Mass Cytometry to Decipher the Mechanism of Nongenetic Drug Resistance in Cancer

  • Harris G. Fienberg
  • Garry P. NolanEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 377)


Nongenetic resistance has recently been described as a major impediment to effective cancer therapy. Nongenetic resistance is challenging to study since it occurs nonuniformly, even in cell lines, and can involve the interplay of multiple survival pathways. Until recently, no technology allowed measurement of large-scale alterations in survival pathways with single-cell resolution. Mass cytometry, a flow-based technique in which the activation of up to 50 proteins can be measured simultaneously in single-cell, now provides the ability to examine nongenetic resistance on the functional level on a cell-by-cell basis. The application of mass cytometry, in combination with new bioinformatic techniques, will allow fundamental questions on nongenetic resistance to be addressed: Is resistance caused by selection of cells with a pre-existing survival phenotype or induction of a survival program? Which survival pathways are necessary for nongenetic resistance and how do they interact? Currently, mass cytometry is being used to investigate the mechanism of nongenetic resistance to TRAIL-induced apoptosis. The approaches being developed to understand resistance to TRAIL will likely be applied to elucidate the mechanisms of nongenetic resistance broadly and in the clinic.


Network State Survival Pathway Survival Phenotype Mass Cytometry Valley State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albeck JG, Burke JM, Aldridge BB et al (2008) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30:11–25. doi: 10.1016/j.molcel.2008.02.012 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Amir E-AD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552. doi: 10.1038/nbt.2594 CrossRefGoogle Scholar
  3. Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696. doi: 10.1126/science.1198704 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brock A, Chang H, Huang S (2009) Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nature 10:1–7Google Scholar
  5. Cohen AA, Geva-Zatorsky N, Eden E et al (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science 322:1–6Google Scholar
  6. Dimberg LY, Anderson CK, Camidge R et al (2012) On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene 32:1341–1350. doi: 10.1038/onc.2012.164 PubMedCrossRefGoogle Scholar
  7. Duncan JS, Whittle MC, Nakamura K et al (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149:307–321. doi: 10.1016/j.cell.2012.02.053 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Flusberg DA, Roux J, Spencer SL, Sorger PK (2013) Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol Biol Cell. doi: 10.1091/mbc.E12-10-0737 PubMedCentralPubMedGoogle Scholar
  9. Flusberg DA, Sorger PK (2013) Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging. Phys Biol 10:035002. doi: 10.1088/1478-3975/10/3/035002 PubMedCrossRefGoogle Scholar
  10. Flynn DFB, Mirotchnick N, Jain M et al (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581PubMedCrossRefGoogle Scholar
  11. Frese S, Pirnia F, Miescher D et al (2003) PG490-mediated sensitization of lung cancer cells to Apo2L/TRAIL-induced apoptosis requires activation of ERK2. Oncogene 22:5427–5435. doi: 10.1038/sj.onc.1206842 PubMedCrossRefGoogle Scholar
  12. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  13. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway incancer onset, progression and therapy. Nat Rev Cancer 8:782–798. doi:  10.1038/nrc2465 Google Scholar
  14. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry 55A:61–70. doi: 10.1002/cyto.a.10072 CrossRefGoogle Scholar
  15. Lee MJ, Ye AS, Gardino AK et al (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:780–794. doi: 10.1016/j.cell.2012.03.031 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Publ Group 12:323–334. doi: 10.1038/nrc3261 Google Scholar
  17. Newsom-Davis T, Prieske S, Walczak H (2009) Is TRAIL the holy grail of cancer therapy? Apoptosis 14:607–623. doi: 10.1007/s10495-009-0321-2 PubMedCrossRefGoogle Scholar
  18. Ohtsuka T, Buchsbaum D, Oliver P et al (2003) Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 22:2034–2044. doi: 10.1038/sj.onc.1206290 PubMedCrossRefGoogle Scholar
  19. Okabe S, Tauchi T, Ohyashiki K (2008) Characteristics of dasatinib- and imatinib-resistant chronic myelogenous leukemia cells. Clin Cancer Res 14:6181–6186. doi: 10.1158/1078-0432.CCR-08-0461 PubMedCrossRefGoogle Scholar
  20. Oppermann FS, Gnad F, Olsen JV et al (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8:1751–1764. doi: 10.1074/mcp.M800588-MCP200 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Pisco AO, Brock A, Zhou J et al (2013) Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat Commun 4:2467. doi: 10.1038/ncomms3467 PubMedCrossRefGoogle Scholar
  22. Pujadas E, Feinberg AP (2012) Regulated noise in the epigenetic landscape of development and disease. Cell 148:1123–1131. doi: 10.1016/j.cell.2012.02.045 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Raser JM (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814. doi: 10.1126/science.1098641 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells : abstract : nature. Nature 414:105–111. doi: 10.1038/35102167 PubMedCrossRefGoogle Scholar
  25. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC et al (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 1(3)Google Scholar
  26. Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways. Dev Cell 7:491–501. doi: 10.1016/j.devcel.2004.08.019 PubMedCrossRefGoogle Scholar
  27. Sachs K (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529. doi: 10.1126/science.1105809 PubMedCrossRefGoogle Scholar
  28. Sah NK, Munshi A, Kurland JF et al (2003) Translation inhibitors sensitize prostate cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by activating c-Jun N-terminal kinase. J Biol Chem 278:20593–20602. doi: 10.1074/jbc.M211010200 PubMedCrossRefGoogle Scholar
  29. Sharma SV, Lee DY, Li B et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80. doi: 10.1016/j.cell.2010.02.027 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Singh DK, Ku C-J, Wichaidit C et al (2010) Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol 6:1–10. doi: 10.1038/msb.2010.22 CrossRefGoogle Scholar
  31. Slack MD, Martinez ED, Wu LF, Altschuler SJ (2008) Characterizing heterogeneous cellular responses to perturbations. Proc Natl Acad Sci 105(49):1–6 Google Scholar
  32. Spencer SL, Sorger PK (2011) Measuring and modeling apoptosis in single cells. Cell 144:926–939. doi: 10.1016/j.cell.2011.03.002 Google Scholar
  33. Spencer SL, Gaudet S, Albeck JG et al (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–432. doi: 10.1038/nature08012 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Waddington CH (1957) The strategy of the genes. A discussion of some aspects of theoretical biology. With an appendix by Kacser H. Allen & Unwinpp, London, pp. ix. 262 Google Scholar
  35. Weldon CB, Parker AP, Patten D et al (2004) Sensitization of apoptotically-resistant breast carcinoma cells to TNF and TRAIL by inhibition of p38 mitogen-activated protein kinase signaling. Int J Oncol 24:1473–1480PubMedGoogle Scholar
  36. Yuan TL, Wulf G, Burga L, Cantley LC (2011) Cell-to-cell variability in PI3 K protein level regulates PI3 K-AKT pathway activity in cell populations. Curr Biol 21:173–183. doi: 10.1016/j.cub.2010.12.047 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Baxter Laboratory in Stem Cell Biology, Department of Microbiology and ImmunologyStanford UniversityStanfordUSA

Personalised recommendations