Advertisement

Analysis of Protein Interactions in situ by Proximity Ligation Assays

  • Björn Koos
  • Linda Andersson
  • Carl-Magnus Clausson
  • Karin Grannas
  • Axel Klaesson
  • Gaëlle Cane
  • Ola Söderberg
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 377)

Abstract

The fate of the cell is governed by interactions among proteins, nucleic acids, and other biomolecules. It is vital to look at these interactions in a cellular environment if we want to increase our understanding of cellular processes. Herein we will describe how the in situ proximity ligation assay (in situ PLA) can be used to visualize protein interactions in fixed cells and tissues. In situ PLA is a novel technique that uses DNA, together with DNA modifying processes such as ligation, cleavage, and polymerization, as tools to create surrogate markers for protein interactions of interest. Different in situ PLA designs make it possible not only to detect protein–protein interactions but also post-translational modifications and interactions of proteins with nucleic acids. Flexibility in DNA probe design and the multitude of different DNA modifying enzymes provide the basis for modifications of the method to make it suitable to use in many applications. Furthermore, examples of how in situ PLA can be combined with other methods for a comprehensive view of the cellular activity status are discussed.

Keywords

Rolling Circle Amplification Proximity Ligation Assay Reporter Molecule Padlock Probe Affinity Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aubele M, Spears M, Ludyga N, Braselmann H, Feuchtinger A, Taylor KJ, Lindner K, Auer G, Stering K, Hofler H, Schmitt M, Bartlett JM (2010) In situ quantification of HER2-protein tyrosine kinase 6 (PTK6) protein–protein complexes in paraffin sections from breast cancer tissues. Br J Cancer 103:663–667PubMedCentralPubMedCrossRefGoogle Scholar
  2. Baan B, Pardali E, ten Dijke P, van Dam H (2010) In situ proximity ligation detection of c-Jun/AP-1 dimers reveals increased levels of c-Jun/Fra1 complexes in aggressive breast cancer cell lines in vitro and in vivo. Mol Cell Proteomics 9:1982–1990PubMedCentralPubMedCrossRefGoogle Scholar
  3. Burke DH, Gold L (1997) RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. Nucleic Acids Res 25:2020–2024PubMedCentralPubMedCrossRefGoogle Scholar
  4. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chen TC, Liu YW, Huang YH, Yeh YC, Chou TY, Wu YC, Wu CC, Chen YR, Cheng HC, Lu PJ, Lai JM, Huang CY (2013) Protein phosphorylation profiling using an in situ proximity ligation assay: phosphorylation of AURKA-elicited EGFR-Thr654 and EGFR-Ser1046 in lung cancer cells. PLoS One 8:e55657PubMedCentralPubMedCrossRefGoogle Scholar
  6. Clausson CM, Allalou A, Weibrecht I, Mahmoudi S, Farnebo M, Landegren U, Wahlby C, Soderberg O (2011) Increasing the dynamic range of in situ PLA. Nat Methods 8:892–893PubMedCrossRefGoogle Scholar
  7. Conze T, Carvalho AS, Landegren U, Almeida R, Reis CA, David L, Soderberg O (2010) MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas. Glycobiology 20:199–206PubMedCrossRefGoogle Scholar
  8. Coons AH, Creech HJ, Jones RN, Berliner E (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159–170Google Scholar
  9. Figueiredo J, Soderberg O, Simoes-Correia J, Grannas K, Suriano G, Seruca R (2013) The importance of E-cadherin binding partners to evaluate the pathogenicity of E-cadherin missense mutations associated to HDGC. Eur J Hum Genet 21:301–309PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477PubMedCrossRefGoogle Scholar
  11. Gajadhar A, Guha A (2010) A proximity ligation assay using transiently transfected, epitope-tagged proteins: application for in situ detection of dimerized receptor tyrosine kinases. Biotechniques 48:145–152PubMedCrossRefGoogle Scholar
  12. Gajadhar AS, Bogdanovic E, Munoz DM, Guha A (2012) In situ analysis of mutant EGFRs prevalent in glioblastoma multiforme reveals aberrant dimerization, activation, and differential response to anti-EGFR targeted therapy. Mol Cancer Res 10:428–440PubMedCrossRefGoogle Scholar
  13. Gomez D, Shankman LS, Nguyen AT, Owens GK (2013) Detection of histone modifications at specific gene loci in single cells in histological sections. Nat Methods 10:171–177PubMedCentralPubMedCrossRefGoogle Scholar
  14. Goransson J, Wahlby C, Isaksson M, Howell WM, Jarvius J, Nilsson M (2009) A single molecule array for digital targeted molecular analyses. Nucleic Acids Res 37:e7PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gu GJ, Friedman M, Jost C, Johnsson K, Kamali-Moghaddam M, Pluckthun A, Landegren U, Soderberg O (2013) Protein tag-mediated conjugation of oligonucleotides to recombinant affinity binders for proximity ligation. N Biotechnol 30:144–152PubMedCrossRefGoogle Scholar
  16. Gullberg M, Gustafsdottir SM, Schallmeiner E, Jarvius J, Bjarnegard M, Betsholtz C, Landegren U, Fredriksson S (2004) Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci U S A 101:8420–8424PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gustafsdottir SM, Schlingemann J, Rada-Iglesias A, Schallmeiner E, Kamali-Moghaddam M, Wadelius C, Landegren U (2007) In vitro analysis of DNA-protein interactions by proximity ligation. Proc Natl Acad Sci U S A 104:3067–3072PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC, Wahlby C, Gullberg M, Botling J, Sjoblom T, Markova B, Ostman A, Landegren U, Soderberg O (2007) In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteomics 6:1500–1509PubMedCrossRefGoogle Scholar
  19. Jung J, Lifland AW, Zurla C, Alonas EJ, Santangelo PJ (2013). Quantifying RNA-protein interactions in situ using modified-MTRIPs and proximity ligation. Nucleic Acids Res 41: e12Google Scholar
  20. Koos B, Paulsson J, Jarvius M, Sanchez BC, Wrede B, Mertsch S, Jeibmann A, Kruse A, Peters O, Wolff JE, Galla HJ, Soderberg O, Paulus W, Ostman A, Hasselblatt M (2009) Platelet-derived growth factor receptor expression and activation in choroid plexus tumors. Am J Pathol 175:1631–1637PubMedCentralPubMedCrossRefGoogle Scholar
  21. Larsson C, Grundberg I, Soderberg O, Nilsson M (2010) In situ detection and genotyping of individual mRNA molecules. Nat Methods 7:395–397PubMedCrossRefGoogle Scholar
  22. Larsson C, Koch J, Nygren A, Janssen G, Raap AK, Landegren U, Nilsson M (2004) In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat Methods 1:227–232PubMedCrossRefGoogle Scholar
  23. Leuchowius KJ, Clausson CM, Grannas K, Erbilgin Y, Botling J, Zieba A, Landegren U (2013) Söderberg O ²Parallel visualization of multiple protein complexes in individual cells in tumor tissue². Mol Cell Proteomics 12(6):1563–1571 PubMedGoogle Scholar
  24. Leuchowius KJ, Jarvius M, Wickstrom M, Rickardson L, Landegren U, Larsson R, Soderberg O, Fryknas M, Jarvius J (2010) High content screening for inhibitors of protein interactions and post-translational modifications in primary cells by proximity ligation. Mol Cell Proteomics 9:178–183PubMedCentralPubMedCrossRefGoogle Scholar
  25. Leuchowius KJ, Weibrecht I, Landegren U, Gedda L, Soderberg O (2009) Flow cytometric in situ proximity ligation analyses of protein interactions and post-translational modification of the epidermal growth factor receptor family. Cytometry A 75:833–839PubMedCrossRefGoogle Scholar
  26. Leuchowius KJ, Weibrecht I, Soderberg O (2011) In situ proximity ligation assay for microscopy and flow cytometry. Curr Protoc Cytom. doi: 10.1002/0471142956.cy0936s56 PubMedGoogle Scholar
  27. Liu Y, Gu J, Hagner-McWhirter A, Sathiyanarayanan P, Gullberg M, Soderberg O, Johansson J, Hammond M, Ivansson D and Landegren U (2011). Western blotting via proximity ligation for high performance protein analysis. Mol Cell Proteomics 10: O111 011031Google Scholar
  28. Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 39:641–652PubMedCrossRefGoogle Scholar
  29. Mocanu MM, Varadi T, Szollosi J, Nagy P (2011) Comparative analysis of fluorescence resonance energy transfer (FRET) and proximity ligation assay (PLA). Proteomics 11:2063–2070PubMedCrossRefGoogle Scholar
  30. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088PubMedCrossRefGoogle Scholar
  31. Paulsson J, Lindh MB, Jarvius M, Puputti M, Nister M, Nupponen NN, Paulus W, Soderberg O, Dresemann G, von Deimling A, Joensuu H, Ostman A, Hasselblatt M (2011) Prognostic but not predictive role of platelet-derived growth factor receptors in patients with recurrent glioblastoma. Int J Cancer 128:1981–1988PubMedCrossRefGoogle Scholar
  32. Pinto R, Carvalho AS, Conze T, Magalhaes A, Picco G, Burchell JM, Taylor-Papadimitriou J, Reis CA, Almeida R, Mandel U, Clausen H, Soderberg O, David L (2012) Identification of new cancer biomarkers based on aberrant mucin glycoforms by in situ proximity ligation. J Cell Mol Med 16:1474–1484PubMedCrossRefGoogle Scholar
  33. Renfrow JJ, Scheck AC, Dhawan NS, Lukac PJ, Vogel H, Chandler JP, Raizer JJ, Harsh GR, Chakravarti A, Bredel M (2011) Gene-protein correlation in single cells. Neuro Oncol 13:880–885PubMedCentralPubMedCrossRefGoogle Scholar
  34. Ribeiro AS, Sousa B, Carreto L, Mendes N, Nobre AR, Ricardo S, Albergaria A, Cameselle-Teijeiro JF, Gerhard R, Soderberg O, Seruca R, Santos MA, Schmitt F, Paredes J (2013) P-cadherin functional role is dependent on E-cadherin cellular context: a proof of concept using the breast cancer model. J Pathol 229:705–718PubMedCrossRefGoogle Scholar
  35. Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Bockelmann R, Malykh Y, Gollnick H, Friedenberger M, Bode M, Dress AW (2006) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24:1270–1278PubMedCrossRefGoogle Scholar
  36. Sehat B, Tofigh A, Lin Y, Trocme E, Liljedahl U, Lagergren J and Larsson O (2010). SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal 3: ra10Google Scholar
  37. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000PubMedCrossRefGoogle Scholar
  38. Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227–232PubMedCrossRefGoogle Scholar
  39. Tavoosidana G, Ronquist G, Darmanis S, Yan J, Carlsson L, Wu D, Conze T, Ek P, Semjonow A, Eltze E, Larsson A, Landegren UD, Kamali-Moghaddam M (2011) Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Proc Natl Acad Sci U S A 108:8809–8814PubMedCentralPubMedCrossRefGoogle Scholar
  40. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMedCrossRefGoogle Scholar
  41. Weibrecht I, Gavrilovic M, Lindbom L, Landegren U, Wahlby C, Soderberg O (2012) Visualising individual sequence-specific protein-DNA interactions in situ. N Biotechnol 29:589–598PubMedCrossRefGoogle Scholar
  42. Weibrecht I, Grundberg I, Nilsson M, Soderberg O (2011) Simultaneous visualization of both signaling cascade activity and end-point gene expression in single cells. PLoS One 6:e20148PubMedCentralPubMedCrossRefGoogle Scholar
  43. Weibrecht I, Leuchowius KJ, Clausson CM, Conze T, Jarvius M, Howell WM, Kamali-Moghaddam M, Soderberg O (2010) Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics 7:401–409PubMedCrossRefGoogle Scholar
  44. Weibrecht I, Lundin E, Kiflemariam S, Mignardi M, Grundberg I, Larsson C, Koos B, Nilsson M, Soderberg O (2013) In situ detection of individual mRNA molecules and protein complexes or post-translational modifications using padlock probes combined with the in situ proximity ligation assay. Nat Protoc 8:355–372PubMedCrossRefGoogle Scholar
  45. Zieba A, Pardali K, Soderberg O, Lindbom L, Nystrom E, Moustakas A, Heldin CH and Landegren U (2012). Intercellular variation in signaling through the TGF-beta pathway and its relation to cell density and cell cycle phase. Mol Cell Proteomics 11: M111 013482Google Scholar
  46. Zieba A, Wahlby C, Hjelm F, Jordan L, Berg J, Landegren U, Pardali K (2010) Bright-field microscopy visualization of proteins and protein complexes by in situ proximity ligation with peroxidase detection. Clin Chem 56:99–110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Björn Koos
    • 1
  • Linda Andersson
    • 1
  • Carl-Magnus Clausson
    • 1
  • Karin Grannas
    • 1
  • Axel Klaesson
    • 1
  • Gaëlle Cane
    • 1
  • Ola Söderberg
    • 1
  1. 1.Department of Immunology, Genetics and Pathology Science for Life Laboratory, BMCUppsala UniversityUppsalaSweden

Personalised recommendations