Skip to main content

High-Dimensional Single-Cell Cancer Biology

  • Chapter
  • First Online:
Book cover High-Dimensional Single Cell Analysis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 377))

Abstract

Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a “single-cell ” view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell–cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaeepour N, Finak G, Flow CAPC, Consortium D, Hoos H, Mosmann TR et al (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10:228–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • el Amir AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552

    Article  CAS  Google Scholar 

  • Andreeff M, Slater DE, Bressler J, Furth ME (1986) Cellular RAS oncogene expression and cell cycle measured by flow cytometry in hematopoietic cell lines. Blood 67:676–681

    CAS  PubMed  Google Scholar 

  • Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW et al (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9:252–263

    Article  CAS  PubMed  Google Scholar 

  • Baerlocher GM, Vulto I, de Jong G, Lansdorp PM (2006) Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc 1:2365–2376

    Article  CAS  PubMed  Google Scholar 

  • Barcellos-Hoff MH, Lyden D, Wang TC (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13:511–518

    Article  CAS  PubMed  Google Scholar 

  • Behbehani GK, Bendall SC, Clutter MR, Fantl WJ, Nolan GP (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81:552–566

    Article  PubMed Central  PubMed  Google Scholar 

  • Belloc F, Belaud-Rotureau MA, Lavignolle V, Bascans E, Braz-Pereira E, Durrieu F et al (2000) Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry 40:151–160

    Article  CAS  PubMed  Google Scholar 

  • Bendall SC, Nolan GP (2012) From single cells to deep phenotypes in cancer. Nat Biotechnol 30:639–647

    Article  CAS  PubMed  Google Scholar 

  • Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33:323–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bendall SC, Simonds EF, Qiu P, el Amir AD, Krutzik PO, Finck R et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30:858–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bourton EC, Plowman PN, Zahir SA, Senguloglu GU, Serrai H, Bottley G et al (2012) Multispectral imaging flow cytometry reveals distinct frequencies of gamma-H2AX foci induction in DNA double strand break repair defective human cell lines. Cytometry A 81:130–137

    Article  PubMed  Google Scholar 

  • Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369:32–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carney WP, Petit D, Hamer P, Der CJ, Finkel T, Cooper GM et al (1986) Monoclonal antibody specific for an activated RAS protein. Proc Nat Acad Sci USA 83:7485–7489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castillo R, Mascarenhas J, Telford W, Chadburn A, Friedman SM, Schattner EJ (2000) Proliferative response of mantle cell lymphoma cells stimulated by CD40 ligation and IL-4. Leukemia 14:292–298

    Article  CAS  PubMed  Google Scholar 

  • Chow S, Hedley D (1995) Flow cytometric determination of glutathione in clinical samples. Cytometry 21:68–71

    Article  CAS  PubMed  Google Scholar 

  • Cooperman J, Neely R, Teachey DT, Grupp S, Choi JK (2004) Cell division rates of primary human precursor B cells in culture reflect in vivo rates. Stem Cells 22:1111–1120

    Article  PubMed  Google Scholar 

  • Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29:1120–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS (1991) Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 77:925–929

    CAS  PubMed  Google Scholar 

  • Erlanson M, Landberg G (1998) Flow cytometric quantification of cyclin E in human cell lines and hematopoietic malignancies. Cytometry 32:214–222

    Article  CAS  PubMed  Google Scholar 

  • Fienberg HG, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B (2012) A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81:467–475

    Article  PubMed  Google Scholar 

  • Flotho C, Kratz C, Niemeyer CM (2007) Targeting RAS signaling pathways in juvenile myelomonocytic leukemia. Curr Drug Targets 8:715–725

    Article  CAS  PubMed  Google Scholar 

  • Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A et al (2013) Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc Nat Acad Sci USA 110:11982–11987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN (2012) Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37:364–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL et al (2013) Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 121:1604–1611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa D, Bugarin C, Giordan M, Bresolin S, Longoni D, Micalizzi C et al (2013) Validation of flow cytometric phospho-STAT5 as a diagnostic tool for juvenile myelomonocytic leukemia. Blood Cancer J 3:e160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064

    CAS  PubMed  Google Scholar 

  • Huang X, Traganos F, Darzynkiewicz Z (2003) DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle 2:614–619

    CAS  PubMed  Google Scholar 

  • Irish J, Hovland R, Krutzik P, Perez O, Bruserud O, Gjertsen B et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–228

    Article  CAS  PubMed  Google Scholar 

  • Irish J, Kotecha N, Nolan G (2006a) Innovation–mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6:146–155

    Article  CAS  PubMed  Google Scholar 

  • Irish JM, Czerwinski DK, Nolan GP, Levy R (2006b) Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma. B cells from tumor-infiltrating nonmalignant B cells. Blood 108:3135–3142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irish JM, Anensen N, Hovland R, Skavland J, Borresen-Dale A-L, Bruserud O et al (2007) Flt3 Y591 duplication and Bc1-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109:2589–2596

    Article  CAS  PubMed  Google Scholar 

  • Irish JM, Myklebust JH, Alizadeh AA, Houot R, Sharman JP, Czerwinski DK et al (2010) B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc Nat Acad Sci USA 107:12747–12754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juan G, Traganos F, James WM, Ray JM, Roberge M, Sauve DM et al (1998) Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 32:71–77

    Article  CAS  PubMed  Google Scholar 

  • Kalisky T, Quake SR (2011) Single-cell genomics. Nat Methods 8:311–314

    Article  CAS  PubMed  Google Scholar 

  • Kotecha N, Floress NJ, Irish JM, Simonds EF, Sakai DS, Archambeault S et al (2008) Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 14:335–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krutzik PO, Crane JM, Clutter MR, Nolan GP (2008) High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol 4:132–142

    Article  CAS  PubMed  Google Scholar 

  • Krutzik PO, Hale MB, Nolan GP (2005) Characterization of the murine immunological signaling network with phosphospecific flow cytometry. J Immunol 175:2366–2373

    Article  CAS  PubMed  Google Scholar 

  • Krutzik PO, Irish JM, Nolan GP, Perez OD (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110:206–221

    Article  CAS  PubMed  Google Scholar 

  • Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3:361–368

    Article  CAS  PubMed  Google Scholar 

  • Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55:61–70

    Article  PubMed  Google Scholar 

  • Laane E, Tani E, Bjorklund E, Elmberger G, Everaus H, Skoog L et al (2005) Flow cytometric immunophenotyping including Bcl-2 detection on fine needle aspirates in the diagnosis of reactive lymphadenopathy and non-Hodgkin’s lymphoma. Cytometry B Clin Cytometry 64:34–42

    Article  Google Scholar 

  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685

    Article  CAS  PubMed  Google Scholar 

  • Maecker HT, Levy R (1989) Prevalence of antigen receptor variants in human T cell lines and tumors. J Immunol 142:1395–1404

    CAS  PubMed  Google Scholar 

  • Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69:1037–1042

    Article  PubMed  Google Scholar 

  • Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Nat Acad Sci USA 104:11889–11894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mason D, Andre P, Bensussan A, Buckley C, Civin C, Clark E et al (2002) CD antigens 2002. Blood 99:3877–3880

    Article  CAS  PubMed  Google Scholar 

  • Mayle A, Luo M, Jeong M, Goodell MA (2013) Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A 83:27–37

    Article  PubMed Central  PubMed  Google Scholar 

  • Morkve O, Halvorsen OJ, Stangeland L, Gulsvik A, Laerum OD (1992) Quantitation of biological tumor markers (p53, c-myc, Ki-67 and DNA ploidy) by multiparameter flow cytometry in non-small-cell lung cancer. Int J Cancer 52:851–855

    Article  CAS  PubMed  Google Scholar 

  • Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE et al (2013) High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood 121:1367–1376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  PubMed  Google Scholar 

  • O’Brien MC, Bolton WE (1995) Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry. Cytometry 19:243–255

    Article  PubMed  Google Scholar 

  • Ohtani S, Kagawa S, Tango Y, Umeoka T, Tokunaga N, Tsunemitsu Y et al (2004) Quantitative analysis of p53-targeted gene expression and visualization of p53 transcriptional activity following intratumoral administration of adenoviral p53 in vivo. Mol Cancer Ther 3:93–100

    CAS  PubMed  Google Scholar 

  • Ornatsky OI, Lou X, Nitz M, Schafer S, Sheldrick WS, Baranov VI et al (2008) Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal Chem 80:2539–2547

    Article  CAS  PubMed  Google Scholar 

  • Panoskaltsis N, Reid CD, Knight SC (2003) Quantification and cytokine production of circulating lymphoid and myeloid cells in acute myelogenous leukaemia. Leukemia 17:716–730

    Article  CAS  PubMed  Google Scholar 

  • Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4:648–655

    Article  CAS  PubMed  Google Scholar 

  • Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G et al (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 7:e33788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM et al (2009) Automated high-dimensional flow cytometric data analysis. Proc Nat Acad Sci USA 106:8519–8524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29:886–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  • Rickert RC (2013) New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol 13:578–591

    Article  CAS  PubMed  Google Scholar 

  • Robillard N, Pellat-Deceunynck C, Bataille R (2005) Phenotypic characterization of the human myeloma cell growth fraction. Blood 105:4845–4848

    Article  CAS  PubMed  Google Scholar 

  • Sachen KL, Strohman MJ, Singletary J, Alizadeh AA, Kattah NH, Lossos C et al (2012) Self-antigen recognition by follicular lymphoma B-cell receptors. Blood 120:4182–4190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529

    Article  CAS  PubMed  Google Scholar 

  • Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV (1992) Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 13:204–208

    Article  CAS  PubMed  Google Scholar 

  • Schnitt SJ (2010) Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol 23(Suppl 2):S60–S64

    Article  PubMed  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  CAS  PubMed  Google Scholar 

  • Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM et al (2002) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Trentin L, Cabrelle A, Facco M, Carollo D, Miorin M, Tosoni A et al (2004) Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood 104:502–508

    Article  CAS  PubMed  Google Scholar 

  • van Dongen JJ, Lhermitte L, Bottcher S, Almeida J, van der Velden VH, Flores-Montero J et al (2012) EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26:1908–1975

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Meter MEM, Diaz-Flores E, Archard JA, Passegue E, Irish JM, Kotecha N et al (2007) K-Ras(G12D) expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood 109:3945–3952

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369:507–516

    Article  CAS  PubMed  Google Scholar 

  • Wozniak J, Kopec-Szlezak J (2004) c-Kit receptor (CD117) expression on myeloblasts and white blood cell counts in acute myeloid leukemia. Cytometry B Clin Cytometry 58:9–16

    Article  Google Scholar 

  • Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng A, Castren K, Saily M, Savolainen ER, Koistinen P, Vahakangas K (1999) p53 status of newly established acute myeloid leukaemia cell lines. Br J Cancer 79:407–415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Irish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Irish, J.M., Doxie, D.B. (2014). High-Dimensional Single-Cell Cancer Biology. In: Fienberg, H., Nolan, G. (eds) High-Dimensional Single Cell Analysis. Current Topics in Microbiology and Immunology, vol 377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2014_367

Download citation

Publish with us

Policies and ethics