Adherence and Invasion of Streptococci to Eukaryotic Cells and their Role in Disease Pathogenesis

  • Manfred RohdeEmail author
  • G. Singh Chhatwal
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 368)


Streptococcal adhesion, invasion, intracellular trafficking, dissemination, and persistence in eukaryotic cells have a variety of implications in the infection pathogenesis. While cell adhesion establishes the initial host contact, adhering bacteria exploit the host cell for their own benefit. Internalization into the host cell is an essential step for bacterial survival and subsequent dissemination and persistence, thus playing a key role in the course of infection. This chapter summarizes the current knowledge about the diverse mechanisms of streptococcal adhesion to and invasion into different eukaryotic cells and the impact on dissemination and persistence which is reflected by consequences for the pathogenesis of streptococcal infections.


Hyaluronic Acid Acute Rheumatic Fever Collagen Binding Host Cell Surface Integrin Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbot EL, Smith WD, Siou GP, Chriboga C, Smith RJ, Wilson JA, Hirts BH, Kehoe MA (2007) Pili mediate specific adhesion of Streptococcus pyogenes to human tonsils and skin. Cell Microbiol 9:1822–1833PubMedGoogle Scholar
  2. Agerer F, Lux S, Michel A, Rohde M, Ohlsen K, Hauck CR (2005) Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J Cell Sci 118:2189–2200PubMedGoogle Scholar
  3. Amelung S, Nerlich A, Rohde M, Spellerberg B, Cole JN, Nizet V, Chhatwal GS, Talay SR. (2011) The FbaB-type fibronectin-binding protein of S. pyogenes promote specific invasion into endothelial cells. Cell Microbiol 13:1200–1211PubMedGoogle Scholar
  4. Andre I, Persson J, Blom AM, Nilsson H, Drakenberg, T, Lindahl G, Linse S (2006) Streptococcal M protein: structural studies of the hypervariable regions, free and bound to human C4BP. Biochemistry 45:4559–4568PubMedGoogle Scholar
  5. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Masignani V, Hultenby K, Taddei AR, Beiter K, Wartha F, von Euler A, Covacci A, Holden DW, Normark S, Rappuoli R, Henriques-Normark B (2006) A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA 103: 2857–2862PubMedGoogle Scholar
  6. Beachey EH, Ofek I (1976) Epithelial cell binding of group A streptococci by lipoteichoic acid on fimbriae denuded of M protein. J Exp Med 143:759–771PubMedGoogle Scholar
  7. Beall B, Facklam R, Thompson T (1996) Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol 34:9533–958Google Scholar
  8. Benga L, Goethe R, Rohde M, Valentin-Weigand P (2004) Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell Microbiol 6:867–881PubMedGoogle Scholar
  9. Berkower C, Ravins M, Moses AE, Hanski E (1999) Expression of different group A streptococcal M proteins in an isogenic background demonstrates diversity in adherence to and invasion of eukaryotic cells. Mol Microbiol 31:1463–1475PubMedGoogle Scholar
  10. Caparon MG, Stephens S, Olsen A, Scott JR (1991) Role of M protein in adherence of group A streptococci. Infect Immun 59:1811–1817PubMedGoogle Scholar
  11. Carapetis (2005) Acute rheumatic fever. Lancet 366:155-168Google Scholar
  12. Chhatwal GS (2002) Anchorless adhesins and invasion of Gram-positive bacteria: a new class of virulence factors. Trends in Microbiol 10:205–208Google Scholar
  13. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234Google Scholar
  14. Courtney HS, Hasty DL (1991) Aggregation of group A streptococci by human saliva and effect of saliva on streptococcal adherence to host cells. Infect Immun 59:1661–1666PubMedGoogle Scholar
  15. Courtney HS, von Hunolstein C, Dale JB, Bronze MS, Beachey EH, Hasty DL (1992) Lipoteichoic acid and M protein: dual adhesins of group A streptococci. Microb Pathog 12:199–208PubMedGoogle Scholar
  16. Courtney HS, Bronze M S, Dale JB, Hasty DL (1994) Analysis of the role of M24 protein in group A streptococcal adhesion and colonization by use of omega-interposon mutagenesis. Infect Immun 62:4868–4873PubMedGoogle Scholar
  17. Courtney HS, Dale JB, Hasty DI (1996) Differential effects of the streptococcal fibronectin-binding protein, FBP54, on adhesion of group A streptococci to human buccal cells and HEp-2 tissue culture cells. Infect Immun 64:2415–2419PubMedGoogle Scholar
  18. Courtney HS, Hasty DL, Dale JB (2002) Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med 34:77–87PubMedGoogle Scholar
  19. Cremer MA, Rosloniec EF, Kang AH (1998) The cartilage collagens: a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J Mol Med 76:275–288PubMedGoogle Scholar
  20. Crotty Alexander LE, Maisey HC, Timmer AM, Rooijakkers SHM, Gallo RL, von Köckritz-Blickwede M, Nizet V. (2010) M1T1 group A streptococci pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment. J Mol Med 88:371–381PubMedGoogle Scholar
  21. Cue D, Dombek PE, Lam H, Cleary PP (1998) Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect Immun 66:4593–4601PubMedGoogle Scholar
  22. Cue D, Southern SO, Southern PJ, Prabhakar J, Lorelli W, Smallheer JM, Mousa SA, Cleary PP (2000) A nonpeptide integrin antagonist can inhibit epithelial cell ingestion of Streptococcus pyogenes by blocking formation of integrin alpha 5beta 1-fibronectin-M1 protein complexes. Proc Natl Acad Sci USA 97:2858–2863PubMedGoogle Scholar
  23. Cue D, Lam H, Cleary PP (2001) Genetic dissection of the Streptococcus pyogenes M1 protein: regions involved in fibronectin-binding and intracellular invasion. Microb Pathog 31:231–242PubMedGoogle Scholar
  24. Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13:470–511PubMedGoogle Scholar
  25. Cywes C, Wessels MR (2001) Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature 414:648–652PubMedGoogle Scholar
  26. Cywes C, Stamenkovic I, Wessels MR (2000) CD44 as a receptor for colonization of the pharynx by group A Streptococcus. J Clin Invest 106:995–1002PubMedGoogle Scholar
  27. Dale JB, Washburn RG, Marques MB, Wessels MR (1996) Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect Immun 64:1495–1501PubMedGoogle Scholar
  28. Darmstadt GL, Mentele L, Podbielski A, Rubens CE (2000) Role of group A streptococcal virulence factors in adherence to keratinocytes. Infect Immun 68:1215–1221PubMedGoogle Scholar
  29. Debelle L, Tamburro AM (1999) Elastin: molecular description and function. Int J Biochem Cell Biol 31:261–272PubMedGoogle Scholar
  30. Dempfle CE, Mosesson MW (2003) Theme issue: Fibrinogen and fibrin - structure, function, interactions and clinical applications. Thromb Haemost 89:599–600PubMedGoogle Scholar
  31. Derbise A, Song YP, Parikh S, Fischetti VA, Pancholi V (2004) Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 72:94–105PubMedGoogle Scholar
  32. Dinkla K, Rohde M, Jansen WTM, Kaplan EL, Chhatwal GS, Talay SR (2003a) Rheumatic fever-associated Streptococcus pyogenes isolates aggregate collagen. J Clin Invest 111:1905–1912PubMedGoogle Scholar
  33. Dinkla K, Rohde M, Jansen WTM, Carapetis JR, Chhatwal GS, Talay SR (2003b) Streptococcus pyogenes recruits collagen via surface-bound fibronectin: a novel colonization and immune evasion mechanism. Mol Microbiol 47:861–869PubMedGoogle Scholar
  34. Dombek PE, Cue D, Sedgewick J, Lam H, Ruschkowski S, Finlay BB, Cleary PP (1999) High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein-mediated invasion and cytoskeletal rearrangements. Mol Microbiol 31:859–870PubMedGoogle Scholar
  35. Doran KS, Engelson EJ, Khosravi A, Maisey HC, Fedtke I, Equils O, Michelsen KS, Arditi, M, Peschel A, Nizet V (2005) Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 115:2499–2507PubMedGoogle Scholar
  36. Ellen RP, Gibbons RJ (1972) M protein-associated adherence of Streptococcus pyogenes to epithelial surfaces: prerequisite for virulence. Infect Immun 5:826–830PubMedGoogle Scholar
  37. Ellen RP, Gibbons RJ (1974) Parameters affecting the adherence and tissue tropisms of Streptococcus pyogenes. Infect Immun 9:85–91PubMedGoogle Scholar
  38. Falugi F, Zingaretti C, Pinto V, Mariani M, Amodeo A, Manetti G, Capo S, Musser JM, Orefici G, Margarit I, Telford L, Grandi G, Mora M (2008) Sequence variation in group A Streptococcus pili and associatition of pilus backbone types with Lancefield T serotypes. J Infect Dis 198:1834–1841PubMedGoogle Scholar
  39. Fowler T, Wann ER, Joh D, Johansson S, Foster TJ, Höök M (2000) Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. Eur J Cell Biol 79:672–679PubMedGoogle Scholar
  40. Frick IM, Crossin KL, Edelman GM, Björck L (1995) Protein H-a bacterial surface protein with affinity for both immunoglobulin and fibronectin type III domains. EMBO J 14:1674–1679PubMedGoogle Scholar
  41. Frick IM, Mörgelin M, Björck L (2000) Virulent aggregates of Streptococus pyogenes are generated by hemophilic protein–protein interactions. Mol Microbiol 37:1232–1247PubMedGoogle Scholar
  42. Frick IM, Schmidtchen A, Sjobring U (2003) Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. Eur J Biochem 270:2303–2311PubMedGoogle Scholar
  43. Gianfoldoni C, Censini S, Hilleringmann M, Moschioni M, Facciotti C, Pansegrau W, Masigani V, Covacci A, Rappuoli R, Barocchi MA, Rugiero P (2007) Streptococcus pneumoniae pilus subunits protect mice against lethal challange. Infect Immun 75:1059–1062Google Scholar
  44. Giannakis E, Jokiranta TS, Ormsby RJ, Duthy TG, Male DA, Christiansen D, Fischetti VA, Bagley C, Loveland BE, Gordon DL (2002) Identification of the streptococcal M protein binding site on membrane cofactor protein (CD46). J Immunol 168:4585–4592PubMedGoogle Scholar
  45. Gibson CM, Caparon MG (1996) Insertional inactivation of Streptococcus pyogenes sod suggests that prtF is regulated in response to a superoxide signal. J Bacteriol 178:4688–4695PubMedGoogle Scholar
  46. Gibson CM, Fogg G, Okada N, Geist RT, Hanski E, Caparon MG (1995) Regulation of host cell recognition in Streptococcus pyogenes. Dev Biol Stand 85:137–144PubMedGoogle Scholar
  47. Greco R, De Martino L, Donnarumma G, Conte MP, Seganti L, Valenti P (1995) Invasion of cultured human cells by Streptococcus pyogenes. Res Microbiol 146:551–560PubMedGoogle Scholar
  48. Hagman MM, Dale JB, Stevens DL (1999) Comparison of adherence to and penetration of a human laryngeal epithelial cell line by group A streptococci of various M protein types. FEMS Immunol Med Microbiol 23:195–204PubMedGoogle Scholar
  49. Haidan A, Talay SR, Rohde M, Sriprakash KS, Currie BJ, Chhatwal GS (2000) Pharyngeal carriage of group C and group G streptococci and acute rheumatic fever in an Aboriginal population. Lancet 356:1167–1169PubMedGoogle Scholar
  50. Handley PS, Carter PL, Fielding J (1984) Streptococcus salivarius strains carry either fibrils or fimbriae on the cell surface. J Bacteriol 157:64–72PubMedGoogle Scholar
  51. Handley PS, Harty DW, Wyatt JE, Brown CR, Doran JP, Gibbs AC (1987) A comparison of the adhesion, coaggregation and cell-surface hydrophobicity properties of fibrillar and fimbriae strains of Streptococcus salivarius. J Gen Microbiol 133:3207–3217PubMedGoogle Scholar
  52. Hanski E, Caparon M (1992) Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus. Proc Natl Acad Sci USA 89:6172–6176PubMedGoogle Scholar
  53. Hasty DL, Ofek I, Courtney HS, Doyle RJ (1992) Multiple adhesins of streptococci. Infect Immun 60:2147–2152PubMedGoogle Scholar
  54. Henningham A, Barnett TC, Maamary PG, Walker MJ (2012a) Pathogenesis of group A infections. Discov Med 13:329–342PubMedGoogle Scholar
  55. Henningham A, Chiarot E, Gillen CM, Cole JN, Rohde M, Fulde M, Ramachandran V, Cork AJ, Hartas J, Magor G, Djordjevic SP, Cordwell SJ, Kobe B, Sriprakash KS, Nizet V, Chhatwal GS, Margarit IY, Batzloff MR, Walker MJ (2012b) Conserved anchorless surface proteins as group A vaccine candidates. J Mol Med (Epub ahead)Google Scholar
  56. Humtsoe JO, Kim JK, Xu,Y, Keene DR, Höök M, Lukomski S, Wary KK (2005) A streptococcal collagen-like protein interacts with the alpha2beta1 integrin and induces intracellular signaling. J Biol Chem 280:13848–13857PubMedGoogle Scholar
  57. Hytonen J, Haataja S, Gerlach D, Podbielski A, Finne J (2001) The SpeB virulence factor of streptococcus pyogens, a multifuntional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity. Mol Microbiol 39:512–519PubMedGoogle Scholar
  58. Isberg RR (1991) Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science 252:934–938PubMedGoogle Scholar
  59. Isberg RR, Barnes P (2001) Subversion of integrins by enteropathogenic Yersinia. J Cell Sci 114:21–28PubMedGoogle Scholar
  60. Isberg RR, Leong JM (1990). Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60:861–871PubMedGoogle Scholar
  61. Jadoun J, Ozeri V, Burstein E, Skutelsky E, Hanski E, Sela S (1998) Protein F1 is required for efficient entry of Streptococcus pyogenes into epithelial cells. J Infect Dis 178:147–158PubMedGoogle Scholar
  62. Jadoun J, Eyal O, Sela S (2002) Role of CsrR, hyaluronic acid, and SpeB in the internalization of Streptococcus pyogenes M type 3 strain by epithelial cells. Infect Immun 70:462–469PubMedGoogle Scholar
  63. Jaffe J, Natanson-Yaron S, Caparon MG, Hanski E (1996) Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol Microbiol 21:373–384PubMedGoogle Scholar
  64. Jin H, Song YP, Boel G, Kochar J, Pancholi V (2005) Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates adherence to host cells J Biol Chem 350:27–41Google Scholar
  65. Johnson DR, Stevens DL, Kaplan EL (1992) Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J Infect Dis 166: 374–382PubMedGoogle Scholar
  66. Kang HJ, Coulibaly F, Clow F, Proft T, Baker EN (2007) Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318:1625–1628PubMedGoogle Scholar
  67. Kaplan EL, Johnson DR, Cleary PP (1989) Group A streptococcal serotypes isolated from patients and sibling contacts during the resurgence of rheumatic fever in the United States in the mid-1980s. J Infect Dis 159:101–103PubMedGoogle Scholar
  68. Kaplan EL, Chhatwal GS, Rohde M (2006) Reduced ability of penicillin to eradicate ingested group A streptococci from epithelial cells: clinical and pathogenetic implication. Clin Infect Dis 43:1398–1406PubMedGoogle Scholar
  69. Kawabat S, Tamura Y, Murakami J, Teroa Y, Nakagawa I, Hamada S (2002) A novel, anchorless streptococcal surface protein that binds to human immunoglobulins. Biochem Biophys Res Comm 296:1329–1333Google Scholar
  70. Kinnby B, Booth NA, Svensater G (2008) Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology 154:924–931PubMedGoogle Scholar
  71. Kreikemeyer B, McIver KS, Podbielski A (2003) Virulence factor regulation and regulatory networks in Stretococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol 11:224–232PubMedGoogle Scholar
  72. Kreikemeyer B, Oemcke S, Nakata M, Hoffrogge R, Podbielski A (2004a) Streptococcus pyogenes fibronectin-bindung protein F2: expression profile, binding characteristics, and impact on eukaryotic cell interactions. J Biol Chem 279:15850–15859PubMedGoogle Scholar
  73. Kreikemeyer B, Klenk M, Podbielski A (2004b) The intracellular status of Streptococcus pyogenes; role of extracellular matrix-binding proteins and their regulation. Int J Med Micriobiol 294:177–188Google Scholar
  74. LaPenta D, Rubens C, Chi E, Cleary PP (1994) Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci USA 91:12115–12119PubMedGoogle Scholar
  75. Lauer P, Rinaudo CD, Soriani M, Margarit I, Maione D, Rosini R, Taddei AR, Mora M, Rappuoli R, Grandi G, Telford JL (2005) Genome analysis reveals pili in Group B Streptococcus. Science 309:105PubMedGoogle Scholar
  76. Leon O, Panos C (1990) Streptococcus pyogenes clinical isolates and lipoteichoic acid. Infect Immun 58:3779–3787PubMedGoogle Scholar
  77. Maisey HC, Hensler M, Nizet V, Doran KS (2007) Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. J Bacteriol 189:1464–1467PubMedGoogle Scholar
  78. Mandlik A, Swierczynski A, Das A., Ton-That H. (2007a) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends in Microbiol 16:33–39Google Scholar
  79. Mandlik A, Swierczynski A, Das A, Ton-That H (2007b) Corynebacterium diphtheria employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64:11–124Google Scholar
  80. Maraffini LA, Dedent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelope of gram-positive bacteria. Microbiol Mol Biol Rev 70:192–221Google Scholar
  81. Marjenberg ZR, Ellis IR, Hagan RM, Prabhakaran S, Höök M, Talay SR, Potts JR, Staunton D, Schwarz-Linek U (2011) Cooperative binding and activation of fibronectin by a bacterial surface protein. J Biol Chem 286:1884–1894PubMedGoogle Scholar
  82. McArthur JD, Walker MJ (2006) Domains of group A streptococcal M protein that confer resistance to phagocytosis, opsonozation and protection: implications for vaccine development. Mol Microbiol 59:1–4PubMedGoogle Scholar
  83. McNamara C, Zinkernagel AS, Machebeouf M, Cunningham M, Nizet V. (2008) Coiled-coil irregularities and instabilities in group A streptococcus M1 are required for virulence. Science 319: 1405–1408PubMedGoogle Scholar
  84. Medina E, Rohde M, Chhatwal GS (2003a) Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun 71:5376–5380PubMedGoogle Scholar
  85. Medina E, Goldmann O, Toppel AW, Chhatwal GS (2003b) Survival of Streptococcus pyogenes within host phagocytic cells: a pathogenic mechanism for persistence and systemic invasion. J Infect Dis 187:597–603PubMedGoogle Scholar
  86. Molinari G, Chhatwal GS (1999) Streptococcal invasion. Curr Opin Microbiol 2:56–61PubMedGoogle Scholar
  87. Molinari G, Rohde M, Guzman CA, Chhatwal GS (2000) Two distinct pathways for the invasion of Streptococcus pyogenes in non-phagocytic cells. Cell Microbiol 2:145–154PubMedGoogle Scholar
  88. Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AG, Maggi T, Taddei AR, Grandi G, Telford JL (2005) Group A streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci USA 102:15641–15646PubMedGoogle Scholar
  89. Natanson S, Sela S, Moses AE, Musser JM, Caparon MG, Hanski, E (1995) Distribution of fibronectin-binding proteins among group A streptococci of different M types. J Infect Dis 171:871–878PubMedGoogle Scholar
  90. Nerlich A, Rohde M, Talay, SR, Genth H, Just I, Chhatwal GS (2009) Invasion of endothelial cells by tisuue-invasive M3 type Group A streptococci requires Src kinase and activation of Rac1 by a phosphatidylinositol 3-kinase-independent mechanism. J Biol Chem 284:20319–20328PubMedGoogle Scholar
  91. Nitsche DP, Johansson HM, Frick IM, Mörgelin, M (2006) Streptococcal protein FOG, a novel matrix adhesin interacting with collagen I in vivo. J Biol Chem 281:1670–1679PubMedGoogle Scholar
  92. Nitsche-Schmitz DP, Rohde M, Chhatwal GS (2007) Invasion mechanisms of gram-positive pathogenic cocci. Thromb Haemost 98:488–496PubMedGoogle Scholar
  93. Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450PubMedGoogle Scholar
  94. Norton PM, Rolph C, Ward PN, Bentley RW, Leigh JA (1999) Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunol Med Microbiol 26:25–35PubMedGoogle Scholar
  95. Oemcke S, Shannon O, Mörgelin M, Herwald H. (2010) Streptococcal M proteins and their role as virulence determninants. Clinica Chemica Acta 411:1172–1180Google Scholar
  96. Oesterlund A, Engstrand L (1997a) An intracellular sanctuary for Streptococcus pyogenes in human tonsillar epithelium-studies of asymptomatic carriers and in vitro cultured biopsies. Acta Otolaryngol 117:883–888Google Scholar
  97. Oesterlund A, Popa R, Nikkila T, Scheynius, A, Engstrand L (1997b) Intracellular reservoir of Streptococcus pyogenes in vivo: a possible explanation for recurrent pharyngotonsillitis. Laryngoscope 107:640–647Google Scholar
  98. Okada N, Liszewski MK, Atkinson JP, Caparon M (1995) Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A Streptococcus. Biochem Biophys Res Commun 377:1128–1134Google Scholar
  99. Ozeri V, Tovi A, Burstein I, Natanson-Yaron S, Caparon MG, Yamada KM, Akiyama SK, Vlodavsky I, Hanski E (1996) A two-domain mechanism for group A streptococcal adherence through protein F to the extracellular matrix. EMBO J 15:989–998PubMedGoogle Scholar
  100. Ozeri V, Rosenshine I, Mosher DF, Fässler R, Hanski E (1998) Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol Microbiol 30:625–637PubMedGoogle Scholar
  101. Pancholi V, Fischetti VA (1992) A major surface protein on group A streptococci is a glyceraldehydes-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426PubMedGoogle Scholar
  102. Pancholi V, Fischetti VA (1997) Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: signal transduction between streptococci and pharyngeal cells. J Exp Med 186:1633–1643PubMedGoogle Scholar
  103. Pancholi V, Fischetti VA (1998) alpha-enolase, a novel strong plasminogen-(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515PubMedGoogle Scholar
  104. Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863PubMedGoogle Scholar
  105. Patti JM, Höök M (1994) Microbial adhesions recognizing extracellular matrix molecules. Curr Opin Cell Biol 6:752–758PubMedGoogle Scholar
  106. Pezzicoli A, Santi I, Lauer P, Rosini R, Rinaudo D, Grandi, G, Telford JL, Soriani M (2008) Pilus backbone contributes to group B Streptococcus paracellular translocation through epithelial cells. Infect Immun 198:890–898Google Scholar
  107. Podbielski A, Woischnik M, Leonard BA, Schmidt KH (1999) Characterization of nra, a global negative regulator gene in group A streptococci Mol Microbiol 31:1051–1064PubMedGoogle Scholar
  108. Proft T, Baker EN (2009) Pili in gram-negative and gram-positive bacteria-structure, assembly and role in disease. Cell Mol Life Sci 66:613–635PubMedGoogle Scholar
  109. Rezcallah M S, Hodges K, Gill DB, Atkinson JP, Wang B, Cleary PP (2005) Engagement of CD46 and alpha5beta1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell Microbiol 7:645–653PubMedGoogle Scholar
  110. Rocha CL, Fischetti VA (1999) Identification and characterization of a novel fibronectin-binding protein on the surface of group A streptococci. Infect Immun 67:2720–2728PubMedGoogle Scholar
  111. Rohde M, Müller E, Chhatwal GS, Talay SR (2003) Host cell caveolae act as an entry-port for Group A streptococci. Cell Microbiol 5:323–342PubMedGoogle Scholar
  112. Rohde M, Graham RM, Branitzki-Heinemann K, Borchers P, Preuss C, Schleicher I, Zähner D, Talay SR, Fulde M, Dinkla K, Chhatwal GS (2011) Differences in the aromatic domain of homologous streptococcal fibronectin-binding proteins trigger different cell invasion mechanisms and survival rates. Cell Microbiol 13:450–468PubMedGoogle Scholar
  113. Rohde M, Talay SR, Rasmussen M (2012) Molecular mechanisms of Streptococcus dysgalactiae subsp. Equisimilis enabling intravascular persistence. Microbes Infect 14:329–334PubMedGoogle Scholar
  114. Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M, Maione D, Taddei A, Santi I, Ghezzo C, Brettoni C, Buccato S, Margarit I, Grandi G, Telford JL. (2006) Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalacticae. Mol Microbiol 61:126–141PubMedGoogle Scholar
  115. Rubens, CE, Smith S, Hulse M, Chi EY, van Belle G (1992) Respiratory epithelial cell invasion by group B streptococci. Infect Immun 60:5157–5163PubMedGoogle Scholar
  116. Saulino ET, Bullitt E, Hultgren SJ (2000) Snapshots of usher mediated protein secretion and ordered pilus assembly. Proc Natl Acad Sci USA 97:9240–9245PubMedGoogle Scholar
  117. Schneewind O, Mihaylova-Petkov D, Model P (1993) Cell wall sorting signals in surface proteins of gram-positive bacteria EMBO J 12:4803–4811PubMedGoogle Scholar
  118. Schrager HM, Rheinwald JG, Wessels MR (1996) Hyaluronic acid capsule and the role of streptococcal entry into keratinocytes in invasive skin infection. J Clin Invest 98:1954–1958PubMedGoogle Scholar
  119. Schrager HM, Alberti S, Cywes C, Dougherty GJ, Wessels MR (1998) Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J Clin Invest 101:1708–1716PubMedGoogle Scholar
  120. Schvartz I, Seger D, Shaltiel S (1999) Vitronectin. Int J Biochem Cell Biol 31:539–544PubMedGoogle Scholar
  121. Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES, Briggs JA, Gough TS, Höök M, Campbell ID, Potts JR (2003) Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423:177–181PubMedGoogle Scholar
  122. Schwarz-Linek U, Höök M, Potts JR (2004a) The molecular basis of fibronectin-mediated bacterial adherence to host cells Mol Microbiol 52:631–641PubMedGoogle Scholar
  123. Schwarz-Linek U, Pilka ES, Pickford AR, Kim JH, Höök M, Campbell ID, Potts J R (2004b) High affinity streptococcal binding to human fibronectin requires specific recognition of sequential F1 modules. J Biol Chem 279:39017–39025PubMedGoogle Scholar
  124. Scott JR, Zähner D (2006) Pili with strong attachments: Gram-positive bacteria do it differently Mol Microbiol 62:320–330PubMedGoogle Scholar
  125. Seifert KN, McArthur WP, Bleiweis AS, Brady LJ (2003) Characterization of group B streptococcal glyceraldehydes-3-phosphate dehydrogenase: surface localization, enzymatic activity, and protein–protein interactions. Can J Microbiol 49:350–356PubMedGoogle Scholar
  126. Sela S, Aviv A, Tovi A, Burstein I, Caparon MG, Hanski E (1993) Protein F: an adhesin of Streptococcus pyogenes binds fibronectin via two distinct domains. Mol Microbiol 10:1049–1055PubMedGoogle Scholar
  127. Siemens N, Patenge N, Otto J, Fiedler T, Kreikemeyer B (2011) Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin–integrin-linked kinase (ILK) pathways and protects from macrophage killing. J Biol Chem 286:21612–21622PubMedGoogle Scholar
  128. Simpson WA, Beachey EH (1983) Adherence of group A streptococci to fibronectin on oral epithelial cells. Infect Immun 39:275–279PubMedGoogle Scholar
  129. Soriani M, Santi I, Taddei A, Rappuoli R, Grandi G, Telford JL (2008) Group B streptococci crosses human epithelial cells by a paracellular route. J Infect Dis 193:241–250Google Scholar
  130. Stinson M W, Alder S, Kumar S (2003) Invasion and killing of human endothelial cells by viridans group streptococci. Infect Immun 71:2365–2372PubMedGoogle Scholar
  131. Sylvestky N, Raveh D, Schlesinger Y, Rudensky B, Yinnon AM (2002) Bacteremia due to beta-hemolytic Streptococcus group G: increasing incidence and clinical characteristics of patients. Am J Med 112:622–626Google Scholar
  132. Talay SR, Valentin-Weigand P, Jerlstrom PG, Timmis KN, Chhatwal GS (1992) Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect Immun 60: 3837–3844PubMedGoogle Scholar
  133. Talay SR, Valentin-Weigand P, Timmis KN, Chhatwal GS (1994) Domain structure and conserved epitopes of Sfb protein, the fibronectin-binding adhesin of Streptococcus pyogenes. Mol Microbiol 13:531–539PubMedGoogle Scholar
  134. Talay SR, Zock A, Rohde M, Molinari G, Oggioni M, Pozzi G, Guzman CA, Chhatwal GS (2000) Co-operative binding of human fibronectin to SfbI protein triggers streptococcal invasion into respiratory epithelial cells. Cell Microbiol 2:521–535PubMedGoogle Scholar
  135. Talbot UM, Paton AW, and Paton JC (1996). Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect Immun 64:3772–3777PubMedGoogle Scholar
  136. Telford JT, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Pili in Gram-positive pathogens. Nat Rev Microbiol 4:509–519PubMedGoogle Scholar
  137. Terao Y, Kawabata S, Kunitomo E, Murakami J, Nakagawa I, Hamada S (2001) Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol 42:75–86PubMedGoogle Scholar
  138. Terao Y, Kawabata S, Nakata M, Nakagawa I, Hamada S (2002) Molecular characterization of a novel fibronectin-binding protein of Streptococcus pyogenes strains isolated from toxic shock-like syndrome patients. J Biol Chem 277:47428–47435PubMedGoogle Scholar
  139. Thulin P, Johansson L, Low DE, Gan BS, Kotb M, McGeer A, Norrby-Teglund A (2006) Viable Group A streptococci in macrophage during acut soft tissue infection. PLos Med 3:e53PubMedGoogle Scholar
  140. Ton-That H, Marraffini LA, Schneewind O (2004) Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694:269–278PubMedGoogle Scholar
  141. Towers RJ, Fagan PK, Talay SR, Currie BJ, Sriprakash KS, Walker MJ, Chhatwal GS (2003) Evolution of sfbI encoding streptococcal fibronectin-binding protein I: horizontal genetic transfer and gene mosaic structure. J Clin Microbiol 41:5398–5406PubMedGoogle Scholar
  142. van Putten JP, Duensing, TD, and Cole RL (1998) Entry of OpaA+gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol Microbiol 29:369–379PubMedGoogle Scholar
  143. Veasy LG, Tani LY, Daly JA, Korgenski K, Miner L, Bale J, Kaplan EL, Musser JM, Hill HR (2004) Temporal association of the appearance of mucoid strains of Streptococcus pyogenes with a continuing high incidence of rheumatic fever in Utah. Pediatrics 113, e168–172PubMedGoogle Scholar
  144. Wessels MR, Bronze MS (1994) Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc Natl Acad Sci USA 91:12238–12242PubMedGoogle Scholar
  145. Wessels MR, Moses AE, Goldberg JB, DiCesare TJ (1991) Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci USA 88:8317–8321PubMedGoogle Scholar
  146. Wessels MR, Goldberg JB, Moses AE, DiCesare TJ (1994) Effects on virulence of mutations in a locus essential for hyaluronic acid capsule expression in group A streptococci. Infect Immun 62:433–441PubMedGoogle Scholar
  147. Wilson AT (1959) The relative importance of the capsule and the M-antigen in determining colony form of group A streptococci. J Exp Med 109:257–270PubMedGoogle Scholar
  148. Wood DN, Chaussee MA, Chaussee MS, Buttaro BA (2005) Persistence of Streptococcus pyogenes in stationary-phase cultures. J Bacteriol 187:3319–3328PubMedGoogle Scholar
  149. Wu H, Fives-Taylor PM (1999) Identification of dipeptide repeats and cell wall sorting signal in the fimbriae-associated adhesion, Fap1, of Streptococcus parasanguis. Mol Microbiol 34:1070–1081PubMedGoogle Scholar
  150. Yanagawa R, Honda E (1976) Presence of pili in species of human and animal parasites and pathogens of the genus corynebacterium. Infect Immun 13:1293–1295PubMedGoogle Scholar
  151. Yanagawa R, Otsuki K Tokui T (1968) Electron microscopy of fine structure of Corynebacterium renale with special reference to pili. Jpn J Vet Res 16:31–37PubMedGoogle Scholar
  152. Yilmaz O, Yao L, Maeda K, Rose TM, Lewis EL, Duman M, Lamont RJ, Ojcius DM (2008) ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis. Cell Microbiol 10:863–875PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Medical MicrobiologyHelmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations