Skip to main content

Development and Function of Cortical Thymic Epithelial Cells

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 373))

Abstract

The thymic cortex provides a microenvironment that supports the generation and T cell antigen receptor (TCR)-mediated selection of CD4+CD8+TCRαβ+ thymocytes. Cortical thymic epithelial cells (cTECs) are the essential component that forms the architecture of the thymic cortex and induces the generation as well as the selection of newly generated T cells. Here we summarize current knowledge on the development, function, and heterogeneity of cTECs, focusing on the expression and function of β5t, a cTEC-specific subunit of the thymoproteasome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adriani M, Martinez-Mir A, Fusco F, Busiello R, Frank J, Telese S, Matrecano E, Ursini MV, Christiano AM, Pignata C (2004) Ancestral founder mutation of the nude (FOXN1) gene in congenital severe combined immunodeficiency associated with alopecia in southern Italy population. Ann Hum Genet 68:265–268

    PubMed  CAS  Google Scholar 

  • Aguilar LK, Agilar-Cordova E, Cartwright J Jr, Belmont JW (1994) Thymic nurse cells are sites of thymocyte apoptosis. J Immunol 152:2645–2651

    PubMed  CAS  Google Scholar 

  • Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308:248–251

    PubMed  CAS  Google Scholar 

  • Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, Inoue J (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29:423–437

    PubMed  CAS  Google Scholar 

  • Alves NL, Huntington ND, Rodewald HR, Di Santo JP (2009) Thymic epithelial cells: the multi-tasking framework of the T cell “cradle”. Trends Immunol 30:468–474

    PubMed  CAS  Google Scholar 

  • Bell JJ, Bhandoola A (2008) The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452:764–767

    PubMed  CAS  Google Scholar 

  • Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterization of thymic epithelial progenitor cells. Immunity 16:803–814

    PubMed  CAS  Google Scholar 

  • Blackburn CC, Augustine CL, Li R, Harvey RP, Malin MA, Boyd RL, Miller JF, Morahan G (1996) The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci USA 93:5742–5746

    PubMed  CAS  Google Scholar 

  • Bleul CC, Carbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996

    PubMed  CAS  Google Scholar 

  • Boehm T, Scheu S, Pfeffer K, Bleul CC (2003) Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTβR. J Exp Med 198:757–769

    PubMed  CAS  Google Scholar 

  • Boehm T (2009) The adaptive phenotype of cortical thymic epithelial cells. Eur J Immunol 39:944–947

    PubMed  CAS  Google Scholar 

  • Bowlus CL, Ahn J, Chu T, Gruen JR (1999) Cloning of a novel MHC-encoded serine peptidase highly expressed by cortical epithelial cells of the thymus. Cell Immunol 196:80–86

    PubMed  CAS  Google Scholar 

  • Boyd RL, Tucek CL, Godfrey DI, Izon DJ, Wilson TJ, Davidson NJ, Bean AG, Ladyman HM, Ritter MA, Hugo P (1993) The thymic microenvironment. Immunol Today 14:445–459

    PubMed  CAS  Google Scholar 

  • Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, Tizard R, Cate R, Lo D (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373:531–536

    PubMed  CAS  Google Scholar 

  • Calderón L, Boehm T (2011) Three chemokine receptors cooperatively regulate homing of hematopoietic progenitors to the embryonic mouse thymus. Proc Natl Acad Sci USA 108:7517–7522

    PubMed  Google Scholar 

  • Carrier A, Nguyen C, Victorero G, Granjeaud S, Rocha D, Bernard K, Miazek A, Ferrier P, Malissen M, Naquet P, Malissen B, Jordan BR (1999) Differential gene expression in CD3epsilon- and RAG1-deficient thymuses: definition of a set of genes potentially involved in thymocyte maturation. Immunogenetics 50:255–270

    PubMed  CAS  Google Scholar 

  • Cheunsuk S, Lian ZX, Yang GX, Gershwin ME, Gruen JR, Bowlus CL (2005) Prss16 is not required for T-cell development. Mol Cell Biol 25:789–796

    PubMed  CAS  Google Scholar 

  • Ciofani M, Zúñiga-Pflücker JC (2005) Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888

    PubMed  CAS  Google Scholar 

  • de Waal Malefijt R, Leene W, Roholl PJ, Wormmeester J, Hoeben KA (1986) T cell differentiation within thymic nurse cells. Lab Invest 55:25–34

    PubMed  Google Scholar 

  • Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, Feinberg MB, Sullivan JL, Jamieson BD, Zack JA, Picker LJ, Koup RA (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695

    PubMed  CAS  Google Scholar 

  • Fiorini E, Ferrero I, Merck E, Favre S, Pierres M, Luther SA, MacDonald HR (2008) Thymic crosstalk regulates delta-like 4 expression on cortical epithelial cells. J Immunol 181:8199–8203

    PubMed  CAS  Google Scholar 

  • Flaño E, Alvarez F, López-Fierro P, Razquin BE, Villena AJ, Zapata AG (1996) In vitro and in situ characterization of fish thymic nurse cells. Dev Immunol 5:17–24

    PubMed  Google Scholar 

  • Florea BI, Verdoes M, Li N, van der Linden WA, Geurink PP, van den Elst H, Hofmann T, de Ru A, van Veelen PA, Tanaka K, Sasaki K, Murata S, den Dulk H, Brouwer J, Ossendorp FA, Kisselev AF, Overkleeft HS (2010) Activity-based profiling reveals reactivity of the murine thymoproteasome-specific subunit β5t. Chem Biol 17:795–801

    PubMed  CAS  Google Scholar 

  • Gill J, Malin M, Holländer GA, Boyd R (2002) Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nat Immunol 3:635–642

    PubMed  CAS  Google Scholar 

  • Gommeaux J, Grégoire C, Nguessan P, Richelme M, Malissen M, Guerder S, Malissen B, Carrier A (2009) Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes. Eur J Immunol 39:956–964

    PubMed  CAS  Google Scholar 

  • Gordon J, Bennett AR, Blackburn CC, Manley NR (2001) Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev 103:141–143

    PubMed  CAS  Google Scholar 

  • Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, Wilson L, Manley NR, Blackburn CC (2004) Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 5:546–553

    PubMed  CAS  Google Scholar 

  • Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108:3777–3785

    PubMed  CAS  Google Scholar 

  • Griffith AV, Fallahi M, Nakase H, Gosink M, Young B, Petrie HT (2009) Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation. Immunity 31:999–1009

    PubMed  CAS  Google Scholar 

  • Guyden JC, Pezzano M (2003) Thymic nurse cells: a microenvironment for thymocyte development and selection. Int Rev Cytol 223:1–37

    PubMed  CAS  Google Scholar 

  • Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, Matsumoto M, Minato N (2007) Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8:304–311

    PubMed  CAS  Google Scholar 

  • Hara T, Shitara S, Imai K, Miyachi H, Kitano S, Yao H, Tani-ichi S, Ikuta K (2012) Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. J Immunol 189:1577–1584

    PubMed  CAS  Google Scholar 

  • Hetzer-Egger C, Schorpp M, Haas-Assenbaum A, Balling R, Peters H, Boehm T (2002) Thymopoiesis requires Pax9 function in thymic epithelial cells. Eur J Immunol 32:1175–1181

    PubMed  CAS  Google Scholar 

  • Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, Inoue J, Akiyama T, Takahama Y (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29:438–450

    PubMed  CAS  Google Scholar 

  • Holländer GA, Wang B, Nichogiannopoulou A, Platenburg PP, van Ewijk W, Burakoff SJ, Gutierrez-Ramos JC, Terhorst C (1995) Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373:350–353

    PubMed  Google Scholar 

  • Honey K, Nakagawa T, Peters C, Rudensky A (2002) Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med 195:1349–1358

    PubMed  CAS  Google Scholar 

  • Hozumi K, Negishi N, Suzuki D, Abe N, Sotomaru Y, Tamaoki N, Mailhos C, Ish-Horowicz D, Habu S, Owen MJ (2004) Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol 5:638–644

    PubMed  CAS  Google Scholar 

  • Hozumi K, Mailhos C, Negishi N, Hirano K, Yahata T, Ando K, Zuklys S, Holländer GA, Shima DT, Habu S (2008) Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med 205:2507–2513

    PubMed  CAS  Google Scholar 

  • Hu B, Lefort K, Qiu W, Nguyen BC, Rajaram RD, Castillo E, He F, Chen Y, Angel P, Brisken C, Dotto GP (2010) Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis. Genes Dev 24:1519–1532

    PubMed  CAS  Google Scholar 

  • Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene. Tbx. Nat Genet 27:286–291

    CAS  Google Scholar 

  • Klug DB, Carter C, Crouch E, Roop D, Conti CJ, Richie ER (1998) Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci USA 95:11822–11827

    PubMed  CAS  Google Scholar 

  • Klug DB, Carter C, Gimenez-Conti IB, Richie ER (2002) Thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J Immunol 169:2842–2845

    PubMed  CAS  Google Scholar 

  • Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M, Manley NR, Duarte A, Macdonald HR, Radtke F (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205:2515–2523

    PubMed  CAS  Google Scholar 

  • Kondo M, Akashi K, Domen J, Sugamura K, Weissman IL (1997) Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common gamma chain-deficient mice. Immunity 7:155–162

    PubMed  CAS  Google Scholar 

  • Kyewski BA, Kaplan HS (1982) Lymphoepithelial interactions in the mouse thymus: phenotypic and kinetic studies on thymic nurse cells. J Immunol 128:2287–2294

    PubMed  CAS  Google Scholar 

  • Laufer TM, DeKoning J, Markowitz JS, Lo D, Glimcher LH (1996) Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383:81–85

    PubMed  CAS  Google Scholar 

  • Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, Bradley A, Baldini A (2001) Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    PubMed  CAS  Google Scholar 

  • Liu C, Saito F, Liu Z, Lei Y, Uehara S, Love P, Lipp M, Kondo S, Manley N, Takahama Y (2006) Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 108:2531–2539

    PubMed  CAS  Google Scholar 

  • Maillard I, Tu L, Sambandam A, Yashiro-Ohtani Y, Millholland J, Keeshan K, Shestova O, Xu L, Bhandoola A, Pear WS (2006) The requirement for Notch signaling at the beta-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. J Exp Med 203:2239–2245

    PubMed  CAS  Google Scholar 

  • Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121:1989–2003

    PubMed  CAS  Google Scholar 

  • Maraskovsky E, O’Reilly LA, Teepe M, Corcoran LM, Peschon JJ, Strasser A (1997) Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89:1011–1019

    PubMed  CAS  Google Scholar 

  • Mat Ripen A, Nitta T, Murata S, Tanaka K, Takahama Y (2011) Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit β5t. Eur J Immunol 41:1278–1287

    Google Scholar 

  • Mazzucchelli RI, Warming S, Lawrence SM, Ishii M, Abshari M, Washington AV, Feigenbaum L, Warner AC, Sims DJ, Li WQ, Hixon JA, Gray DH, Rich BE, Morrow M, Anver MR, Cherry J, Naf D, Sternberg LR, McVicar DW, Farr AG, Germain RN, Rogers K, Jenkins NA, Copeland NG, Durum SK (2009) Visualization and identification of IL-7 producing cells in reporter mice. PLoS One 4:7637

    Google Scholar 

  • Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S, Tokooya K, Jore BS, Lopez M, Pandita RK, Lia M, Carrion D, Xu H, Schorle H, Kobler JB, Scambler P, Wynshaw-Boris A, Skoultchi AI, Morrow BE, Kucherlapati R (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    PubMed  CAS  Google Scholar 

  • Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316:1349–1353

    PubMed  CAS  Google Scholar 

  • Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10:104–115

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Roth W, Wong P, Nelson A, Farr A, Deussing J, Villadangos JA, Ploegh H, Peters C, Rudensky AY (1998) Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280:450–453

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Ohigashi I, Nitta T, Sakata M, Tanaka K, Murata S, Kanagawa O, Takahama Y (2012) Thymic nurse cells provide microenvironment for secondary TCRα rearrangement in cortical thymocytes. Proc Natl Acad Sci USA 109:20572–20577

    Google Scholar 

  • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396–400

    PubMed  CAS  Google Scholar 

  • Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–836

    PubMed  CAS  Google Scholar 

  • Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103–107

    PubMed  CAS  Google Scholar 

  • Nehls M, Kyewski B, Messerle M, Waldschutz R, Schüddekopf K, Smith AJH, Boehm T (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science 272:886–889

    PubMed  CAS  Google Scholar 

  • Nishikawa Y, Hirota F, Yano M, Kitajima H, Miyazaki J, Kawamoto H, Mouri Y, Matsumoto M (2010) Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J Exp Med 207:963–971

    PubMed  CAS  Google Scholar 

  • Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, Ishimaru N, Koyasu S, Tanaka K, Takahama Y (2010) Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 32:29–40

    PubMed  CAS  Google Scholar 

  • Park JH, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, Kimura MY, Cui Y, Lucas PJ, Gress RE, Kubo M, Hennighausen L, Feigenbaum L, Singer A (2010) Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol 11:257–264

    PubMed  CAS  Google Scholar 

  • Pellegrini M, Bouillet P, Robati M, Belz GT, Davey GM, Strasser A (2004) Loss of Bim increases T cell production and function in interleukin 7 receptor-deficient mice. J Exp Med 200:1189–1195

    PubMed  CAS  Google Scholar 

  • Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams DE, Ware CB, Meyer JD, Davison BL (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180:1955–1960

    PubMed  CAS  Google Scholar 

  • Pezzano M, Samms M, Martinez M, Guyden J (2001) Questionable thymic nurse cell. Microbiol Mol Biol Rev 65:390–403

    PubMed  CAS  Google Scholar 

  • Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, Aguet M (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10:547–558

    PubMed  CAS  Google Scholar 

  • Radtke F, Wilson A, Mancini SJ, MacDonald HR (2004) Notch regulation of lymphocyte development and function. Nat Immunol 5:247–253

    PubMed  CAS  Google Scholar 

  • Rieker T, Penninger J, Romani N, Wick G (1995) Chicken thymic nurse cells: an overview. Dev Comp Immunol 19:281–289

    PubMed  CAS  Google Scholar 

  • Ritter MA, Sauvage CA, Cotmore SF (1981) The human thymus microenvironment: in vivo identification of thymic nurse cells and other antigenically-distinct subpopulations of epithelial cells. Immunology 44:439–446

    PubMed  CAS  Google Scholar 

  • Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    PubMed  CAS  Google Scholar 

  • Rode I, Boehm T (2012) Regenerative capacity of adult cortical thymic epithelial cells. Proc Natl Acad Sci USA 109:3463–3468

    PubMed  CAS  Google Scholar 

  • Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441:988–991

    PubMed  CAS  Google Scholar 

  • Rossi SW, Kim MY, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH, McConnell FM, Scott HS, Penninger JM, Jenkinson EJ, Lane PJ, Anderson G (2007) RANK signals from CD4+3 inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 204:1267–1272

    PubMed  CAS  Google Scholar 

  • Rudd BD, Venturi V, Li G, Samadder P, Ertelt JM, Way SS, Davenport MP, Nikolich-Žugich J (2011) Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor: pMHC interactions. Proc Natl Acad Sci USA 108:13694–13699

    PubMed  CAS  Google Scholar 

  • Schaller CE, Wang CL, Beck-Engeser G, Goss L, Scott HS, Anderson MS, Wabl M (2008) Expression of Aire and the early wave of apoptosis in spermatogenesis. J Immunol 180:1338–1343

    PubMed  CAS  Google Scholar 

  • Schmitt TM, Zúñiga-Pflücker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17:749–756

    PubMed  CAS  Google Scholar 

  • Shakib S, Desanti GE, Jenkinson WE, Parnell SM, Jenkinson EJ, Anderson G (2009) Checkpoints in the development of thymic cortical epithelial cells. J Immunol 182:130–137

    PubMed  CAS  Google Scholar 

  • Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, Kogishi K, Serikawa T, Honjo T (1999) Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-κb-inducing kinase. Nat Genet 22:74–77

    PubMed  CAS  Google Scholar 

  • Shortman K, Scollay R, Andrews P, Boyd R (1986) Development of T lymphocytes within the thymus and within thymic nurse cells. Curr Top Microbiol Immunol 126:5–18

    PubMed  CAS  Google Scholar 

  • Su D, Ellis S, Napier A, Lee K, Manley NR (2001) Hoxa3 and Pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol 236:316–329

    PubMed  CAS  Google Scholar 

  • Takahama Y, Letterio JJ, Suzuki H, Farr AG, Singer A (1994) Early progression of thymocytes along the CD4/CD8 developmental pathway is regulated by a subset of thymic epithelial cells expressing transforming growth factor β. J Exp Med 179:1495–1506

    PubMed  CAS  Google Scholar 

  • Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K (2010) Role of thymic cortex-specific self-peptides in positive selection of T cells. Sem Immunol 22:287–293

    CAS  Google Scholar 

  • Takahama Y, Takada K, Murata S, Tanaka K (2012) β5t-containing thymoproteasome: specific expression in thymic cortical epithelial cells and role in positive selection of CD8+ T cells. Curr Opin Immunol 24:92–98

    PubMed  CAS  Google Scholar 

  • Thompson PK, Zúñiga-Pflücker JC (2011) On becoming a T cell, a convergence of factors kick it up a Notch along the way. Semin Immunol 23:350–359

    PubMed  CAS  Google Scholar 

  • Tousaint-Demylle D, Scheiff JM, Haumount S (1990) Thymic nurse cells: morphological study during their isolation from murine thymus. Cell Tissue Res 261:115–123

    Google Scholar 

  • van de Wijngaert FP, Rademakers LH, Schuurman HJ, de Weger RA, Kater L (1983) Identification and in situ localization of the “thymic nurse cell” in man. J Immunol 130:2348–2351

    PubMed  Google Scholar 

  • van Ewijk W, Shores EW, Singer A (1994) Crosstalk in the mouse thymus. Immunol Today 15:214–217

    PubMed  Google Scholar 

  • Viret C, Lamare C, Guiraud M, Fazilleau N, Bour A, Malissen B, Carrier A, Guerder S (2011a) Thymus-specific serine protease contributes to the diversification of the functional endogenous CD4 T cell receptor repertoire. J Exp Med 208:3–11

    PubMed  CAS  Google Scholar 

  • Viret C, Leung-Theung-Long S, Serre L, Lamare C, Vignali DA, Malissen B, Carrier A, Guerder S (2011b) Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice. J Clin Invest 121:1810–1821

    PubMed  CAS  Google Scholar 

  • von Freeden-Jeffry U, Solvason N, Howard M, Murray R (1997) The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity 7:147–154

    Google Scholar 

  • Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, Kawamoto H (2008) Adult T-cell progenitors retain myeloid potential. Nature 452:768–772

    PubMed  CAS  Google Scholar 

  • Weiner L, Han R, Scicchitano BM, Li J, Hasegawa K, Grossi M, Lee D, Brissette JL (2007) Dedicated epithelial recipient cells determine pigmentation patterns. Cell 130:932–942

    PubMed  CAS  Google Scholar 

  • Wekerle H, Ketelson UP (1980) Thymic nurse cells. Ia-bearing epithelium involved in T-lymphocyte differentiation? Nature 283:402–404

    PubMed  CAS  Google Scholar 

  • Wekerle H, Ketelson UP, Ernst M (1980) Thymic nurse cells. lymphoepithelial cell complexes in murine thymuses: morphological and serological characterization. J Exp Med 151:925–944

    PubMed  CAS  Google Scholar 

  • Wick G, Rieker T, Penninger J (1991) Thymic nurse cells: a site for positive selection and differentiation of T cells. Curr Top Microbiol Immunol 173:99–105

    PubMed  CAS  Google Scholar 

  • Wilson A, MacDonald HR, Radtke F (2001) Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 194:1003–1012

    PubMed  CAS  Google Scholar 

  • Wolfer A, Wilson A, Nemir M, MacDonald HR, Radtke F (2002) Inactivation of Notch1 impairs VDJ beta rearrangement and allows pre-TCR-independent survival of early alpha beta lineage thymocytes. Immunity 16:869–879

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Saito T (2007) Molecular basis for pre-TCR-mediated autonomous signaling. Trends Immunol 28:39–43

    PubMed  CAS  Google Scholar 

  • Yang SJ, Ahn S, Park CS, Holmes KL, Westrup J, Chang CH, Kim MG (2006) The quantitative assessment of MHC II on thymic epithelium: implications in cortical thymocyte development. Int Immunol 18:729–739

    PubMed  CAS  Google Scholar 

  • Zamisch M, Moore-Scott B, Su D, Lucas PJ, Manley N, Richie ER (2005) Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J Immunol 174:60–67

    PubMed  CAS  Google Scholar 

  • Zou D, Silvius D, Davenport J, Grifone R, Maire P, Xu PX (2006) Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev Biol 293:499–512

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from MEXT and JSPS (grant numbers 23249025 and 24111004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousuke Takahama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takada, K., Ohigashi, I., Kasai, M., Nakase, H., Takahama, Y. (2013). Development and Function of Cortical Thymic Epithelial Cells. In: Boehm, T., Takahama, Y. (eds) Thymic Development and Selection of T Lymphocytes. Current Topics in Microbiology and Immunology, vol 373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_322

Download citation

Publish with us

Policies and ethics