Skip to main content

Emerging Antibody-based Products

  • Chapter
  • First Online:
Plant Viral Vectors

Abstract

Antibody-based products are not widely available to address many global health challenges due to high costs, limited manufacturing capacity, and long manufacturing lead times. There are now tremendous opportunities to address these industrialization challenges as a result of revolutionary advances in plant virus-based transient expression. This review focuses on some antibody-based products that are in preclinical and clinical development, and have scaled up manufacturing and purification (mg of purified mAb/kg of biomass). Plant virus-based antibody products provide lower upfront cost, shorter time to clinical and market supply, and lower cost of goods (COGs). Further, some plant virus-based mAbs may provide improvements in pharmacokinetics, safety and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

mAb:

monoclonal antibody

HIV:

human immunodeficiency virus

HSV:

herpes simplex virus

RSV:

respiratory syncytial virus

∆XF:

xylose and fucose knockout

CHO:

Chinese hamster ovary

gD:

glycoprotein D

NHL:

Non-Hodgkin’s lymphoma

F-L:

follicular B-cell lymphoma

GnGn:

human like biantennary N-glycans with terminal N-acetylglucosamine on each branch

CHT:

ceramic hydroxyapatite

References

  • BARDA Strategic plan 2011–2016

    Google Scholar 

  • Bendandi M (2006) Clinical benefit of idiotype vaccines: too many trials for a clever demonstration. Rev Recent Clin Trials 1:67–74

    Article  PubMed  CAS  Google Scholar 

  • Bendandi M (2008) Aiming at a curative strategy for follicular lymphoma. CA Cancer J Clin 58:305–317

    Article  PubMed  Google Scholar 

  • Bendandi M (2009) Idiotype vaccines for lymphoma: prof-of-principles and clinical trial failures. Nat Rev Cancer 9:675–681

    Article  PubMed  CAS  Google Scholar 

  • Bendandi M, Marillonnet S, Kandzia R et al (2010) Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Ann Oncol 21(12):2420–2427

    Article  PubMed  CAS  Google Scholar 

  • Bendandi M, Becerra C et al (2011a) Idiotypic vaccination of patients with relapsed follicular lymphoma using a novel vaccine formulation including a tobacco plant-produced tumor specific idiotype. Blood (ASH annual meeting abstracts) 118:1649

    Google Scholar 

  • Bendandi et al (2011b) Single agent bendamustine is an effective pre-vaccine treatment for patients with relapsed follicular lymphoma undergoing idiotypic vaccination blood (ASH annual meeting abstracts), 118: 2691

    Google Scholar 

  • CAMI (2011) Multipurpose prevention technologies for reproductive health. Report of a symposium, Washington, DC

    Google Scholar 

  • Capodicasa C, Chiani P, Bromuro C et al (2011) Plant production of anti-glucan antibodies for immunotherapy of fungal infections in humans. Plant Biotech J 9:776–787

    Article  CAS  Google Scholar 

  • Castilho A, Strasser R, Stadlmann J et al (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285:15923–15930

    Article  PubMed  CAS  Google Scholar 

  • Castilho A, Bohorova N, Grass J, Bohorov O, Zeitlin L, Whaley K, Altmann F, Steinkellner H (2011) Rapid high yield production of different glycoforms of ebola virus monoclonal antibody. PLoS One 6:e26040

    Article  PubMed  CAS  Google Scholar 

  • Chargelegue D, Drake PMW, Obregon P et al (2005) Highly immunogenic and protective recombinant vaccine candidate expressed in transgenic plant. Infect Immun 73:5915–5922

    Article  PubMed  CAS  Google Scholar 

  • Cone RA, Whaley KJ (1994) Monoclonal antibodies for reproductive health: preventing sexual transmission of disease and pregnancy with topically applied antibodies. Am J Reprod Immunol 32:114–131

    Article  PubMed  CAS  Google Scholar 

  • De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotech J 8:529–563

    Article  Google Scholar 

  • Falsey AR, Walsh EE (2000) Respiratory syncytial virus infection in adults. Clin Microbiol Rev 13:371–384

    Article  PubMed  CAS  Google Scholar 

  • FDA (2004) Challenge and opportunity on the critical path to new medical products, food and drug administration

    Google Scholar 

  • Giritch A, Marillonnet S, Engler C et al (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. PNAS 103:14701–14706

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Fitchette AC, Menu Bouaouiche L et al (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotech J 8:564–587

    Article  CAS  Google Scholar 

  • Han LL, Alexander JP, Anderson LJ (1999) Respiratory syncytial virus pneumonia among the elderly: an assessment of disease burden. J Infect Dis 179:25–30

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Phoolcharoen W, Lai H et al (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106:9–17

    PubMed  CAS  Google Scholar 

  • Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  PubMed  CAS  Google Scholar 

  • Hudziak RM et al (1989) p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 3:1165–1172

    Google Scholar 

  • Joffe S, Ray GT, Escobar GJ et al (1999) Cost-effectiveness of respiratory syncytial virus prophylaxis among preterm infants. Pediatr 104:419–427

    Article  CAS  Google Scholar 

  • Kelley B (2007) Very large scale monoclonal antibody purification: the case for conventional unit operations. Biotechnol Prog 23:995–1008

    PubMed  CAS  Google Scholar 

  • Klimyuk V et al. (2012) Production of recombinant antigens and antibodies in nicotiana benthamiana using magnifection technology: GMP-compliant facilities for Small- and Large-Scale Manufacturing (THIS BOOK)

    Google Scholar 

  • Komarova TS, Kosorukov SV et al (2011) Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One 6:e17541

    Article  PubMed  CAS  Google Scholar 

  • Lai H, Engle M, Fuchs A et al (2010) Monoclonal antibody produced in plants efficiently treats west nile virus infection in mice. PNAS 107:2419–2424

    Article  PubMed  CAS  Google Scholar 

  • Lai H, He J, Engle M et al (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotech J 10:95–104

    Article  CAS  Google Scholar 

  • Lopez-Diaz CA, Inoges S (2009) Future of idiotypic vaccination for B-cell lymphoma. Expert Rev Vaccines 8:43–50

    Article  Google Scholar 

  • McCormick AA, Reinl SJ et al (2003) Individualized human scFv vaccines produced in plants: humoral anti-idiotype responses in vaccinated mice confirm relevance to the tumor Ig. J Immunol Methods 278:95–104

    Article  PubMed  CAS  Google Scholar 

  • McCormick AA, Reddy S et al (2008) Plant-produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a phase I clinical study. PNAS 105:10131–10136

    Article  PubMed  CAS  Google Scholar 

  • Morris G et al (2010) A prospective randomized double blind placebo-controlled phase 1 pharmacokinetic and safety study of a vaginal microbicide gel containing three potent broadly neutralizing monoclonal antibodies (2F5, 2G12, 4E10) (MabGel). Microbicides (Abstract LB1)

    Google Scholar 

  • Neal LM et al (2010) A monoclonal immunoglobulin G antibody directed against an immunodominant linear epitope on the ricin A chain confers systemic and mucosal immunity to ricin. Infect Immun 78:552–61

    Google Scholar 

  • Niwa R et al (2004) Defucosylated chimeric anti-CC chemokine receptor 4 IgGl with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–2133

    Article  PubMed  CAS  Google Scholar 

  • O’Hara JM, Whaley KJ, Pauly M (2012) Plant-based expression of a partially humanized neutralizing monoclonal IgG directed against an immunodominant epitope on the ricin toxin A subunit. Vaccine 30:1239–1243

    Article  PubMed  Google Scholar 

  • O’Hara JM, Neal LM, McCarthy EA et al (2010) Folding domains within the ricin toxin A subunit as targets of protective antibodies. Vaccine 28:7035–7046

    Article  PubMed  Google Scholar 

  • Olsnes S (2004) The history of ricin, abrin and related toxins. Toxicon 44:361–370

    Article  PubMed  CAS  Google Scholar 

  • Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, Mason HS (2011a) Expression of an immunogenic ebola immune complex in nicotiana benthamiana. Plant Biotech J 9:807–816

    Article  CAS  Google Scholar 

  • Phoolcharoen W, Dye JM, Kilbourne J, Piensook K, Pratt WD, Arntzen CJ, Chen Q, Mason HS, Herbst-Kralovetz MM (2011b) A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge. PNAS 108:20695–20700

    Article  PubMed  CAS  Google Scholar 

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  PubMed  CAS  Google Scholar 

  • Pogue GP, Vojdani F, Palmer KE et al (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotech J 8:638–654

    Article  CAS  Google Scholar 

  • Roeckl-Wiedmann I, Liese JG, Grill E et al (2003) Economic evaluation of possible prevention of RSV-related hospitalizations in premature infants in Germany. Eur J Pediatr 162:237–244

    PubMed  Google Scholar 

  • Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury F, Sack M, Stadlmann J et al (2010) Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLoS One 5:1–10

    Article  Google Scholar 

  • Schahs M, Strasser R, Stadlmann J et al (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotech J 5:657–663

    Article  Google Scholar 

  • Shields RL et al (2002) Lack of fucose on human IgGl N-linked oligosaccharide improves binding to human FcyRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  PubMed  CAS  Google Scholar 

  • Shinkawa T et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgGl complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    Article  PubMed  CAS  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  PubMed  CAS  Google Scholar 

  • Smith I, Procter M, Gelber RD et al (2007) Two year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomized controlled trial. Lancet 369:29–36

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 15:371–383

    Article  Google Scholar 

  • Strasser R, Stadlmann J, Schahs M et al (2008) Generation of glyco-engineered nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotech J 6:392–402

    Article  CAS  Google Scholar 

  • Strasser R, Castilho A, Stadlmann J et al (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485

    Article  PubMed  CAS  Google Scholar 

  • Vezina L-P, Faye L, Lerouge P et al (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotech J 7:442–455

    Article  CAS  Google Scholar 

  • Vogel AM, McKinlay MJ, Ashton T et al (2002) Cost-effectiveness of palivizumab in New Zealand. J Paediatr Child Health 38:352–357

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Marillonnet S, Hause G et al (2006) Immunoabsorbent nanoparticles based on a tobamorvirus displaying protein A. PNAS 103:17678–17717

    Article  PubMed  CAS  Google Scholar 

  • Whaley KJ, Hiatt A, Zeitlin A (2011) Emerging antibody products and nicotiana manufacturing. Hum Vaccines 7:349–356

    Article  CAS  Google Scholar 

  • Wilson JA, Hevey M, Bakken R et al (2000) Epitopes involved in antibody-mediated protection from ebola virus. Science 287:1664–1666

    Article  PubMed  CAS  Google Scholar 

  • Yermakova A, Mantis NJ (2011) Protective immunity to ricin toxin conferred by antibodies against the toxin’s binding subunit (RTB). Vaccine 29:7925–7935

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L, Pettitt J, Scully C et al (2011) Enhanced potency of a fucose-free monoclonal antibody being developed as an ebola virus immunoprotectant. PNAS 108:20690–20694

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L et al (2012) Prophylactic and therapeutic testing of nicotiana-derived anti-RSV human monoclonal antibodies in the cotton rat model. (Submitted)

    Google Scholar 

Download references

Acknowledgments

Some of the work described was supported by grant numbers U19AI096398, AI62150, AI061270, AI063681, from NIAID, DAMD 17-02-2-0015 from the department of defense, and partially supported by the defense threat reduction agency grant no. 4.10007-08-RD-B. The content is solely the responsibility of the authors and does not necessarily represent the official views of the national institutes of health, U.S. Army, or department of defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Whaley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whaley, K.J. et al. (2012). Emerging Antibody-based Products. In: Palmer, K., Gleba, Y. (eds) Plant Viral Vectors. Current Topics in Microbiology and Immunology, vol 375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_240

Download citation

Publish with us

Policies and ethics