Skip to main content

Mechanisms of Vessel Regression: Toward an Understanding of the Resolution of Angiogenesis

  • Chapter
  • First Online:
Book cover New Perspectives in Regeneration

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 367))

Abstract

Physiological angiogenesis refers to a naturally occurring process of blood vessel growth and regression, and it occurs as an integral component of tissue repair and regeneration. During wound healing, sprouting and branching results in an extensive yet immature and leaky neovascular network that ultimately resolves by systematic pruning of extraneous vessels to yield a stable, well-perfused vascular network ideally suited to maintain tissue homeostasis. While the molecular mechanisms of blood vessel growth have been explored in numerous cell and animal models in remarkable detail, the endogenous factors that prevent further angiogenesis and control vessel regression have not received much attention and are largely unknown. In this review, we introduce the relevant literature from various disciplines to fill the gaps in the current limited understanding of the major molecular and biomechanical inducers of vascular regression. The processes are described in the context of endothelial cell biology during wound healing: hypoxia-driven activation and sprouting followed by apoptosis or maturation of cells comprising the vasculature. We discuss and integrate the likely roles of a variety of endogenous factors, including oxygen availability, vessel perfusion and shear stress, intracellular negative feedback mechanisms (Spry2, vasohibin), soluble cytokines (CXCL10), matrix-binding proteins (TSP, PEDF), protein cleavage products (angiostatin, vasostatin), matrix-derived anti-angiogenic peptides (endostatin, arresten, canstatin, tumstatin), and the biomechanical properties of remodeling the extra-cellular matrix itself. These factors aid in the spatio-temporal control of blood vessel pruning by inducing specific anti-angiogenic signaling pathways in activated endothelial cells, pathways which compete with pro-angiogenic and maturation signals in the resolving wound. Gaining more insight into these mechanisms is bound to shed light on unresolved questions regarding scar formation, tissue regeneration, and increase our understanding of the many diseases with angiogenic phenotypes, especially cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73:1983–1992

    Article  PubMed  CAS  Google Scholar 

  • Aurora AB, Biyashev D, Mirochnik Y, Zaichuk TA, Sanchez-Martinez C, Renault MA, Losordo D, Volpert OV (2010) NF-kappaB balances vascular regression and angiogenesis via chromatin remodeling and NFAT displacement. Blood 116:475–484

    Article  PubMed  CAS  Google Scholar 

  • Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D, McDonald DM (2006) Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol 290:H547–H559

    Article  PubMed  CAS  Google Scholar 

  • Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153:347–358

    Article  PubMed  CAS  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  • Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    PubMed  CAS  Google Scholar 

  • Bhadada SV, Goyal BR, Patel MM (2011) Angiogenic targets for potential disorders. Fundam Clin Pharmacol 25:29–47

    Article  PubMed  CAS  Google Scholar 

  • Bloor CM (2005) Angiogenesis during exercise and training. Angiogenesis 8:263–271

    Article  PubMed  Google Scholar 

  • Bluff JE, O’Ceallaigh S, O’Kane S, Ferguson MW, Ireland G (2006) The microcirculation in acute murine cutaneous incisional wounds shows a spatial and temporal variation in the functionality of vessels. Wound Repair Regen 14:434–442

    Article  PubMed  Google Scholar 

  • Bodnar RJ, Yates CC, Rodgers ME, Du X, Wells A (2009) IP-10 induces dissociation of newly formed blood vessels. J Cell Sci 122:2064–2077

    Article  PubMed  CAS  Google Scholar 

  • Bornstein P (2009) Thrombospondins function as regulators of angiogenesis. J Cell Commun Signal 3:189–200

    Google Scholar 

  • Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D (2004) Extra-cellular matrix in vascular networks. Cell Prolif 37:207–220

    Article  PubMed  CAS  Google Scholar 

  • Broadhead ML, Becerra SP, Choong PF, Dass CR (2010) The applied biochemistry of PEDF and implications for tissue homeostasis. Growth Factors 28:280–285

    Article  PubMed  CAS  Google Scholar 

  • Cabrita MA, Christofori G (2008) Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 11:53–62

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Wu L, Qi X, Li Calzi S, Caballero S, Shaw L, Ruan Q, Grant MB, Boulton ME (2011) PEDF regulates vascular permeability by a gamma-secretase-mediated pathway. PLoS ONE 6:e21164

    Article  PubMed  CAS  Google Scholar 

  • Califano JP, Reinhart-King CA (2010) Exogenous and endogenous force regulation of endothelial cell behavior. J Biomech 43:79–86

    Article  PubMed  Google Scholar 

  • Cao Y, Xue L (2004) Angiostatin. Semin Thromb Hemost 30:83–93

    Article  PubMed  CAS  Google Scholar 

  • Chappell JC, Wiley DM, Bautch VL (2012) How blood vessel networks are made and measured. Cell Tiss Org 195:94–107

    Article  Google Scholar 

  • Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264

    Article  PubMed  Google Scholar 

  • Cheng C, Haasdijk R, Tempel D, van de Kamp EH, Herpers R, Bos F, Den Dekker WK, Blonden LA, de Jong R, Burgisser PE, Chrifi I, Biessen EA, Dimmeler S, Schulte-Merker S, Duckers HJ (2012) Endothelial cell-specific FGD5 involvement in vascular pruning defines neovessel fate in mice. Circulation 125:3142–3159

    Article  PubMed  Google Scholar 

  • Cheresh DA, Stupack DG (2008) Regulation of angiogenesis: apoptotic cues from the ECM. Oncogene 27:6285–6298

    Article  PubMed  CAS  Google Scholar 

  • Cuevas I, Boudreau N (2009) Managing tumor angiogenesis: lessons from VEGF-resistant tumors and wounds. Adv Cancer Res 103:25–42

    Article  PubMed  CAS  Google Scholar 

  • Davis GE, Saunders WB (2006) Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Investig Dermatol Symp Proc 11:44–56

    Article  PubMed  CAS  Google Scholar 

  • Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    Article  PubMed  CAS  Google Scholar 

  • Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler S, Zeiher AM (2000) Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 87:434–439

    Article  PubMed  CAS  Google Scholar 

  • Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47:149–161

    PubMed  CAS  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Eble JA, Niland S (2009) The extracellular matrix of blood vessels. Curr Pharm Des 15:1385–1400

    Article  PubMed  CAS  Google Scholar 

  • Egginton S, Gaffney E (2010) Tissue capillary supply–it’s quality not quantity that counts! Exp Physiol 95:971–979

    Article  PubMed  Google Scholar 

  • Eliceiri BP, Klemke R, Stromblad S, Cheresh DA (1998) Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140:1255–1263

    Article  PubMed  CAS  Google Scholar 

  • Eming SA, Krieg T (2006) Molecular mechanisms of VEGF-A action during tissue repair. J Investig Dermatol Symp Proc 11:79–86

    Article  PubMed  CAS  Google Scholar 

  • Eming SA, Brachvogel B, Odorisio T, Koch M (2007) Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 42:115–170

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358

    Article  PubMed  CAS  Google Scholar 

  • Fukumura D, Jain RK (2008) Imaging angiogenesis and the microenvironment. Apmis 116:695–715

    Article  PubMed  CAS  Google Scholar 

  • Geudens I, Gerhardt H (2011) Coordinating cell behaviour during blood vessel formation. Development 138:4569–4583

    Article  PubMed  CAS  Google Scholar 

  • Ghajar CM, George SC, Putnam AJ (2008) Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 18:251–278

    Article  PubMed  CAS  Google Scholar 

  • Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  PubMed  CAS  Google Scholar 

  • Gosain A, Matthies AM, Dovi JV, Barbul A, Gamelli RL, DiPietro LA (2006) Exogenous pro-angiogenic stimuli cannot prevent physiologic vessel regression. J Surg Res 135:218–225

    Article  PubMed  CAS  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  PubMed  CAS  Google Scholar 

  • Hellberg C, Ostman A, Heldin CH (2010) PDGF and vessel maturation. Recent Results Cancer Res 180:103–114

    Article  PubMed  CAS  Google Scholar 

  • Hickey MM, Simon MC (2006) Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol 76:217–257

    Article  PubMed  CAS  Google Scholar 

  • Ho TC, Chen SL, Yang YC, Liao CL, Cheng HC, Tsao YP (2007) PEDF induces p53-mediated apoptosis through PPAR gamma signaling in human umbilical vein endothelial cells. Cardiovasc Res 76:213–223

    Article  PubMed  CAS  Google Scholar 

  • Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  PubMed  CAS  Google Scholar 

  • Hosomichi J, Yasui N, Koide T, Soma K, Morita I (2005) Involvement of the collagen I-binding motif in the anti-angiogenic activity of pigment epithelium-derived factor. Biochem Biophys Res Commun 335:756–761

    Article  PubMed  CAS  Google Scholar 

  • Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36:2–27

    Article  PubMed  CAS  Google Scholar 

  • Hurley JR, Balaji S, Narmoneva DA (2010) Complex temporal regulation of capillary morphogenesis by fibroblasts. Am J Physiol Cell Physiol 299:C444–C453

    Article  PubMed  CAS  Google Scholar 

  • Im E, Kazlauskas A (2006) New insights regarding vessel regression. Cell Cycle 5:2057–2059

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  • Kniazeva E, Putnam AJ (2009) Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am J Physiol Cell Physiol 297:C179–C187

    Article  PubMed  CAS  Google Scholar 

  • Konson A, Pradeep S, D’Acunto CW, Seger R (2011) Pigment epithelium-derived factor and its phosphomimetic mutant induce JNK-dependent apoptosis and p38-mediated migration arrest. J Biol Chem 286:3540–3551

    Article  PubMed  CAS  Google Scholar 

  • Korff T, Kimmina S, Martiny-Baron G, Augustin HG (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. Faseb J 15:447–457

    Article  PubMed  CAS  Google Scholar 

  • Korn C, Augustin HG (2012) Born to die: blood vessel regression research coming of age. Circulation 125:3063–3065

    Article  PubMed  Google Scholar 

  • Kyriakides TR, Maclauchlan S (2009) The role of thrombospondins in wound healing, ischemia, and the foreign body reaction. J Cell Commun Signal 3:215–225

    Article  PubMed  Google Scholar 

  • Lange-Asschenfeldt B, Velasco P, Streit M, Hawighorst T, Pike SE, Tosato G, Detmar M (2001) The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses. J Invest Dermatol 117:1036–1041

    Article  PubMed  CAS  Google Scholar 

  • Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197:1537–1549

    Article  PubMed  CAS  Google Scholar 

  • Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med 2:a006627

    PubMed  Google Scholar 

  • London NR, Whitehead KJ, Li DY (2009) Endogenous endothelial cell signaling systems maintain vascular stability. Angiogenesis 12:149–158

    Article  PubMed  CAS  Google Scholar 

  • Maclauchlan S, Skokos EA, Agah A, Zeng J, Tian W, Davidson JM, Bornstein P, Kyriakides TR (2009) Enhanced angiogenesis and reduced contraction in thrombospondin-2-null wounds is associated with increased levels of matrix metalloproteinases-2 and -9, and soluble VEGF. J Histochem Cytochem 57:301–313

    Article  PubMed  CAS  Google Scholar 

  • Mirochnik Y, Kwiatek A, Volpert OV (2008) Thrombospondin and apoptosis: molecular mechanisms and use for design of complementation treatments. Curr Drug Targets 9:851–862

    Article  PubMed  CAS  Google Scholar 

  • Modlich U, Kaup FJ, Augustin HG (1996) Cyclic angiogenesis and blood vessel regression in the ovary: blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab Invest 74:771–780

    PubMed  CAS  Google Scholar 

  • Mosher DF, Adams JC (2012) Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol 31:155–161

    Article  PubMed  CAS  Google Scholar 

  • Mundel TM, Kalluri R (2007) Type IV collagen-derived angiogenesis inhibitors. Microvasc Res 74:85–89

    Article  PubMed  CAS  Google Scholar 

  • Murakami M (2012) Signaling required for blood vessel maintenance: molecular basis and pathological manifestations. Int J Vasc Med 2012:293641

    PubMed  Google Scholar 

  • Murakami M, Simons M (2009) Regulation of vascular integrity. J Mol Med (Berl) 87:571–582

    Article  Google Scholar 

  • Naldini A, Pucci A, Bernini C, Carraro F (2003) Regulation of angiogenesis by Th1- and Th2-type cytokines. Curr Pharm Des 9:511–519

    Article  PubMed  CAS  Google Scholar 

  • Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152:1445–1452

    PubMed  CAS  Google Scholar 

  • Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979

    Article  PubMed  CAS  Google Scholar 

  • Occleston NL, Metcalfe AD, Boanas A, Burgoyne NJ, Nield K, O’Kane S, Ferguson MW (2010) Therapeutic improvement of scarring: mechanisms of scarless and scar-forming healing and approaches to the discovery of new treatments. Dermatol Res Pract

    Google Scholar 

  • Olfert IM, Birot O (2011) Importance of anti-angiogenic factors in the regulation of skeletal muscle angiogenesis. Microcirculation 18:316–330

    Article  PubMed  CAS  Google Scholar 

  • Owen MR, Alarcon T, Maini PK, Byrne HM (2009) Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol 58:689–721

    Article  PubMed  Google Scholar 

  • Phelps EA, Garcia AJ (2010) Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol 21:704–709

    Article  PubMed  CAS  Google Scholar 

  • Pollina EA, Legesse-Miller A, Haley EM, Goodpaster T, Randolph-Habecker J, Coller HA (2008) Regulating the angiogenic balance in tissues: a potential role for the proliferative state of fibroblasts. Cell Cycle 7:2056–2070

    Article  PubMed  CAS  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Nico B, Crivellato E (2009) Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 12:101–111

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PG, Felix FN, Woodley DT, Shim EK (2008) The role of oxygen in wound healing: a review of the literature. Dermatol Surg 34:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Rogers PA (1996) Structure and function of endometrial blood vessels. Hum Reprod Update 2:57–62

    Article  PubMed  CAS  Google Scholar 

  • Sakamaki K (2004) Regulation of endothelial cell death and its role in angiogenesis and vascular regression. Curr Neurovasc Res 1:305–315

    Article  PubMed  CAS  Google Scholar 

  • Sato Y (2011) Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy. Cancer Sci 102:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Sonoda H (2007) The vasohibin family: a negative regulatory system of angiogenesis genetically programmed in endothelial cells. Arterioscler Thromb Vasc Biol 27:37–41

    Article  PubMed  CAS  Google Scholar 

  • Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638

    Article  PubMed  CAS  Google Scholar 

  • Schramm JC, Dinh T, Veves A (2006) Microvascular changes in the diabetic foot. Int J Low Extrem Wounds 5:149–159

    Article  PubMed  Google Scholar 

  • Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM (2010) Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 19:134–148

    Article  Google Scholar 

  • Semenza GL (2010) Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol 30:648–652

    Article  PubMed  CAS  Google Scholar 

  • Seppinen L, Sormunen R, Soini Y, Elamaa H, Heljasvaara R, Pihlajaniemi T (2008) Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing. Matrix Biol 27:535–546

    Article  PubMed  CAS  Google Scholar 

  • Shaterian A, Borboa A, Sawada R, Costantini T, Potenza B, Coimbra R, Baird A, Eliceiri BP (2009) Real-time analysis of the kinetics of angiogenesis and vascular permeability in an animal model of wound healing. Burns 35:811–817

    Article  PubMed  Google Scholar 

  • Shaw TJ, Martin P (2009) Wound repair at a glance. J Cell Sci 122:3209–3213

    Article  PubMed  CAS  Google Scholar 

  • Sorrell JM, Baber MA, Caplan AI (2008) Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: nonsoluble factors in the extracellular matrix influence interactions. Wound Repair Regen 16:300–309

    Article  PubMed  Google Scholar 

  • Staton CA, Reed MW, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90:195–221

    Article  PubMed  CAS  Google Scholar 

  • Stoneman VE, Bennett MR (2009) Role of Fas/Fas-L in vascular cell apoptosis. J Cardiovasc Pharmacol 53:100–108

    Article  PubMed  CAS  Google Scholar 

  • Swift ME, Kleinman HK, DiPietro LA (1999) Impaired wound repair and delayed angiogenesis in aged mice. Lab Invest 79:1479–1487

    PubMed  CAS  Google Scholar 

  • Szpaderska AM, Walsh CG, Steinberg MJ, DiPietro LA (2005) Distinct patterns of angiogenesis in oral and skin wounds. J Dent Res 84:309–314

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Augustin HG (2009) The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12:125–137

    Article  PubMed  CAS  Google Scholar 

  • Volpert OV, Zaichuk T, Zhou W, Reiher F, Ferguson TA, Stuart PM, Amin M, Bouck NP (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8:349–357

    Article  PubMed  CAS  Google Scholar 

  • von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629

    Article  Google Scholar 

  • Wacker A, Gerhardt H (2011) Endothelial development taking shape. Curr Opin Cell Biol 23:676–685

    PubMed  CAS  Google Scholar 

  • Wietecha MS, Chen L, Ranzer MJ, Anderson K, Ying C, Patel TB, DiPietro LA (2012) Sprouty2 downregulates angiogenesis during mouse skin wound healing. Am J Physiol Heart Circ Physiol 300:H459–H467

    Article  Google Scholar 

  • Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, Dipietro LA (2008) Regulation of scar formation by vascular endothelial growth factor. Lab Invest 88:579–590

    Article  PubMed  CAS  Google Scholar 

  • Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC (2011) Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol 2011:969618

    PubMed  Google Scholar 

  • Yates CC, Whaley D, Kulasekeran P, Hancock WW, Lu B, Bodnar R, Newsome J, Hebda PA, Wells A (2007) Delayed and deficient dermal maturation in mice lacking the CXCR3 ELR-negative CXC chemokine receptor. Am J Pathol 171:484–495

    Article  PubMed  CAS  Google Scholar 

  • Yuen WW, Du NR, Chan CH, Silva EA, Mooney DJ (2010) Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc Natl Acad Sci USA 107:17933–17938

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa A. DiPietro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wietecha, M.S., Cerny, W.L., DiPietro, L.A. (2012). Mechanisms of Vessel Regression: Toward an Understanding of the Resolution of Angiogenesis. In: Heber-Katz, E., Stocum, D. (eds) New Perspectives in Regeneration. Current Topics in Microbiology and Immunology, vol 367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_287

Download citation

Publish with us

Policies and ethics