Skip to main content

Cellular Plasticity During Vertebrate Appendage Regeneration

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 367))

Abstract

Many vertebrates have the amazing ability to regenerate all or portions of appendages including limbs, tails, fins, and digits. Unfortunately, our understanding of the cellular and molecular basis of appendage regeneration is severely lacking. However, recent technological advances that facilitate the tracking of cell lineages in vivo through space and time are allowing us to address the unknowns of regeneration, such as characterizing the cells that contribute to regeneration and identifying the tissues these cells differentiate into during regeneration. Here, we describe the experiments and the surprisingly uniform results that have emerged across diverse vertebrate species when specific cell lineages have been tracked during vertebrate appendage regeneration. These investigations show that vertebrates, from zebrafish to salamanders to mammals, utilize a limited amount of cellular plasticity to regenerate missing appendages. The universal approach to appendage regeneration is not to generate pluripotent cells that then differentiate into the new organ, but instead to generate lineage-restricted cells that are propagated in a progenitor-like state. Lessons learned from these natural cases of complex tissue regeneration might inform regenerative medicine on the best approach for re-growing complex tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akimenko M-A, Marí-Beffa M, Becerra J, Géraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226:190–201

    PubMed  Google Scholar 

  • Anchelin M, Murcia L, Alcaraz-Pérez F, García-Navarro EM, Cayuela ML (2011) Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS ONE 6:e16955

    PubMed  CAS  Google Scholar 

  • Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    PubMed  CAS  Google Scholar 

  • Azevedo AS, Grotek B, Jacinto A, Weidinger G, Saúde L (2011) The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PLoS ONE 6:e22820

    PubMed  CAS  Google Scholar 

  • Bischler V (1926) L’influence du squelette de Dans la régénération, et les potentialités des plongeurs Territoires du membre chez Triton cristatus. RSZ 33:431–560

    Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376:768–771

    PubMed  CAS  Google Scholar 

  • Blum N, Begemann G (2012) Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development 139:107–116

    PubMed  CAS  Google Scholar 

  • Borgens RB (1982) Mice regrow the tips of their foretoes. Science 217:747–750

    PubMed  CAS  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    PubMed  CAS  Google Scholar 

  • Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463

    PubMed  CAS  Google Scholar 

  • Briggs R, Signoret J, Humphrey RR (1964) Transplantation of nuclei of various cell types from neurulae of the Mexican axolotl (Ambystoma mexicanum). Dev Biol 10:233–246

    PubMed  CAS  Google Scholar 

  • Burgess AM (1967) The developmental potentialities of regeneration blastema cell nuclei as determined by nuclear transplantation. J Embryol Exp Morphol 18:27–41

    PubMed  CAS  Google Scholar 

  • Butler EG (1933) The effects of X-radiation on the regeneration of the fore limb of Amblystoma larvae. J Exp Zool 65:271–315

    Google Scholar 

  • Butler EG (1935) Studies on limb regeneration in X-rayed amblystoma larvae. Anat Rec 62:295–307

    Google Scholar 

  • Butler EG, O’Brien JP (1942) Effects of localized x-radiation on regeneration of the urodele limb. Anat Rec 84:407–413

    Google Scholar 

  • Cameron JA, Hilgers AR, Hinterberger TJ (1986) Evidence that reserve cells are a source of regenerated adult newt muscle in vitro. Nature 321:607–610. doi:10.1038/321607a0. Accesed 5 June 1986

    Google Scholar 

  • Casanova JC, Sanz-Ezquerro JJ (2007) Digit morphogenesis: is the tip different? Dev Growth Differ 49:479–491

    PubMed  CAS  Google Scholar 

  • Casco-Robles MM, Yamada S, Miura T, Nakamura K, Haynes T, Maki N, Del Rio-Tsonis K, Tsonis PA, Chiba C (2011) Expressing exogenous genes in newts by transgenesis. Nat Protoc 6:600–608

    PubMed  CAS  Google Scholar 

  • Chablais F, Jazwinska A (2010) IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 137:871–879

    PubMed  CAS  Google Scholar 

  • Chalkey D (1954) A quantitative histological analysis of forelimb regeneration in Triturus viridescens. J Morphol 94:21–70

    Google Scholar 

  • Chen Y, Lin G, Slack JMW (2006) Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development 133:2303–2313

    PubMed  CAS  Google Scholar 

  • Cox PG (1969) Some aspects of tail regeneration in the lizard, Anolis carolinensis. II the role of the peripheral nerves. J Exp Zool 171:151–159

    Google Scholar 

  • Csete M, Walikonis J, Slawny N, Wei Y, Korsnes S, Doyle JC, Wold B (2001) Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 189:189–196

    PubMed  CAS  Google Scholar 

  • Dasgupta S (1970) Developmental potentialities of blastema cell nuclei of the Mexican Axolotl. J Exp Zool 175:141–147

    PubMed  CAS  Google Scholar 

  • Dinsmore C (1991) A history of regeneration research: milestones in the evolution of a science. Press Syndicate of the University of Cambridge, New York

    Google Scholar 

  • Dufourcq P, Vriz S (2006) The chemokine SDF-1 regulates blastema formation during zebrafish fin regeneration. Dev Genes Evol 216:635–639

    PubMed  CAS  Google Scholar 

  • Dunis DA, Namenwirth M (1977) The role of grafted skin in the regeneration of x-irradiated axolotl limbs. Dev Biol 56:97–109

    PubMed  CAS  Google Scholar 

  • Echeverri K, Clarke JD, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236:151–164

    PubMed  CAS  Google Scholar 

  • Echeverri K, Tanaka EM (2002) Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298:1993–1996

    PubMed  CAS  Google Scholar 

  • Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K (2011) Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 350:301–310

    PubMed  CAS  Google Scholar 

  • Foret JE (1970) Regeneration of larval urodele limbs containing homoplastic transplants. J Exp Zool 175:297–321

    PubMed  CAS  Google Scholar 

  • Gargioli C, Slack JMW (2004) Cell lineage tracing during Xenopus tail regeneration. Development 131:2669–2679

    PubMed  CAS  Google Scholar 

  • Géraudie J, Monnot MJ, Ridet A, Thorogood P, Ferretti P (1993) Is exogenous retinoic acid necessary to alter positional information during regeneration of the fin in zebrafish? Prog Clin Biol Res 383B:803–814

    PubMed  Google Scholar 

  • Goss R (1969) Principles of regeneration. Academic Press, New York

    Google Scholar 

  • Goss RJ (1956a) Regenerative inhibition following limb amputation and immediate insertion into the body cavity. Anat Rec 126:15–27

    PubMed  CAS  Google Scholar 

  • Goss RJ (1956b) The relation of bone to the histogenesis of cartilage in regenerating forelimbs and tails of adult Triturus viridescens. J Morphol 98:89–123

    Google Scholar 

  • Goss RJ, Stagg MW (1957) The regeneration of fins and fin rays in Fundulus heteroclitus. J Exp Zool 136:487–507

    PubMed  CAS  Google Scholar 

  • Gros J, Manceau M, Thomé V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    PubMed  CAS  Google Scholar 

  • Gurdon JB, Byrne JA (2003) The first half-century of nuclear transplantation. PNAS 100:8048–8052

    PubMed  CAS  Google Scholar 

  • Han M, Yang X, Farrington JE, Muneoka K (2003) Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development 130:5123–5132

    PubMed  CAS  Google Scholar 

  • Han M, Yang X, Lee J, Allan CH, Muneoka K (2008) Development and regeneration of the neonatal digit tip in mice. Dev Biol 315:125–135

    PubMed  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S, Sun C-W, Meissner A, Cassady JP, Beard C, Brambrink T, Wu L-C, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    PubMed  CAS  Google Scholar 

  • Hay E, Fischmann D (1961) Origin of the blastema in regenerating limbs of the newt Triturus viridescens. Dev Biol 3:26–59

    PubMed  CAS  Google Scholar 

  • Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Dev Biol 1:555–585

    Google Scholar 

  • Hayashi K, Ozawa E (1995) Myogenic cell migration from somites is induced by tissue contact with medial region of the presumptive limb mesoderm in chick embryos. Development 121:661–669

    PubMed  CAS  Google Scholar 

  • Hertwig G (1927) Experimentelle untersuchungen uber die Herkunft des Regenerations- blastemas. Anat Anz 63:90–96

    Google Scholar 

  • Hirata A, Gardiner DM, Satoh A (2010) Dermal fibroblasts contribute to multiple tissues in the accessory limb model. Dev Growth Differ 52:343–350

    PubMed  Google Scholar 

  • Holder N (1989) Organization of connective tissue patterns by dermal fibroblasts in the regenerating axolotl limb. Development 105:585–593

    PubMed  CAS  Google Scholar 

  • Illingworth CM (1974) Trapped fingers and amputated finger tips in children. J Pediatr Surg 9:853–858

    PubMed  CAS  Google Scholar 

  • Inoue S, Shimoda Y, Fujikura K (1988) Cartilage differentiation in the bone-removed and amputated Xenopus forelimb with or without innervation. In: Regeneration and development: the proceedings of the 6th international marcus singer symposium. Okada Pub Co, Maebashi, pp 271–285

    Google Scholar 

  • Itou J, Kawakami H, Burgoyne T, Kawakami Y (2012) Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biol Open 1:739–746

    Google Scholar 

  • Joe AWB, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FMV (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    PubMed  CAS  Google Scholar 

  • Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766

    PubMed  CAS  Google Scholar 

  • Khattak S, Richter T, Tanaka EM (2009) Generation of transgenic axolotls (Ambystoma mexicanum). Cold Spring Harb Protoc 2009, pdb.prot5264

    Google Scholar 

  • Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S, Weidinger G (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20:713–724

    PubMed  CAS  Google Scholar 

  • Korneluk RG, Liversage RA (1984) Effects of radius–ulna removal on forelimb regeneration in Xenopus laevis froglets. J Embryol Exp Morphol 82:9–24

    PubMed  CAS  Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    PubMed  CAS  Google Scholar 

  • Kumar A, Velloso CP, Imokawa Y, Brockes JP (2000) Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol 218:125–136

    PubMed  CAS  Google Scholar 

  • Kumar A, Velloso CP, Imokawa Y, Brockes JP (2004) The regenerative plasticity of isolated urodele myofibers and its dependence on MSX1. PLoS Biol 2:E218

    PubMed  Google Scholar 

  • Laube F, Heister M, Scholz C, Borchardt T, Braun T (2006) Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119:4719–4729

    PubMed  CAS  Google Scholar 

  • Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19:628–633

    PubMed  Google Scholar 

  • Lehoczky JA, Robert B, Tabin CJ (2011) Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc Natl Acad Sci U S A 108:20609–20614

    PubMed  CAS  Google Scholar 

  • Lheureux E (1983) The origin of tissues in the X-irradiated regenerating limb of the newt. In: Liss A (ed) In limb development and regeneration. Progress in clinical and biological research. Wiley-Liss, New York, pp 455–465

    Google Scholar 

  • Liversage R (1991) Origin of the blastema cells in epimorphic regeneration of urodele appendages: A history of ideas. In: Dinsmore CE (ed) A history of regeneration research: milestones in the evolution of science. Cambridge University Press, Cambridge, pp 179–199

    Google Scholar 

  • Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A 90:7230–7234

    PubMed  CAS  Google Scholar 

  • Lounev VY, Ramachandran R, Wosczyna MN, Yamamoto M, Maidment ADA, Shore EM, Glaser DL, Goldhamer DJ, Kaplan FS (2009) Identification of progenitor cells that contribute to heterotopic skeletogenesis. J Bone Joint Surg Am 91:652–663

    PubMed  Google Scholar 

  • Maden M (1977) The role of Schwann cells in paradoxical regeneration in the axolotl. J Embryol Exp Morphol 41:1–13

    PubMed  CAS  Google Scholar 

  • Manner HW (1953) The origin of the blastema and of new tissues in regenerating forelimbs of adult Triturus viridescens viridescens (Rafinesque). J Exp Zool 122:229–257

    Google Scholar 

  • McHedlishvili L, Epperlein HH, Telzerow A, Tanaka EM (2007) A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134:2083–2093

    PubMed  CAS  Google Scholar 

  • McHedlishvili L, Mazurov V, Grassme KS, Goehler K, Robl B, Tazaki A, Roensch K, Duemmler A, Tanaka EM (2012) Reconstitution of the central and peripheral nervous system during salamander tail regeneration. Proc Natl Acad Sci 109(34):E2258–2266

    Google Scholar 

  • McLean KE, Vickaryous MK (2011) A novel amniote model of epimorphic regeneration: the leopard gecko Eublepharis macularius. BMC Dev Biol 11:50

    PubMed  Google Scholar 

  • Morrison JI, Borg P, Simon A (2010) Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB J 24:750–756

    PubMed  CAS  Google Scholar 

  • Morrison JI, Lööf S, He P, Simon A (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440

    PubMed  CAS  Google Scholar 

  • Muneoka K, Fox WF, Bryant SV (1986) Cellular contribution from dermis and cartilage to the regenerating limb blastema in axolotls. Dev Biol 116:256–260

    PubMed  CAS  Google Scholar 

  • Murciano C, Pérez-Claros J, Smith A, Avaron F, Fernández TD, Durán I, Ruiz-Sánchez J, García F, Becerra J, Akimenko M-A, Marí-Beffa M (2007) Position dependence of hemiray morphogenesis during tail fin regeneration in Danio rerio. Dev Biol 312:272–283

    PubMed  CAS  Google Scholar 

  • Namenwirth M (1974) The inheritance of cell differentiation during limb regeneration in the axolotl. Dev Biol 41(1):42–56

    Google Scholar 

  • Neufeld DA, Zhao W (1993) Phalangeal regrowth in rodents: postamputational bone regrowth depends upon the level of amputation. Prog Clin Biol Res 383A:243–252

    PubMed  CAS  Google Scholar 

  • Neufeld DA, Zhao W (1995) Bone regrowth after digit tip amputation in mice is equivalent in adults and neonates. Wound Repair Regen 3:461–466

    PubMed  CAS  Google Scholar 

  • Oberpriller J (1967) A radioautographic analysis of the potency of blastemal cells in the adult newt, Diemictylus viridescens. Growth 31:251–296

    PubMed  CAS  Google Scholar 

  • Patrick J, Briggs R (1964) Fate of cartilage cells in limb regeneration in the axolotl (Ambystoma mexicanum). Experientia 20:431–432

    PubMed  CAS  Google Scholar 

  • Paylor B, Natarajan A, Zhang R-H, Rossi F (2011) Nonmyogenic cells in skeletal muscle regeneration. Curr Top Dev Biol 96:139–165

    PubMed  CAS  Google Scholar 

  • Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT (2000) Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 222:347–358

    PubMed  CAS  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    PubMed  CAS  Google Scholar 

  • Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL (2011) Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476:409–413

    PubMed  CAS  Google Scholar 

  • Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305

    PubMed  CAS  Google Scholar 

  • Rodrigues AMC, Christen B, Martí M, Izpisúa Belmonte JC (2012) Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae. BMC Dev Biol 12:9

    PubMed  Google Scholar 

  • Rossi CA, Pozzobon M, Ditadi A, Archacka K, Gastaldello A, Sanna M, Franzin C, Malerba A, Milan G, Cananzi M, Schiaffino S, Campanella M, Vettor R, De Coppi P (2010) Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity. PLoS ONE 5:e8523

    PubMed  Google Scholar 

  • Ryffel GU, Werdien D, Turan G, Gerhards A, Goosses S, Senkel S (2003) Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res 31:e44

    PubMed  Google Scholar 

  • Said S, Parke W, Neufeld DA (2004) Vascular supplies differ in regenerating and nonregenerating amputated rodent digits. Anat Rec A Discov Mol Cell Evol Biol 278:443–449

    PubMed  Google Scholar 

  • Seifert AW, Monaghan JR, Voss SR, Maden M (2012) Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS ONE 7:e32875

    PubMed  CAS  Google Scholar 

  • Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404

    PubMed  CAS  Google Scholar 

  • Signoret J, Briggs R, Humphrey RR (1962) Nuclear transplantation in the axolotl. Dev Biol 4:134–164

    PubMed  CAS  Google Scholar 

  • Singer M, Salpeter M (1961) Regeneration in vertebrates: the role of the wound epithelium. In: Zarrow MX, Beevers H (eds) Growth in living systems. Basic Books, Inc., New York, pp 277–311

    Google Scholar 

  • Singer M, Weckesser EC, Géraudie J, Maier CE, Singer J (1987) Open finger tip healing and replacement after distal amputation in rhesus monkey with comparison to limb regeneration in lower vertebrates. Anat Embryol 177:29–36

    PubMed  CAS  Google Scholar 

  • Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22:879–886

    PubMed  CAS  Google Scholar 

  • Sobkow L, Epperlein H–H, Herklotz S, Straube WL, Tanaka EM (2006) A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol 290:386–397

    PubMed  CAS  Google Scholar 

  • Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simões M, Leon J, Roehl H, Cancela ML, Jacinto A (2011) Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138:3897–3905

    PubMed  CAS  Google Scholar 

  • Starkey JD, Yamamoto M, Yamamoto S, Goldhamer DJ (2011) Skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt nonmyogenic fates. J Histochem Cytochem 59:33–46

    PubMed  CAS  Google Scholar 

  • Steen TP (1968) Stability of chondrocyte differentiation and contribution of muscle to cartilage during limb regeneration in the axolotl (Siredon mexicanum). J Exp Zool 167:49–78

    PubMed  CAS  Google Scholar 

  • Steen TP (1970) Origin and differentiative capacities of cells in the blastema of the regenerating salamander limb

    CAS  Google Scholar 

  • Stewart S, Stankunas K (2012) Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev Biol 365(2):339–49

    Google Scholar 

  • Stocum DL (1984) The urodele limb regeneration blastema, determination and organization of the morphogenetic field. Differentiation 27:13–28

    PubMed  CAS  Google Scholar 

  • Stocum DL, Cameron JA (2011) Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 240:943–968

    PubMed  Google Scholar 

  • Thornton C (1938a) The histogenesis of muscle in the regenerating forelimb of larval Amblystoma punctatum. J Morphol 62:17–47

    Google Scholar 

  • Thornton CS (1938b) The histogenesis of the regenerating fore limb of larval Amblystoma after exarticulation of the humerus. J Morphol 62:219–241

    Google Scholar 

  • Thornton CS (1942) Studies on the origin of the regeneration blastema in Triturus viridescens. J Exp Zool 89:375–389

    Google Scholar 

  • Tsai SB, Tucci V, Uchiyama J, Fabian NJ, Lin MC, Bayliss PE, Neuberg DS, Zhdanova IV, Kishi S (2007) Differential effects of genotoxic stress on both concurrent body growth and gradual senescence in the adult zebrafish. Aging Cell 6:209–224

    PubMed  CAS  Google Scholar 

  • Tsonis PA, Fox TP (2009) Regeneration according to Spallanzani. Dev Dyn 238:2357–2363

    PubMed  Google Scholar 

  • Tu S, Johnson SL (2011) Fate Restriction in the growing and regenerating zebrafish fin. Dev Cell 20:725–732

    PubMed  CAS  Google Scholar 

  • Tuchkova SI (1973) Study of the potencies of the regenerated blastoma by transplantation and autoradiographic methods. Dokl Akad Nauk SSSR 213:1217–1220

    PubMed  Google Scholar 

  • Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152

    PubMed  CAS  Google Scholar 

  • Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Tsuchida K, Yamamoto H, Fukada S (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124:3654–3664

    PubMed  CAS  Google Scholar 

  • Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N (2002) Generation of different fates from multipotent muscle stem cells. Development 129:2987–2995

    PubMed  CAS  Google Scholar 

  • Wallace BM, Wallace H (1973) Participation of grafted nerves in amphibian limb regeneration. J Embryol Exp Morphol 29:559–570

    PubMed  CAS  Google Scholar 

  • Wallace H (1972) The components of regrowing nerves which support the regeneration of irradiated salamander limbs. J Embryol Exp Morphol 28:419–435

    PubMed  CAS  Google Scholar 

  • Wallace H (1981) Vertebrate limb regeneration. Wiley, Chichester

    Google Scholar 

  • White JA, Boffa MB, Jones B, Petkovich M (1994) A zebrafish retinoic acid receptor expressed in the regenerating caudal fin. Development 120:1861–1872

    PubMed  CAS  Google Scholar 

  • Whitehead GG, Makino S, Lien C-L, Keating MT (2005) fgf20 is essential for initiating zebrafish fin regeneration. Science 310:1957–1960

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James R. Monaghan or Malcolm Maden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monaghan, J.R., Maden, M. (2012). Cellular Plasticity During Vertebrate Appendage Regeneration. In: Heber-Katz, E., Stocum, D. (eds) New Perspectives in Regeneration. Current Topics in Microbiology and Immunology, vol 367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_288

Download citation

Publish with us

Policies and ethics