi N, De Marco D, Clementi M, Burioni R (2011) A potential role for monoclonal antibodies in prophylactic and therapeutic treatment of influenza. Antiviral Res 92:15–26. doi:10.1016/j.antiviral.2011.07.013

    PubMed  CAS  Google Scholar 

  • Manz B, Brunotte L, Reuther P, Schwemmle M (2012) Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells. Nat Commun 3:802. doi:10.1038/ncomms1804

    PubMed  Google Scholar 

  • Manz B, Schwemmle M, Brunotte L (2013) Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol 87:7200–7209. doi:10.1128/JVI.00980-13

    PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Lamirande EW, Subbarao K (2009a) The mouse model for influenza. Curr Protoc Microbiol Chap. 15: Unit 15G 3. doi: 10.1002/9780471729259.mc15g03s13

  • Matsuoka Y, Swayne DE, Thomas C, Rameix-Welti MA, Naffakh N, Warnes C, Altholtz M, Donis R, Subbarao K (2009b) Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J Virol 83:4704–4708. doi:10.1128/JVI.01987-08

    PubMed  CAS  PubMed Central  Google Scholar 

  • McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, Yewdell JW, McCullers JA (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2:240–249. doi:10.1016/j.chom.2007.09.001

    PubMed  CAS  PubMed Central  Google Scholar 

  • McAuley JL, Tate MD, MacKenzie-Kludas CJ, Pinar A, Zeng W, Stutz A, Latz E, Brown LE, Mansell A (2013) Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog 9:e1003392. doi:10.1371/journal.ppat.1003392

    PubMed  CAS  PubMed Central  Google Scholar 

  • McAuley JL, Zhang K, McCullers JA (2010) The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. J Virol 84:558–564. doi:10.1128/JVI.01785-09

    PubMed  CAS  PubMed Central  Google Scholar 

  • Medina RA, Garcia-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9:590–603. doi:10.1038/nrmicro2613

    PubMed  CAS  Google Scholar 

  • Medina RA, Stertz S, Manicassamy B, Zimmermann P, Sun X, Albrecht RA, Uusi-Kerttula H, Zagordi O, Belshe RB, Frey SE, Tumpey TM, Garcia-Sastre A (2013) Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med 5: 187ra70. doi: 10.1126/scitranslmed.3005996

  • Meunier I, von Messling V (2012) PB1-F2 modulates early host responses but does not affect the pathogenesis of H1N1 seasonal influenza virus. J Virol 86:4271–4278. doi:10.1128/JVI.07243-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mok CK, Lee HH, Lestra M, Nicholls JM, Chan MC, Sia SF, Zhu H, Poon LL, Guan Y, Peiris JS (2014) amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol 88:3568–3576. doi:10.1128/JVI.02740-13

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mount AM, Belz GT (2010) Mouse models of viral infection: influenza infection in the lung. Methods Mol Biol 595:299–318. doi:10.1007/978-1-60761-421-0_20

    PubMed  CAS  Google Scholar 

  • Munster VJ, de Wit E, van Riel D, Beyer WE, Rimmelzwaan GF, Osterhaus AD, Kuiken T, Fouchier RA (2007) The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J Infect Dis 196:258–265. doi:10.1086/518792

    PubMed  CAS  Google Scholar 

  • Narasaraju T, Sim MK, Ng HH, Phoon MC, Shanker N, Lal SK, Chow VT (2009) Adaptation of human influenza H3N2 virus in a mouse pneumonitis model: insights into viral virulence, tissue tropism and host pathogenesis. Microbes Infect 11:2–11. doi:10.1016/j.micinf.2008.09.013

    PubMed  CAS  Google Scholar 

  • Noda T, Kawaoka Y (2010) Structure of influenza virus ribonucleoprotein complexes and their packaging into virions. Rev Med Virol 20:380–391. doi:10.1002/rmv.666

    PubMed  CAS  Google Scholar 

  • O’Donnell CD, Subbarao K (2011) The contribution of animal models to the understanding of the host range and virulence of influenza A viruses. Microbes Infect 13:502–515. doi:10.1016/j.micinf.2011.01.014

    PubMed  PubMed Central  Google Scholar 

  • Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580. doi:10.1126/science.1121586

    PubMed  CAS  Google Scholar 

  • Ohuchi M, Ohuchi R, Feldmann A, Klenk HD (1997) Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 71:8377–8384

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ozawa M, Basnet S, Burley LM, Neumann G, Hatta M, Kawaoka Y (2011) Impact of amino acid mutations in PB2, PB1-F2, and NS1 on the replication and pathogenicity of pandemic (H1N1) 2009 influenza viruses. J Virol 85:4596–4601. doi:10.1128/JVI.00029-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pappas C, Aguilar PV, Basler CF, Solorzano A, Zeng H, Perrone LA, Palese P, Garcia-Sastre A, Katz JM, Tumpey TM (2008) Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc Natl Acad Sci U S A 105:3064–3099. doi:10.1073/pnas.0711815105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pasricha G, Mishra AC, Chakrabarti AK (2013) Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th-century pandemics. Influenza Other Respi Viruses 7:497–505. doi:10.1111/j.1750-2659.2012.00400.x

    CAS  Google Scholar 

  • Paterson D, Fodor E (2012) Emerging roles for the influenza A virus nuclear export protein (NEP). PLoS Pathog 8:e1003019. doi:10.1371/journal.ppat.1003019

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pekosz A, Newby C, Bose PS, Lutz A (2009) Sialic acid recognition is a key determinant of influenza A virus tropism in murine trachea epithelial cell cultures. Virology 386:61–67. doi:10.1016/j.virol.2009.01.005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pepin KM, Lass S, Pulliam JR, Read AF, Lloyd-Smith JO (2010) Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 8:802–813. doi:10.1038/nrmicro2440

    PubMed  CAS  Google Scholar 

  • Pica N, Iyer A, Ramos I, Bouvier NM, Fernandez-Sesma A, Garcia-Sastre A, Lowen AC, Palese P, Steel J (2011) The DBA.2 mouse is susceptible to disease following infection with a broad, but limited, range of influenza A and B viruses. J Virol 85:12825–12829. doi:10.1128/JVI.05930-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ping J, Dankar SK, Forbes NE, Keleta L, Zhou Y, Tyler S, Brown EG (2010) PB2 and hemagglutinin mutations are major determinants of host range and virulence in mouse-adapted influenza A virus. J Virol 84:10606–10618. doi:10.1128/JVI.01187-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ping J, Keleta L, Forbes NE, Dankar S, Stecho W, Tyler S, Zhou Y, Babiuk L, Weingartl H, Halpin RA, Boyne A, Bera J, Hostetler J, Fedorova NB, Proudfoot K, Katzel DA, Stockwell TB, Ghedin E, Spiro DJ, Brown EG (2011) Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse. PLoS One 6:e21740. doi:10.1371/journal.pone.0021740

    PubMed  CAS  PubMed Central  Google Scholar 

  • Price GE, Lo CY, Misplon JA, Epstein SL (2014) Mucosal immunization with a candidate universal influenza vaccine reduces virus transmission in a mouse model. J Virol. doi:10.1128/JVI.03101-13

    PubMed Central  Google Scholar 

  • Qi L, Davis AS, Jagger BW, Schwartzman LM, Dunham EJ, Kash JC, Taubenberger JK (2012) Analysis by single-gene reassortment demonstrates that the 1918 influenza virus is functionally compatible with a low-pathogenicity avian influenza virus in mice. J Virol 86:9211–9220. doi:10.1128/JVI.00887-12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qi L, Kash JC, Dugan VG, Wang R, Jin G, Cunningham RE, Taubenberger JK (2009) Role of sialic acid binding specificity of the 1918 influenza virus hemagglutinin protein in virulence and pathogenesis for mice. J Virol 83:3754–3761. doi:10.1128/JVI.02596-08

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, Nistal-Villan E, Garcia-Sastre A, Gack MU (2012) Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 8:e1003059. doi:10.1371/journal.ppat.1003059

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raut S, Hurd J, Blandford G, Heath RB, Cureton RJ (1975) The pathogenesis of infections of the mouse caused by virulent and avirulent variants of an influenza virus. J Med Microbiol 8:127–136

    PubMed  CAS  Google Scholar 

  • Reading PC, Pickett DL, Tate MD, Whitney PG, Job ER, Brooks AG (2009) Loss of a single N-linked glycan from the hemagglutinin of influenza virus is associated with resistance to collectins and increased virulence in mice. Respir Res 10:117. doi:10.1186/1465-9921-10-117

    PubMed  PubMed Central  Google Scholar 

  • Reading PC, Tate MD, Pickett DL, Brooks AG (2007) Glycosylation as a target for recognition of influenza viruses by the innate immune system. Adv Exp Med Biol 598:279–292. doi:10.1007/978-0-387-71767-8_20

    PubMed  Google Scholar 

  • Reperant LA, Kuiken T, Osterhaus AD (2012) Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans. Vaccine 30:4419–4434. doi:10.1016/j.vaccine.2012.04.049

    PubMed  Google Scholar 

  • Rossman JS, Lamb RA (2011) Influenza virus assembly and budding. Virology 411:229–236. doi:10.1016/j.virol.2010.12.003

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rudneva IA, Ilyushina NA, Timofeeva TA, Webster RG, Kaverin NV (2005) Restoration of virulence of escape mutants of H5 and H9 influenza viruses by their readaptation to mice. J Gen Virol 86:2831–2838. doi:10.1099/vir.0.81185-0

    PubMed  CAS  Google Scholar 

  • Rudneva IA, Kaverin NV, Varich NL, Gitelman AK, Makhov AM, Klimenko SM, Zhdanov VM (1986) Studies on the genetic determinants of influenza virus pathogenicity for mice with the use of reassortants between mouse-adapted and non-adapted variants of the same virus strain. Arch Virol 90:237–248

    PubMed  CAS  Google Scholar 

  • Schmolke M, Manicassamy B, Pena L, Sutton T, Hai R, Varga ZT, Hale BG, Steel J, Perez DR, Garcia-Sastre A (2011) Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species. PLoS Pathog 7:e1002186. doi:10.1371/journal.ppat.1002186

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulman JL (1967) Experimental transmission of influenza virus infection in mice IV. Relationship of transmissibility of different strains of virus and recovery of airborne virus in the environment of infector mice. J Exp Med 125:479–488

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulman JL (1968) The use of an animal model to study transmission of influenza virus infection. Am J Public Health Nations Health 58:2092–2096

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulman JL, Kilbourne ED (1962) Airborne transmission of influenza virus infection in mice. Nature 195:1129–1130

    PubMed  CAS  Google Scholar 

  • Schulman JL, Kilbourne ED (1963a) Experimental transmission of influenza virus infection in mice i. the period of transmissibility. J Exp Med 118:257–266

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulman JL, Kilbourne ED (1963b) Experimental Transmission of Influenza Virus Infection in Mice II. Some Factors Affecting the Incidence of Transmitted Infection. J Exp Med 118:267–275

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seyer R, Hrincius ER, Ritzel D, Abt M, Mellmann A, Marjuki H, Kuhn J, Wolff T, Ludwig S, Ehrhardt C (2012) Synergistic adaptive mutations in the hemagglutinin and polymerase acidic protein lead to increased virulence of pandemic 2009 H1N1 influenza A virus in mice. J Infect Dis 205:262–271. doi:10.1093/infdis/jir716

    PubMed  CAS  Google Scholar 

  • Shilov AA, Sinitsyn BV (1994) Changes in its hemagglutinin during the adaptation of the influenza virus to mice and their role in the acquisition of virulent properties and resistance to serum inhibitors. Vopr Virusol 39:153–157

    PubMed  CAS  Google Scholar 

  • Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436. doi:10.1038/440435a

    PubMed  CAS  Google Scholar 

  • Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y (2004) PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258–266. doi:10.1016/j.virol.2003.11.030

    PubMed  CAS  Google Scholar 

  • Shinya K, Watanabe S, Ito T, Kasai N, Kawaoka Y (2007) Adaptation of an H7N7 equine influenza a virus in mice. J Gen Virol 88:547–553. doi:10.1099/vir.0.82411-0

    PubMed  CAS  Google Scholar 

  • Shope RE (1935) The infection of mice with swine influenza virus. J Exp Med 62:561–572

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sidwell RW, Smee DF (2000) In vitro and in vivo assay systems for study of influenza virus inhibitors. Antiviral Res 48:1–16

    PubMed  CAS  Google Scholar 

  • Smee DF, Wandersee MK, Checketts MB, O’Keefe BR, Saucedo C, Boyd MR, Mishin VP, Gubareva LV (2007) Influenza A (H1N1) virus resistance to cyanovirin-N arises naturally during adaptation to mice and by passage in cell culture in the presence of the inhibitor. Antivir Chem Chemother 18:317–327

    PubMed  CAS  Google Scholar 

  • Smeenk CA, Brown EG (1994) The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the matrix protein, controlling virulence as well as growth. J Virol 68:530–534

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smeenk CA, Wright KE, Burns BF, Thaker AJ, Brown EG (1996) Mutations in the hemagglutinin and matrix genes of a virulent influenza virus variant, A/FM/1/47-MA, control different stages in pathogenesis. Virus Res 44:79–95

    PubMed  CAS  Google Scholar 

  • Smirnov YA, Lipatov AS, Van Beek R, Gitelman AK, Osterhaus AD, Claas EC (2000) Characterization of adaptation of an avian influenza A (H5N2) virus to a mammalian host. Acta Virol 44:1–8

    PubMed  CAS  Google Scholar 

  • Smith W, Andrewes CH, Laidlaw PP (1933) A virus obtained from influenza patients. The Lancet 222:66–68

    Google Scholar 

  • Song MS, Cho YH, Park SJ, Pascua PN, Baek YH, Kwon HI, Lee OJ, Kong BW, Kim H, Shin EC, Kim CJ, Choi YK (2013a) Early regulation of viral infection reduces inflammation and rescues mx-positive mice from lethal avian influenza infection. Am J Pathol 182:1308–1321. doi:10.1016/j.ajpath.2012.12.022

    PubMed  CAS  Google Scholar 

  • Song MS, Hee Baek Y, Kim EH, Park SJ, Kim S, Lim GJ, Kwon HI, Pascua PN, Decano AG, Lee BJ, Kim YI, Webby RJ, Choi YK (2013b) Increased virulence of neuraminidase inhibitor-resistant pandemic H1N1 virus in mice: potential emergence of drug-resistant and virulent variants. Virulence 4:489–493. doi:10.4161/viru.25952

    PubMed  Google Scholar 

  • Song MS, Pascua PN, Lee JH, Baek YH, Park KJ, Kwon HI, Park SJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK (2011) Virulence and genetic compatibility of polymerase reassortant viruses derived from the pandemic (H1N1) 2009 influenza virus and circulating influenza A viruses. J Virol 85:6275–6286. doi:10.1128/JVI.02125-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spesock A, Malur M, Hossain MJ, Chen LM, Njaa BL, Davis CT, Lipatov AS, York IA, Krug RM, Donis RO (2011) The virulence of 1997 H5N1 influenza viruses in the mouse model is increased by correcting a defect in their NS1 proteins. J Virol 85:7048–7058. doi:10.1128/JVI.00417-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Srivastava B, Blazejewska P, Hessmann M, Bruder D, Geffers R, Mauel S, Gruber AD, Schughart K (2009) Host genetic background strongly influences the response to influenza a virus infections. PLoS One 4:e4857. doi:10.1371/journal.pone.0004857

    PubMed  PubMed Central  Google Scholar 

  • Staeheli P, Grob R, Meier E, Sutcliffe JG, Haller O (1988) Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol Cell Biol 8:4518–4523

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5:e1000252. doi:10.1371/journal.ppat.1000252

    PubMed  PubMed Central  Google Scholar 

  • Steidle S, Martinez-Sobrido L, Mordstein M, Lienenklaus S, Garcia-Sastre A, Staheli P, Kochs G (2010) Glycine 184 in nonstructural protein NS1 determines the virulence of influenza A virus strain PR8 without affecting the host interferon response. J Virol 84:12761–12770. doi:10.1128/JVI.00701-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stieneke-Grober A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11:2407–2414

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stuart-Harris CH (1939) A neutrotropic strain of human influenza virus. The Lancet 233:497–499

    Google Scholar 

  • Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67:1761–1764

    PubMed  CAS  PubMed Central  Google Scholar 

  • Suguitan AL Jr, Matsuoka Y, Lau YF, Santos CP, Vogel L, Cheng LI, Orandle M, Subbarao K (2012) The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J Virol 86:2706–2714. doi:10.1128/JVI.05546-11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun X, Jayaraman A, Maniprasad P, Raman R, Houser KV, Pappas C, Zeng H, Sasisekharan R, Katz JM, Tumpey TM (2013a) N-linked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A viruses. J Virol 87:8756–8766. doi:10.1128/JVI.00593-13

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun X, Tse LV, Ferguson AD, Whittaker GR (2010) Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J Virol 84:8683–8690. doi:10.1128/JVI.00797-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun Y, Tan Y, Wei K, Sun H, Shi Y, Pu J, Yang H, Gao GF, Yin Y, Feng W, Perez DR, Liu J (2013b) Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol 87:2963–2968. doi:10.1128/JVI.02688-12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tanaka H, Park CH, Ninomiya A, Ozaki H, Takada A, Umemura T, Kida H (2003) Neurotropism of the 1997 Hong Kong H5N1 influenza virus in mice. Vet Microbiol 95:1–13. doi:S0378113503001329

    Google Scholar 

  • Tate MD, Brooks AG, Reading PC (2011) Specific sites of N-linked glycosylation on the hemagglutinin of H1N1 subtype influenza A virus determine sensitivity to inhibitors of the innate immune system and virulence in mice. J Immunol 187:1884–1894. doi:10.4049/jimmunol.1100295

    PubMed  CAS  Google Scholar 

  • Tian J, Qi W, Li X, He J, Jiao P, Zhang C, Liu GQ, Liao M (2012) A single E627K mutation in the PB2 protein of H9N2 avian influenza virus increases virulence by inducing higher glucocorticoids (GCs) level. PLoS One 7:e38233. doi:10.1371/journal.pone.0038233

    PubMed  CAS  PubMed Central  Google Scholar 

  • Trammell RA, Liberati TA, Toth LA (2012) Host genetic background and the innate inflammatory response of lung to influenza virus. Microbes Infect 14:50–58. doi:10.1016/j.micinf.2011.08.008

    PubMed  CAS  Google Scholar 

  • Trammell RA, Toth LA (2008) Genetic susceptibility and resistance to influenza infection and disease in humans and mice. Expert Rev Mol Diagn 8:515–529. doi:10.1586/14737159.8.4.515

    PubMed  CAS  Google Scholar 

  • Tripp RA, Tompkins SM (2009) Animal models for evaluation of influenza vaccines. Curr Top Microbiol Immunol 333:397–412. doi:10.1007/978-3-540-92165-3_19

    PubMed  Google Scholar 

  • Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310:77–780. doi:10.1126/science.1119392

    PubMed  CAS  Google Scholar 

  • Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Basler CF (2004) Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci U S A 101:3166–3171. doi:10.1073/pnas.0308391100

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uraki R, Kiso M, Shinya K, Goto H, Takano R, Iwatsuki-Horimoto K, Takahashi K, Daniels RS, Hungnes O, Watanabe T, Kawaoka Y (2013) Virulence determinants of pandemic a (H1N1)2009 influenza virus in a mouse model. J Virol 87:2226–2233. doi:10.1128/JVI.01565-12

    PubMed  CAS  PubMed Central  Google Scholar 

  • van der Laan JW, Herberts C, Lambkin-Williams R, Boyers A, Mann AJ, Oxford J (2008) Animal models in influenza vaccine testing. Expert Rev Vaccines 7:783–793. doi:10.1586/14760584.7.6.783

    PubMed  Google Scholar 

  • Varga ZT, Grant A, Manicassamy B, Palese P (2012) Influenza virus protein PB1-F2 inhibits the induction of type i interferon by binding to MAVS and decreasing mitochondrial membrane potential. J Virol 86:8359–8366. doi:10.1128/JVI.01122-12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Varga ZT, Ramos I, Hai R, Schmolke M, Garcia-Sastre A, Fernandez-Sesma A, Palese P (2011) The influenza virus protein PB1-F2 inhibits the induction of type i interferon at the level of the MAVS adaptor protein. PLoS Pathog 7:e1002067. doi:10.1371/journal.ppat.1002067

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vigerust DJ, Ulett KB, Boyd KL, Madsen J, Hawgood S, McCullers JA (2007) N-linked glycosylation attenuates H3N2 influenza viruses. J Virol 81:8593–8600. doi:10.1128/JVI.00769-07

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang CC, Chen JR, Tseng YC, Hsu CH, Hung YF, Chen SW, Chen CM, Khoo KH, Cheng TJ, Cheng YS, Jan JT, Wu CY, Ma C, Wong CH (2009) Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A 106:18137–18142. doi:10.1073/pnas.0909696106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang J, Sun Y, Xu Q, Tan Y, Pu J, Yang H, Brown EG, Liu J (2012) Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS One 7:e40752. doi:10.1371/journal.pone.0040752

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang TT, Tan GS, Hai R, Pica N, Petersen E, Moran TM, Palese P (2010) Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog 6:e1000796. doi:10.1371/journal.ppat.1000796

    PubMed  PubMed Central  Google Scholar 

  • Ward AC (1995) Specific changes in the M1 protein during adaptation of influenza virus to mouse. Arch Virol 140:383–389

    PubMed  CAS  Google Scholar 

  • Ward AC (1996) Neurovirulence of influenza A virus. J Neurovirol 2:139–151

    PubMed  CAS  Google Scholar 

  • Ward AC (1997) Virulence of influenza A virus for mouse lung. Virus Genes 14:187–194

    PubMed  CAS  Google Scholar 

  • Watanabe T, Tisoncik-Go J, Tchitchek N, Watanabe S, Benecke AG, Katze MG, Kawaoka Y (2013) 1918 Influenza virus hemagglutinin (HA) and the viral RNA polymerase complex enhance viral pathogenicity, but only HA induces aberrant host responses in mice. J Virol 87:5239–5254. doi:10.1128/JVI.02753-12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Webster RG, Rott R (1987) Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50:665–666

    PubMed  CAS  Google Scholar 

  • Whittaker GR, Kann M, Helenius A (2000) Viral entry into the nucleus. Annu Rev Cell Dev Biol 16:627–651. doi:10.1146/annurev.cellbio.16.1.627

    PubMed  CAS  Google Scholar 

  • Wu R, Zhang H, Yang K, Liang W, Xiong Z, Liu Z, Yang X, Shao H, Zheng X, Chen M, Xu D (2009) Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Vet Microbiol 138:85–91. doi:10.1016/j.vetmic.2009.03.010

    PubMed  CAS  Google Scholar 

  • Wyde PR, Cate TR (1978) Cellular changes in lungs of mice infected with influenza virus: characterization of the cytotoxic responses. Infect Immun 22:423–429

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wyde PR, Peavy DL, Cate TR (1978) Morphological and cytochemical characterization of cells infiltrating mouse lungs after influenza infection. Infect Immun 21:140–146

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu C, Hu WB, Xu K, He YX, Wang TY, Chen Z, Li TX, Liu JH, Buchy P, Sun B (2012) Amino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. J Gen Virol 93:531–540. doi:10.1099/vir.0.036434-0

    PubMed  CAS  Google Scholar 

  • Xu L, Bao L, Deng W, Zhu H, Chen T, Lv Q, Li F, Yuan J, Xiang Z, Gao K, Xu Y, Huang L, Li Y, Liu J, Yao Y, Yu P, Yong W, Wei Q, Zhang L, Qin C (2013) The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus. Virol J 10:253. doi:10.1186/1743-422X-10-253

    PubMed  PubMed Central  Google Scholar 

  • Xu L, Bao L, Li F, Lv Q, Ma Y, Zhou J, Xu Y, Deng W, Zhan L, Zhu H, Ma C, Shu Y, Qin C (2011a) Adaption of seasonal H1N1 influenza virus in mice. PLoS One 6:e28901. doi:10.1371/journal.pone.0028901

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu L, Bao L, Zhou J, Wang D, Deng W, Lv Q, Ma Y, Li F, Sun H, Zhan L, Zhu H, Ma C, Shu Y, Qin C (2011b) Genomic polymorphism of the pandemic A (H1N1) influenza viruses correlates with viral replication, virulence, and pathogenicity in vitro and in vivo. PLoS One 6:e20698. doi:10.1371/journal.pone.0020698

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, Shinya K, Sakai-Tagawa Y, Ito M, Ozawa M, Watanabe T, Sakabe S, Li C, Kim JH, Myler PJ, Phan I, Raymond A, Smith E, Stacy R, Nidom CA, Lank SM, Wiseman RW, Bimber BN, O’Connor DH, Neumann G, Stewart LJ, Kawaoka Y (2010) Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog 6:e1001034. doi:10.1371/journal.ppat.1001034

    PubMed  PubMed Central  Google Scholar 

  • Yen HL, Aldridge JR, Boon AC, Ilyushina NA, Salomon R, Hulse-Post DJ, Marjuki H, Franks J, Boltz DA, Bush D, Lipatov AS, Webby RJ, Rehg JE, Webster RG (2009) Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci U S A 106:286–291. doi:10.1073/pnas.0811052106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zamarin D, Ortigoza MB, Palese P (2006) Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol 80:7976–7983. doi:10.1128/JVI.00415-06

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zaraket H, Bridges OA, Russell CJ (2013) The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Replication and Pathogenesis in Mice. J Virol. doi:10.1128/JVI.03110-12

    Google Scholar 

  • Zell R, Krumbholz A, Eitner A, Krieg R, Halbhuber KJ, Wutzler P (2007) Prevalence of PB1-F2 of influenza A viruses. J Gen Virol 88:536–546. doi:10.1099/vir.0.82378-0

    PubMed  CAS  Google Scholar 

  • Zhang H, Li X, Guo J, Li L, Chang C, Li Y, Bian C, Xu K, Chen H, Sun B (2014) The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol. doi:10.1099/vir.0.061721-0

    Google Scholar 

  • Zhang Y, Sun Y, Sun H, Pu J, Bi Y, Shi Y, Lu X, Li J, Zhu Q, Gao GF, Yang H, Liu J (2012) a single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity and neurovirulence of H5N1 influenza virus in mice. J Virol. doi:10.1128/JVI.07142-11

    Google Scholar 

  • Zhang Y, Zhu J, Li Y, Bradley KC, Cao J, Chen H, Jin M, Zhou H (2013) Glycosylation on hemagglutinin affects the virulence and pathogenicity of pandemic H1N1/2009 influenza a virus in mice. PLoS One 8:e61397. doi:10.1371/journal.pone.0061397

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Hu S, Li Z, Wang X, Liu M, Guo Z, Li S, Xiao Y, Bi D, Jin H (2011) Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infect Genet Evol 11:1790–1797. doi:10.1016/j.meegid.2011.07.025

    PubMed  CAS  Google Scholar 

  • Zheng B, Chan KH, Zhang AJ, Zhou J, Chan CC, Poon VK, Zhang K, Leung VH, Jin DY, Woo PC, Chan JF, To KK, Chen H, Yuen KY (2010) D225G mutation in hemagglutinin of pandemic influenza H1N1 (2009) virus enhances virulence in mice. Exp Biol Med (Maywood) 235:981–988. doi:10.1258/ebm.2010.010071

    CAS  Google Scholar 

  • Zhou B, Pearce MB, Li Y, Wang J, Mason RJ, Tumpey TM, Wentworth DE (2013) Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus. PLoS One 8:e67616. doi:10.1371/journal.pone.0067616

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou H, Yu Z, Hu Y, Tu J, Zou W, Peng Y, Zhu J, Li Y, Zhang A, Yu Z, Ye Z, Chen H, Jin M (2009) The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus. PLoS One 4:e6277. doi:10.1371/journal.pone.0006277

    PubMed  PubMed Central  Google Scholar 

  • Zielecki F, Semmler I, Kalthoff D, Voss D, Mauel S, Gruber AD, Beer M, Wolff T (2010) Virulence determinants of avian H5N1 influenza A virus in mammalian and avian hosts: role of the C-terminal ESEV motif in the viral NS1 protein. J Virol 84:10708–10718. doi:10.1128/JVI.00610-10

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram P. Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamal, R.P., Katz, J.M., York, I.A. (2014). Molecular Determinants of Influenza Virus Pathogenesis in Mice. In: Compans, R., Oldstone, M. (eds) Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunology, vol 385. Springer, Cham. https://doi.org/10.1007/82_2014_388

Download citation

Publish with us

Policies and ethics