Skip to main content

Canonical and Non-Canonical Notch Signaling in CD4+ T Cells

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 360))

Abstract

For T cells to become fully activated, they must integrate a myriad of signals, both extrinsic and intrinsic. External stimuli accrued through various cell surface receptors are transduced and amplified through a coordinated circuitry of signaling cascades that ultimately result in the transcription of new genes. Along the way, extracellular and intracellular signaling components function to impart a fully activated state. Evidence is accumulating to show that the Notch family of cell surface receptors, long known to function as transcriptional regulators through their interactions with the canonical nuclear binding protein CSL/RBP-J, may also be playing an as-yet-unappreciated role in T cell activation by virtue of its signaling via non-canonical as well as nonnuclear mechanisms. In this review we will discuss these and other better-known means by which Notch signaling influences T cell responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler SH, Chiffoleau E, Xu L, Dalton NM, Burg JM, Wells AD, Wolfe MS, Turka LA, Pear WS (2003) Notch signaling augments T cell responsiveness by enhancing CD25 expression. J Immunol 171:2896–2903

    PubMed  CAS  Google Scholar 

  • Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA (2007) Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27:89–99

    Article  PubMed  CAS  Google Scholar 

  • Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA (2004) Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:515–526

    Article  PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  PubMed  CAS  Google Scholar 

  • Auderset F, Schuster S, Coutaz M, Koch U, Desgranges F, Merck E, Macdonald HR, Radtke F, Tacchini-Cottier F (2012) Redundant Notch1 and Notch2 signaling is necessary for IFNgamma secretion by T Helper 1 cells during Infection with Leishmania major. PLoS Pathog 8:e1002560

    Article  PubMed  CAS  Google Scholar 

  • Bassil R, Zhu B, Lahoud Y, Riella LV, Yagita H, Elyaman W, Khoury SJ (2011) Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. J Immunol 187:3380–3389

    Article  Google Scholar 

  • Benson RA, Adamson K, Corsin-Jimenez M, Marley JV, Wahl KA, Lamb JR, Howie SE (2005) Notch1 co-localizes with CD4 on activated T cells and Notch signaling is required for IL-10 production. Eur J Immunol 35:859–369

    Article  PubMed  CAS  Google Scholar 

  • Cho OH, Shin HM, Miele L, Golde TE, Fauq A, Minter LM, Osborne BA (2009) Notch regulates cytolytic effector function in CD8 + T cells. J Immunol 182:3380–3389

    Article  PubMed  CAS  Google Scholar 

  • Elyaman W, Bradshaw EM, Wang Y, Oukka M, Kivisakk P, Chiba S, Yagita H, Khoury SJ (2007) Jagged1 and delta1 differentially regulate the outcome of experimental autoimmune encephalomyelitis. J Immunol 179:5990–5998

    PubMed  CAS  Google Scholar 

  • Elzinga BM, Twomey C, Powell JC, Harte F, McCarthy JV (2009) Interleukin-1 receptor type 1 is a substrate for gamma-secretase-dependent regulated intramembrane proteolysis. J Biol Chem 284:1394–1409

    Article  PubMed  CAS  Google Scholar 

  • Fang TC, Yashiro-Ohtani Y, Del Bianco C, Knoblock DM, Blacklow SC, Pear WS (2007) Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27:100–110

    Article  PubMed  CAS  Google Scholar 

  • Fiorini E, Merck E, Wilson A, Ferrero I, Jiang W, Koch U, Auderset F, Laurenti E, Tacchini-Cottier F, Pierres M, Radtke F, Luther SA, Macdonald HR (2009) Dynamic regulation of notch 1 and notch 2 surface expression during T cell development and activation revealed by novel monoclonal antibodies. J Immunol 183:7212–7222

    Article  PubMed  CAS  Google Scholar 

  • Giniger E (1998) A role for Abl in Notch signaling. Neuron 20:667–681

    Article  PubMed  CAS  Google Scholar 

  • Haapasalo A, Kovacs DM (2011) The many substrates of presenilin/gamma-secretase. J Alzheimers Dis 25:3–28

    PubMed  CAS  Google Scholar 

  • Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR, Tsujimoto Y (1999) Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126:3415–3424

    PubMed  CAS  Google Scholar 

  • Hansson ML, Popko-Scibor AE, Saint Just Ribeiro M, Dancy BM, Lindberg MJ, Cole PA, Wallberg AE (2009) The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity. Nucleic Acids Res 37:2996–3006

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Sen A, Kirchhausen T, Artavanis-Tsakonas S (2011) Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J Cell Biol 195:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Hsieh JJ-D, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD (1996) Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol Cell Biol 16:952–959

    PubMed  CAS  Google Scholar 

  • Jehn BM, Bielke W, Pear WS, Osborne BA (1999) Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J Immunol 162:635–638

    PubMed  CAS  Google Scholar 

  • Jin B, Shen H, Lin S, Li JL, Chen Z, Griffin JD, Wu L (2010) The mastermind-like 1 (MAML1) co-activator regulates constitutive NF-kappaB signaling and cell survival. J Biol Chem 285:14356–14365

    Article  PubMed  CAS  Google Scholar 

  • Keerthivasan S, Suleiman R, Lawlor R, Roderick J, Bates T, Minter L, Anguita J, Juncadella I, Nickoloff BJ, Le Poole IC, Miele L, Osborne BA (2011) Notch signaling regulates mouse and human Th17 differentiation. J Immunol 187:692–701

    Article  PubMed  CAS  Google Scholar 

  • Klueg KM, Muskavitch Marc MAT (1999) Ligand-receptor interactions and trans-endocytosis of delta, serrate and Notch: members of the Notch signalling pathway in Drosophila. J Cell Sci 112:3289–3297

    PubMed  CAS  Google Scholar 

  • Le Gall M, De Mattei C, Giniger E (2008) Molecular separation of two signaling pathways for the receptor, Notch. Dev Biol 313:556–567

    Article  PubMed  Google Scholar 

  • Lee SH, Wang X, DeJong J (2000) Functional interactions between an atypical NF-kappaB site from the rat CYP2B1 promoter and the transcriptional repressor RBP-Jkappa/CBF1. Nucleic Acids Res 28:2091–2098

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Teng L, Bailey SK, Frost AR, Bland KI, LoBuglio AF, Ruppert JM, Lobo-Ruppert SM (2009) Epithelial transformation by KLF4 requires Notch1 but not canonical Notch1 signaling. Cancer Biol Ther 8:1840–1851

    Article  PubMed  CAS  Google Scholar 

  • Mann J, Oakley F, Johnson PW, Mann DA (2002) CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-kappa B, AND CBF1. J Biol Chem 277:17125–17138

    Article  PubMed  CAS  Google Scholar 

  • McElhinny AS, Li JL, Wu L (2008) Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27:5138–5147

    Article  PubMed  CAS  Google Scholar 

  • Minter LM, Turley DM, Das P, Shin HM, Joshi I, Lawlor RG, Cho OH, Palaga T, Gottipati S, Telfer JC, Kostura L, Fauq AH, Simpson K, Such KA, Miele L, Golde TE, Miller SD, Osborne BA (2005) Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6:680–688

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee T, Kim WS, Mandal L, Banerjee U (2011) Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332:1210–1213

    Article  PubMed  CAS  Google Scholar 

  • Palaga T, Miele L, Golde TE, Osborne B (2003) TCR-mediated Notch signaling regulates proliferation and IFN-gamma production in peripheral T cells. J Immunol 171:3019–3024

    PubMed  CAS  Google Scholar 

  • Palaga T and Minter LM (2012) Notch signaling and its emerging role in autoimmunity. Front Biol. doi:10.1007/s11515-012-1209-z (epub ahead of print)

  • Perumalsamy LR, Nagala M, Banerjee P, Sarin A (2009) A hierarchical cascade activated by non-canonical Notch signaling and the mTOR-Rictor complex regulates neglect-induced death in mammalian cells. Cell Death Differ 16:879–889

    Article  PubMed  CAS  Google Scholar 

  • Perumalsamy LR, Nagala M, Sarin A (2010) Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival. Proc Natl Acad Sci U S A 107:6882–6887

    Article  PubMed  CAS  Google Scholar 

  • Raafat A, Lawson S, Bargo S, Klauzinska M, Strizzi L, Goldhar AS, Buono K, Salomon D, Vonderhaar BK, Callahan R (2009) Rbpj conditional knockout reveals distinct functions of Notch4/Int3 in mammary gland development and tumorigenesis. Oncogene 28:219–230

    Article  PubMed  CAS  Google Scholar 

  • Reynolds ND, Lukacs NW, Long N, Karpus WJ (2011) Delta-like 4 regulates central nervous system T cell accumulation during experimental autoimmune encephalomyelitis. J Immunol 187:2803–2813

    Article  PubMed  CAS  Google Scholar 

  • Rutz S, Mordmüller B, Sakano S, Scheffold A (2005) Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells. Eur J Immunol 35:2443–2451

    Article  PubMed  CAS  Google Scholar 

  • Sade H, Krishna S, Sarin A (2004) The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. JCB 279:2937–2944

    CAS  Google Scholar 

  • Saxena MT, Schroeter EH, Mumm JS, Kopan R (2001) Murine Notch homologs (N1–4) undergo presenilin-dependent proteolysis. JBC 276:40268–40273

    CAS  Google Scholar 

  • Seo W, Ziltener HJ (2009) CD43 processing and nuclear translocation of CD43 cytoplasmic tail are required for cell homeostasis. Blood 114:3567–3577

    Article  PubMed  CAS  Google Scholar 

  • Shawber C, Nofziger D, Hsieh JJ, Lindsell C, Bogler O, Hayward D, Weinmaster G (1996) Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 122:3765–3773

    PubMed  CAS  Google Scholar 

  • Shen H, McElhinny AS, Cao Y, Gao P, Liu J, Bronson R, Griffin JD, Wu L (2006) The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev 20:675–688

    Article  PubMed  CAS  Google Scholar 

  • Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA (2006) Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J 25:129–138

    Article  PubMed  CAS  Google Scholar 

  • Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T (1994) Notch1 is essential for postimplantation development in mice. Genes Dev 8:707–719

    Article  PubMed  CAS  Google Scholar 

  • Takeichi N, Yanagisawa S, Kaneyama T, Yagita H, Jin YH, Kim BS, Koh CS (2010) Ameliorating effects of anti-Dll4 mAb on Theiler’s murine encephalomyelitis virus-induced demyelinating disease. Int Immunol 22:729–738

    Article  PubMed  CAS  Google Scholar 

  • Tanigaki K, Tsuji M, Yamamoto N, Han H, Tsukada J, Inoue H, Kubo M, Honjo T (2004) Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20:611–622

    Article  PubMed  CAS  Google Scholar 

  • Tao X, Constant S, Jorritsma P, Bottomly K (1997) Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4 + T cell differentiation. J Immunol 159:5956–5963

    PubMed  CAS  Google Scholar 

  • Vales LD, Friedl EM (2002) Binding of C/EBP and RBP (CBF1) to overlapping sites regulates interleukin-6 gene expression. J Biol Chem 277:42438–42446

    Article  PubMed  CAS  Google Scholar 

  • van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M (2009) Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. JBC 284:31018–31027

    Article  Google Scholar 

  • Vied C, Kalderon D (2009) Hedgehog-stimulated stem cells depend on non-canonical activity of the Notch co-activator mastermind. Development 136:2177–2186

    Article  PubMed  CAS  Google Scholar 

  • Wongchana W, Palaga T (2012) Direct regulation of interleukin-6 expression by Notch signaling in macrophages. Cell Mol Immunol 9:155–162

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Aster JC, Blacklow SC, Lake R, Atravanis-Tsakonas S, Griffin JD (2000) MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26:484–489

    Article  PubMed  CAS  Google Scholar 

  • Zecchini V, Brennan K, Martinez-Arias A (1999) An activity of Notch regulates JNK signalling and affects dorsal closure in Drosophila. Curr Biol 9:460–469

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Katzman RB, Delmolino LM, Bhat I, Zhang Y, Gurumurthy CB, Germaniuk-Kurowska A, Reddi HV, Solomon A, Zeng MS, Kung A, Ma H, Gao Q, Dimri G, Stanculescu A, Miele L, Wu L, Griffin JD, Wazer DE, Band H, Band V (2007) The notch regulator MAML1 interacts with p53 and functions as a coactivator. J Biol Chem 282:11969–11981

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the Minter and Osborne labs for their contributions and apologize to colleagues whose work was not cited in the interest of space. We particularly thank Richard Goldsby for his insightful comments. This work was supported by NIH AG025531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Osborne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minter, L.M., Osborne, B.A. (2012). Canonical and Non-Canonical Notch Signaling in CD4+ T Cells. In: Radtke, F. (eds) Notch Regulation of the Immune System. Current Topics in Microbiology and Immunology, vol 360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_233

Download citation

Publish with us

Policies and ethics