Advertisement

Modulation of the Coagulation System During Severe Streptococcal Disease

  • Oonagh Shannon
  • Heiko Herwald
  • Sonja Oehmcke
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 368)

Abstract

Haemostasis is maintained by a tightly regulated coagulation system that comprises platelets, procoagulant proteins, and anticoagulant proteins. During the local and systemic response to bacterial infection, the coagulation system becomes activated, and contributes to the pathophysiological response to infection. The significant human pathogen, Streptococcus pyogenes has multiple strategies to modulate coagulation. This can range from systemic activation of the intrinsic and extrinsic pathway of coagulation to local stimulation of fibrinolysis. Such diverse effects on this host system imply a finely tuned host–bacteria interaction. The molecular mechanisms that underlie this modulation of the coagulation system are discussed in this review.

Keywords

Necrotizing Fasciitis Intrinsic Pathway Coagulation System Fibrin Clot Contact System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ashbaugh CD, Warren HB, Carey VJ, Wessels MR (1998) Molecular analysis of the role of the group A streptococcal cysteine protease, hyaluronic acid capsule, and M protein in a murine model of human invasive soft-tissue infection. J Clin Invest 102:550–560PubMedCrossRefGoogle Scholar
  2. Barker FG, Leppard BJ, Seal DV (1987) Streptococcal necrotising fasciitis: comparison between histological and clinical features. J Clin Pathol 40:335–341PubMedCrossRefGoogle Scholar
  3. Ben Nasr A, Wistedt A, Ringdahl U, Sjöbring U (1994) Streptokinase activates plasminogen bound to human group C and G streptococci through M-like proteins. Eur J Biochem 222:267–276PubMedCrossRefGoogle Scholar
  4. Ben Nasr AB, Herwald H, Müller-Esterl W, Björck L (1995) Human kininogens interact with M protein, a bacterial surface protein and virulence determinant. Biochem J 305:173–180PubMedGoogle Scholar
  5. Ben Nasr A, Herwald H, Sjöbring U, Renné T, Müller-Esterl W, Björck L (1997) Absorption of kininogen from human plasma by Streptococcus pyogenes is followed by the release of bradykinin. Biochem J 326:657–660PubMedGoogle Scholar
  6. Bengtson SH, Sandén C, Mörgelin M, Marx PF, Olin AI, Leeb-Lundberg LMF, Meijers JCM, Herwald H (2009) Activation of TAFI on the surface of Streptococcus pyogenes evokes inflammatory reactions by modulating the kallikrein/kinin system. J Innate Immun 1:18–28PubMedCrossRefGoogle Scholar
  7. Berge A, Björck L (1995) Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins. J Biol Chem 270:9862–9867PubMedCrossRefGoogle Scholar
  8. Berge A, Sjöbring U (1993) PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J Biol Chem 268:25417–25424PubMedGoogle Scholar
  9. Boxrud PD, Fay WP, Bock PE (2000) Streptokinase binds to human plasmin with high affinity, perturbs the plasmin active site, and induces expression of a substrate recognition exosite for plasminogen. J Biol Chem 275:14579–14589PubMedCrossRefGoogle Scholar
  10. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535PubMedCrossRefGoogle Scholar
  11. Broder CC, Lottenberg R, von Mering GO, Johnston KH, Boyle MD (1991) Isolation of a prokaryotic plasmin receptor. Relationship to a plasminogen activator produced by the same micro-organism. J Biol Chem 266:4922–4928PubMedGoogle Scholar
  12. Brosnahan AJ, Schlievert PM (2011) Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome. FEBS J 278:4649–4667PubMedCrossRefGoogle Scholar
  13. Bryant AE, Hayes-Schroer SM, Stevens DL (2003) M type 1 and 3 group A streptococci stimulate tissue factor-mediated procoagulant activity in human monocytes and endothelial cells. Infect Immun 71:1903–1910PubMedCrossRefGoogle Scholar
  14. Bryant AE, Bayer CR, Chen RYZ, Guth PH, Wallace RJ, Stevens DL (2005) Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect Dis 192:1014–1022PubMedCrossRefGoogle Scholar
  15. Castellino F (1979) Unique enzyme-protein substrate modifier reaction—plasmin-streptokinase interaction. Trends Biochem Sci 4:1–5CrossRefGoogle Scholar
  16. Christensen L, MacCleod CM (1945) A proteolytic enzyme of serum—characterization, activation, and reaction with inhibitors. J Gen Physiol 28:559–583PubMedCrossRefGoogle Scholar
  17. Christner R, Li Z, Raeder R, Podbielski A, Boyle MD (1997) Identification of key gene products required for acquisition of plasmin-like enzymatic activity by group A streptococci. J Infect Dis 175:1115–1120PubMedCrossRefGoogle Scholar
  18. Clawsson CC, White JG (1971) Platelet interaction with bacteria I. Am J Pathol 65(2):1–14Google Scholar
  19. Cole JN (2006) Trigger for group A streptococcal M1T1 invasive disease. FASEB J 20:1745–1747PubMedCrossRefGoogle Scholar
  20. Cole JN, Barnett TC, Nizet V, Walker MJ (2011) Molecular insight into invasive group A streptococcal disease. Nat Publ Group 9:724–736Google Scholar
  21. Cox D, Kerrigan SW, Watson SP (2011) Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 9:1097–1107Google Scholar
  22. D’Costa SS, Romer TG, Boyle MDP (2000) Analysis of expression of a cytosolic enzyme on the surface of Streptococcus pyogenes. Biochem Biophys Res Commun 278:826–832PubMedCrossRefGoogle Scholar
  23. de Jong HK, van der Poll T, Wiersinga WJ (2010) The systemic pro-inflammatory response in sepsis. J Innate Immun 2:422–430PubMedCrossRefGoogle Scholar
  24. de la Cadena RA, Laskin KJ, Pixley RA, Sartor RB, Schwab JH, Bedi GS, Colman RW (1991) Role of kallikrein-kinin system in pathogenesis of bacterial cell wall-induced inflammation. Am J Physiol 260:213–219Google Scholar
  25. Esmon CT, Mather T (1998) Switching serine protease specificity. Nat Struct Biol 5:933–937PubMedCrossRefGoogle Scholar
  26. Fein AM, Bernard GR, Criner GJ, Fletcher EC, Good JT, Knaus WA, Levy H, Matuschak GM, Shanies HM, Taylor RW et al (1997) Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis Study Group. JAMA 277:482–487PubMedCrossRefGoogle Scholar
  27. Frick I-M, Akesson P, Herwald H, Mörgelin M, Malmsten M, Nägler DK, Björck L (2006) The contact system–a novel branch of innate immunity generating antibacterial peptides. EMBO J 25:5569–5578PubMedCrossRefGoogle Scholar
  28. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885PubMedCrossRefGoogle Scholar
  29. Furie B, Furie BC (1988) The molecular basis of blood coagulation. Cell 53:505–518PubMedCrossRefGoogle Scholar
  30. Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ (1997) Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 23:379–385PubMedCrossRefGoogle Scholar
  31. Herwald H, Cramer H, Mörgelin M, Russell W, Sollenberg U, Norrby-Teglund A, Flodgaard H, Lindbom L, Björck L (2004) M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 116:367–379PubMedCrossRefGoogle Scholar
  32. Hess JL, Boyle MDP (2006) Fibrinogen fragment D is necessary and sufficient to anchor a surface plasminogen-activating complex in Streptococcus pyogenes. Proteomics 6:375–378PubMedCrossRefGoogle Scholar
  33. Hoffman M (2003) A cell-based model of coagulation and the role of factor VIIa. Blood Rev 17(Suppl 1):S1–S5PubMedCrossRefGoogle Scholar
  34. Igonin AA, Protsenko DN, Galstyan GM, Vlasenko AV, Khachatryan NN, Nekhaev IV, Shlyapnikov SA, Lazareva NB, Herscu P (2012) C1-esterase inhibitor infusion increases survival rates for patients with sepsis*. Crit Care Med 40:770–777PubMedCrossRefGoogle Scholar
  35. Ikebe T, Endoh M, Watanabe H (2005) Increased expression of the ska gene in emm49-genotyped Streptococcus pyogenes strains isolated from patients with severe invasive streptococcal infections. Japan J Infect Dis 58:272–275Google Scholar
  36. Johansson D, Shannon O, Rasmussen M (2011) Platelet and neutrophil responses to gram positive pathogens in patients with bacteremic infection. PLoS One 6:e26928PubMedCrossRefGoogle Scholar
  37. Khil J, Im M, Heath A, Ringdahl U, Mundada L, Cary Engleberg N, Fay WP (2003) Plasminogen enhances virulence of group A streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J Infect Dis 188:497–505PubMedCrossRefGoogle Scholar
  38. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596PubMedCrossRefGoogle Scholar
  39. Kurpiewski GE, Forrester LJ, Campbell BJ, Barrett JT (1983) Platelet aggregation by Streptococcus pyogenes. Infect Immun 39:704–708PubMedGoogle Scholar
  40. Kuusela P, Ullberg M, Saksela O, Kronvall G (1992) Tissue-type plasminogen activator-mediated activation of plasminogen on the surface of group-A, group-C, and group-G streptococci. Infect Immun 60:196–201PubMedGoogle Scholar
  41. Lähteenmäki K, Kuusela P, Korhonen TK (2001) Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 25:531–552PubMedGoogle Scholar
  42. Lamagni TL, Darenberg J, Luca-Harari B, Siljander T, Efstratiou A, Henriques-Normark B, Vuopio-Varkila J, Bouvet A, Creti R, Ekelund K et al (2008) Epidemiology of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol 46:2359–2367PubMedCrossRefGoogle Scholar
  43. Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77PubMedCrossRefGoogle Scholar
  44. Li Z, Ploplis VA, French EL, Boyle MD (1999) Interaction between group A streptococci and the plasmin(ogen) system promotes virulence in a mouse skin infection model. J Infect Dis 179:907–914PubMedCrossRefGoogle Scholar
  45. Linder A, Johansson L, Thulin P, Hertzén E, Mörgelin M, Christensson B, Björck L, Norrby-Teglund A, Akesson P (2010) Erysipelas caused by group A streptococcus activates the contact system and induces the release of heparin-binding protein. J Invest Dermatol 130:1365–1372PubMedCrossRefGoogle Scholar
  46. Loof TG, Mörgelin M, Johansson L, Oehmcke S, Olin AI, Dickneite G, Norrby-Teglund A, Theopold U, Herwald H (2011a) Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 118:2589–2598PubMedCrossRefGoogle Scholar
  47. Loof TG, Schmidt O, Herwald H, Theopold U (2011b) Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins? J Innate Immun 3:34–40PubMedCrossRefGoogle Scholar
  48. Lorente JA, García-Frade LJ, Landín L, de Pablo R, Torrado C, Renes E, García-Avello A (1993) Time course of hemostatic abnormalities in sepsis and its relation to outcome. Chest 103:1536–1542PubMedCrossRefGoogle Scholar
  49. Lottenberg R, Broder CC, Boyle MD, Kain SJ, Schroeder BL, Curtiss R (1992) Cloning, sequence-analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol 174:5204–5210PubMedGoogle Scholar
  50. Marcum JA, Kline DL (1983) Species specificity of streptokinase. Comp Biochem Physiol B Comp Biochem 75:389–394CrossRefGoogle Scholar
  51. Massberg S, Grahl L, von Bruehl M-L, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887–896PubMedCrossRefGoogle Scholar
  52. Mattsson E, Herwald H, Cramer H, Persson K, Sjöbring U, Björck L (2001) Staphylococcus aureus induces release of bradykinin in human plasma. Infect Immun 69:3877–3882PubMedCrossRefGoogle Scholar
  53. Mavrommatis AC, Theodoridis T, Orfanidou A, Roussos C, Christopoulou-Kokkinou V, Zakynthinos S (2000) Coagulation system and platelets are fully activated in uncomplicated sepsis. Crit Care Med 28:451–457PubMedCrossRefGoogle Scholar
  54. McKay FC, Mcarthur JD, Sanderson-Smith ML, Gardam S, Currie BJ, Sriprakash KS, Fagan PK, Towers RJ, Batzloff MR, Chhatwal GS et al (2004) Plasminogen binding by group A streptococcal isolates from a region of hyperendemicity for streptococcal skin infection and a high incidence of invasive infection. Infect Immun 72:364–370PubMedCrossRefGoogle Scholar
  55. Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É (2011) Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 91:931–972PubMedCrossRefGoogle Scholar
  56. Oehmcke S, Herwald H (2010) Contact system activation in severe infectious diseases. J Mol Med 88:121–126PubMedCrossRefGoogle Scholar
  57. Oehmcke SM, Ouml rgelin M, Herwald H (2009a) Activation of the human contact system on neutrophil extracellular traps. J Innate Immun 1:225–230CrossRefGoogle Scholar
  58. Oehmcke S, Shannon O, von Köckritz-Blickwede M, Mörgelin M, Linder A, Olin AI, Björck L, Herwald H (2009b) Treatment of invasive streptococcal infection with a peptide derived from human high-molecular weight kininogen. Blood 114:444–451CrossRefGoogle Scholar
  59. Oehmcke S, Shannon O, Mörgelin M, Herwald H (2010) Streptococcal M proteins and their role as virulence determinants. Clin Chim Acta 411:1172–1180PubMedCrossRefGoogle Scholar
  60. Oehmcke S, Mörgelin M, Malmström J, Linder A, Chew M, Thorlacius H, Herwald H (2012) Stimulation of blood mononuclear cells with bacterial virulence factors leads to the release of pro-coagulant and pro-inflammatory microparticles. Cell Microbiol 14:107–119PubMedCrossRefGoogle Scholar
  61. Opal SM, Esmon CT (2003) Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care 7:23–38PubMedCrossRefGoogle Scholar
  62. Påhlman LI, Mörgelin M, Eckert J, Johansson L, Russell W, Riesbeck K, Soehnlein O, Lindbom L, Norrby-Teglund A, Schumann RR et al (2006) Streptococcal M protein: a multipotent and powerful inducer of inflammation. J Immunol 177:1221–1228PubMedGoogle Scholar
  63. Påhlman LI, Malmström E, Mörgelin M, Herwald H (2007) M protein from Streptococcus pyogenes induces tissue factor expression and pro-coagulant activity in human monocytes. Microbiology (Reading, Engl) 153:2458–2464Google Scholar
  64. Pancholi V, Fischetti VA (1992) A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426PubMedCrossRefGoogle Scholar
  65. Pancholi V, Fischetti VA (1998) Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515PubMedCrossRefGoogle Scholar
  66. Poon IKH, Patel KK, Davis DS, Parish CR, Hulett MD (2011) Histidine-rich glycoprotein: the Swiss army knife of mammalian plasma. Blood 117:2093–2101PubMedCrossRefGoogle Scholar
  67. Pu Q, Wiel E, Corseaux D, Bordet R, Azrin MA, Ezekowitz MD, Lund N, Jude B, Vallet B (2001) Beneficial effect of glycoprotein IIb/IIIa inhibitor (AZ-1) on endothelium in Escherichia coli endotoxin-induced shock. Crit Care Med 29:1181–1188PubMedCrossRefGoogle Scholar
  68. Renné T (2012) The procoagulant and proinflammatory plasma contact system. Semin Immunopathol 34:31–41PubMedCrossRefGoogle Scholar
  69. Rezcallah MS, Boyle MDP, Sledjeski DD (2004) Mouse skin passage of Streptococcus pyogenes results in increased streptokinase expression and activity. Microbiology (Reading, Engl) 150:365–371Google Scholar
  70. Sanderson-Smith ML, Walker MJ, Ranson M (2006) The maintenance of high affinity plasminogen binding by group A streptococcal plasminogen-binding M-like protein is mediated by arginine and histidine residues within the a1 and a2 repeat domains. J Biol Chem 281:25965–25971PubMedCrossRefGoogle Scholar
  71. Sanderson-Smith ML, Dowton M, Ranson M, Walker MJ (2007) The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues. J Bacteriol 189:1435–1440PubMedCrossRefGoogle Scholar
  72. Semeraro N, Ammollo CT, Semeraro F, Colucci M (2012) Sepsis, thrombosis and organ dysfunction. Thromb Res 129:290–295PubMedCrossRefGoogle Scholar
  73. Semple JW, Italiano JE, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274Google Scholar
  74. Shannon O, Hertzén E, Norrby-Teglund A, Mörgelin M, Sjöbring U, Björck L (2007) Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol 65:1147–1157PubMedCrossRefGoogle Scholar
  75. Shannon O, Rydengård V, Schmidtchen A, Mörgelin M, Alm P, Sørensen OE, Björck L (2010) Histidine-rich glycoprotein promotes bacterial entrapment in clots and decreases mortality in a mouse model of sepsis. Blood 116:2365–2372PubMedCrossRefGoogle Scholar
  76. Sjöbring U, Ringdahl U, Ruggeri ZM (2002) Induction of platelet thrombi by bacteria and antibodies. Blood 100:4470–4477PubMedCrossRefGoogle Scholar
  77. Smith SA (2009) The cell-based model of coagulation. J Vet Emerg Crit Care (San Antonio) 19:3–10CrossRefGoogle Scholar
  78. Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, French PA, Dauerman HL, Becker RC (2009) Platelet Colloquium Participants. Platelet functions beyond hemostasis. J Thromb Haemost 7:1759–1766PubMedCrossRefGoogle Scholar
  79. Soehnlein O, Oehmcke S, Ma X, Rothfuchs AG, Frithiof R, van Rooijen N, Mörgelin M, Herwald H, Lindbom L (2008) Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein. Eur Respir J 32:405–412PubMedCrossRefGoogle Scholar
  80. Sriskandan S, Kemball-Cook G, Moyes D, Canvin J, Tuddenham E, Cohen J (2000) Contact activation in shock caused by invasive group A Streptococcus pyogenes. Crit Care Med 28:3684–3691PubMedCrossRefGoogle Scholar
  81. Stadnicki A, de la Cadena RA, Sartor RB, Bender D, Kettner CA, Rath HC, Adam A, Colman RW (1996) Selective plasma kallikrein inhibitor attenuates acute intestinal inflammation in Lewis rat. Dig Dis Sci 41:912–920PubMedCrossRefGoogle Scholar
  82. Sun H (2004) Plasminogen is a critical host pathogenicity factor for group A streptococcal Infection. Science 305:1283–1286PubMedCrossRefGoogle Scholar
  83. Sun H, Wang X, Degen JL, Ginsburg D (2009) Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood 113:1358–1364PubMedCrossRefGoogle Scholar
  84. Sun H, Xu Y, Sitkiewicz I, Ma Y, Wang X, Yestrepsky BD, Huang Y, Lapadatescu MC, Larsen MJ, Larsen SD et al (2012) Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc Natl Acad Sci USA 109:3469–3474PubMedCrossRefGoogle Scholar
  85. Svensson MD, Sjöbring U, Bessen DE (1999) Selective distribution of a high-affinity plasminogen-binding site among group A streptococci associated with impetigo. Infect Immun 67:3915–3920PubMedGoogle Scholar
  86. Svensson MD, Sjöbring U, Luo F, Bessen DE (2002) Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. Microbiology (Reading, Engl) 148:3933–3945Google Scholar
  87. Takada Y, Takada A (1989) Evidence for the formation of a trimolecular complex between streptokinase plasminogen and fibrinogen. Thromb Res 53:409–415PubMedCrossRefGoogle Scholar
  88. Taylor FB, Bryant AE, Blick KE, Hack E, Jansen PM, Kosanke SD, Stevens DL (1999) Staging of the baboon response to group A streptococci administered intramuscularly: a descriptive study of the clinical symptoms and clinical chemical response patterns. Clin Infect Dis 29:167–177PubMedCrossRefGoogle Scholar
  89. Tillett WS, Garner RLR (1933) The fibrinolytic activity of hemolytic streptococci. J Exp Med 58:485–502PubMedCrossRefGoogle Scholar
  90. van der Poll T, de Boer JD, Levi M (2011) The effect of inflammation on coagulation and vice versa. Curr Opin Infect Dis 24:273–278PubMedCrossRefGoogle Scholar
  91. Vandijck DM, Blot S, De Waele Jan J, Hoste EA, Vandewoude KH, Decruyenaere JM (2010) Thrombocytopenia and outcome in critically ill patients with bloodstream infection. Heart Lung J Acute Crit Care 39:21–26CrossRefGoogle Scholar
  92. Walker M, McArthur J, Mckay F, Ranson M (2005) Is plasminogen deployed as a virulence factor? Trends Microbiol 13:308–313PubMedCrossRefGoogle Scholar
  93. Wang H, Lottenberg R, Boyle MD (1995a) Analysis of the interaction of group A streptococci with fibrinogen, streptokinase and plasminogen. Microb Pathog 18:153–166PubMedCrossRefGoogle Scholar
  94. Wang H, Lottenberg R, Boyle MDP (1995b) A role for fibrinogen in the streptokinase-dependent acquisition of plasmin(ogen) by group-a streptococci. J Infect Dis 171:85–92PubMedCrossRefGoogle Scholar
  95. Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91:439–442PubMedCrossRefGoogle Scholar
  96. Williams SCP (2012) After Xigris, researchers look to new targets to combat sepsis. Nat Publ Group 18:1001Google Scholar
  97. Winning J, Reichel J, Eisenhut Y, Hamacher J, Kohl M, Deigner HP, Claus RA, Bauer M, Lösche W (2009) Anti-platelet drugs and outcome in severe infection: clinical impact and underlying mechanisms. Platelets 20:50–57PubMedCrossRefGoogle Scholar
  98. Winram SB, Lottenberg R (1996) The plasmin-binding protein Plr of group A streptococci is identified as glyceraldehyde-3-phosphate dehydrogenase. Microbiology (Reading, Engl) 142:2311–2320Google Scholar
  99. Wistedt AC, Ringdahl U, Müller-Esterl W, Sjöbring U (1995) Identification of a plasminogen-binding motif in PAM, a bacterial surface protein. Mol Microbiol 18:569–578PubMedCrossRefGoogle Scholar
  100. Wistedt AC, Kotarsky H, Marti D, Ringdahl U, Castellino FJ, Schaller J, Sjöbring U (1998) Kringle 2 mediates high affinity binding of plasminogen to an internal sequence in streptococcal surface protein PAM. J Biol Chem 273:24420–24424PubMedCrossRefGoogle Scholar
  101. Yakovlev SA, Rublenko MV, Izdepsky VI, Makogonenko EM (1995) Activating effect of the plasminogen activators on plasminogens of different mammalia species. Thromb Res 79:423–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Division of Infection Medicine, Department of Clinical Sciences, Biomedical Centre (BMC), B14Lund UniversityLundSweden
  2. 2.Virology and Hygiene, Medical FacultyInstitute of Medical Microbiology, University of RostockRostockGermany

Personalised recommendations