Skip to main content

Beyond BRAF in Melanoma

  • Chapter
  • First Online:
Therapeutic Kinase Inhibitors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 355))

Abstract

Recent progress in the analysis of genetic alterations in melanoma has identified recurrent mutations that result in the activation of critical signaling pathways promoting growth and survival of tumors cells. Alterations in the RAS-RAF-MAP kinase and PI3-kinase signaling pathways are commonly altered in melanoma. Mutations in BRAF, NRAS, KIT, and GNAQ occur in a mutually exclusive pattern and lead to MAP-kinase activation. Loss of PTEN function, primarily by deletion, is the most common known genetic alteration in the PI3-kinase cascade, and is commonly associated with BRAF mutations (Curtin et al., N Engl J Med 353:2135–2147, 2005; Tsao et al., Cancer Res 60:1800–1804, 2000, J Investig Dermatol 122:337–341, 2004). The growth advantage conveyed by the constitutive activation of these pathways leads to positive selection of cells that have acquired the mutations and in many instances leads to critical dependency of the cancer cells on their activation. This creates opportunities for therapeutic interventions targeted at signaling components within these pathways that are amenable for pharmacological inhibition. This concept follows the paradigm established by the landmark discovery that inhibition of the fusion kinase BCR-ABL can be used to treat chronic myelogenous leukemia (Druker et al., N Engl J Med 344:1031–037, 2001). The review will focus primarily on kinases involved in signaling that are currently being evaluated for therapeutic intervention in melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjei AA, Cohen RB, Franklin W et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 26:2139–2146. doi:10.1200/JCO.2007.14.4956

    Article  PubMed  CAS  Google Scholar 

  • Ahmed NU, Ueda M, Ito A et al (1997) Expression of fibroblast growth factor receptors in naevus-cell naevus and malignant melanoma. Melanoma Res 7:299–305

    Article  PubMed  CAS  Google Scholar 

  • Ashman LK (1999) The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 31:1037–1051. doi:10.1016/S1357-2725(99)00076-X

    Article  PubMed  CAS  Google Scholar 

  • Bastian BC, Kashani-Sabet M, Hamm H et al (2000a) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60:1968–1973

    PubMed  CAS  Google Scholar 

  • Bastian BC, LeBoit PE, Pinkel D (2000b) Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Amn J Pathol 157:967–972

    Article  CAS  Google Scholar 

  • Bastian BC, Olshen AB, LeBoit PE, Pinkel D (2003) Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 163:1765–1770

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Curtin JA, Pinkel D, Bastian BC (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127:179–182

    Article  PubMed  CAS  Google Scholar 

  • Beadling C, Jacobson-Dunlop E, Hodi FS et al (2008) KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 14:6821–6828. doi:14/21/6821

    Article  PubMed  CAS  Google Scholar 

  • Besmer P, Murphy JE, George PC et al (1986) A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 320:415–421. doi:10.1038/320415a0

    Article  PubMed  CAS  Google Scholar 

  • Birck A, Ahrenkiel V, Zeuthen J et al (2000) Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J Invest Dermatol 114:277–280

    Article  PubMed  CAS  Google Scholar 

  • Brannan CI, Lyman SD, Williams DE et al (1991) Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A 88:4671–4674

    Article  PubMed  CAS  Google Scholar 

  • Buac K, Xu M, Cronin J et al (2009) NRG1/ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell Melanoma Res 22:773–784. doi:10.1111/j.1755-148X.2009.00616.x

    Article  PubMed  CAS  Google Scholar 

  • Carvajal R, Chapman P, Wolchok J et al (2009) A phase II study of imatinib mesylate (IM) for patients with advanced melanoma harboring somatic alterations of KIT. J Clin Oncol (Meeting Abstracts) (15S):9001

    Google Scholar 

  • Chudnovsky Y, Adams AE, Robbins PB et al (2005) Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet 37:745–749. doi:ng1586

    Article  PubMed  CAS  Google Scholar 

  • Cronin JC, Wunderlich J, Loftus SK et al (2009) Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res 22:435–444. doi:10.1111/j.1755-148X.2009.00578.x

    Article  PubMed  CAS  Google Scholar 

  • Curtin JA, Fridlyand J, Kageshita T et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  PubMed  CAS  Google Scholar 

  • Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346

    Article  PubMed  CAS  Google Scholar 

  • Dai DL, Martinka M, Li G (2005) Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 23:1473–1482. doi:10.1200/JCO.2005.07.168

    Article  PubMed  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954. doi:10.1038/nature00766

    Article  PubMed  CAS  Google Scholar 

  • Davies MA, Stemke-Hale K, Tellez C et al (2008) A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 99:1265–1268. doi:10.1038/sj.bjc.6604637

    Article  PubMed  CAS  Google Scholar 

  • Delord J, Houede N, Awada A et al (2010) First-in-human phase I safety, pharmacokinetic (PK), and pharmacodynamic (PD) analysis of the oral MEK-inhibitor AS703026 [two regimens (R)] in patients (pts) with advanced solid tumors. J Clin Oncol 28

    Google Scholar 

  • Dhawan P, Singh AB, Ellis DL, Richmond A (2002) Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 62:7335–7342

    PubMed  CAS  Google Scholar 

  • Djerf EA, Trinks C, Abdiu A et al (2009) ErbB receptor tyrosine kinases contribute to proliferation of malignant melanoma cells: inhibition by gefitinib (ZD1839). Melanoma Res 19:156–166. doi:10.1097/CMR.0b013e32832c6339

    Article  PubMed  CAS  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037. doi:10.1056/NEJM200104053441401

    Article  PubMed  CAS  Google Scholar 

  • Dummer R, Robert C, Chapman PB et al (2008) AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: An open-label, randomized, multicenter, phase II study. J Clin Oncol 26

    Google Scholar 

  • Economou MA, All-Ericsson C, Bykov V et al (2008) Receptors for the liver synthesized growth factors IGF-1 and HGF/SF in uveal melanoma: intercorrelation and prognostic implications. Acta Ophthalmol 86(Thesis 4):20–25. doi:10.1111/j.1755-3768.2008.01182.x

    PubMed  Google Scholar 

  • Eder JP, Appleman L, Heath E et al (2011) A phase I study of a novel spectrum selective kinase inhibitor (SSKI), XL880, administered orally in patients (pts) with advanced solid tumors (STs).–ASCO. http://www.asco.org/ascov2/Meetings/Abstracts?&vmview=abst_detail_view&confID=40&abstractID=32125. Accessed 3 Jun 2011

  • Ehlers JP, Harbour JW (2006) Molecular pathobiology of uveal melanoma. Int Ophthalmol Clin 46:167–180

    Article  PubMed  Google Scholar 

  • Fry DW, Bedford DC, Harvey PH et al (2001) Cell cycle and biochemical effects of PD 0183812. A potent inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. J Biol Chem 276:16617–16623. doi:10.1074/jbc.M008867200

    Article  PubMed  CAS  Google Scholar 

  • Gartside MG, Chen H, Ibrahimi OA et al (2009) Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res 7:41–54. doi:10.1158/1541-7786.MCR-08-0021

    Article  PubMed  CAS  Google Scholar 

  • Giehl KA, Nägele U, Volkenandt M, Berking C (2007) Protein expression of melanocyte growth factors (bFGF, SCF) and their receptors (FGFR-1, c-kit) in nevi and melanoma. J Cutan Pathol 34:7–14. doi:10.1111/j.1600-0560.2006.00569.x

    Article  PubMed  CAS  Google Scholar 

  • Gogas HJ, Kirkwood JM, Sondak VK (2007) Chemotherapy for metastatic melanoma: time for a change? Cancer 109:455–464. doi:10.1002/cncr.22427

    Article  PubMed  CAS  Google Scholar 

  • Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11:353–361. doi:10.1016/j.molmed.2005.06.007

    Article  PubMed  CAS  Google Scholar 

  • Guldberg P, Straten PT, Birck A et al (1997) Disruption of the mmac1/pten gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 57:3660–3663

    PubMed  CAS  Google Scholar 

  • Halaban R, Langdon R, Birchall N et al (1988a) Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J Cell Biol 107:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Halaban R, Kwon BS, Ghosh S et al (1988b) bFGF as an autocrine growth factor for human melanomas. Oncogene Res 3:177–186

    PubMed  CAS  Google Scholar 

  • Hodi FS, Friedlander P, Corless CL et al (2008) Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26:2046–2051

    Article  PubMed  CAS  Google Scholar 

  • Hsu M-Y, Meier F, Herlyn M (2002) Melanoma development and progression: a conspiracy between tumor and host. Differentiation 70:522–536. doi:10.1046/j.1432-0436.2002.700906.x

    Article  PubMed  CAS  Google Scholar 

  • Infante JR, Fecher LA, Nallapareddy S et al (2010) Safety and efficacy results from the first-in-human study of the oral MEK 1/2 inhibitor GSK1120212. J Clin Oncol 28

    Google Scholar 

  • Inman JL, Kute T, White W et al (2003) Absence of HER2 overexpression in metastatic malignant melanoma. J Surg Oncol 84:82–88. doi:10.1002/jso.10297

    Article  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249. doi:10.3322/caac.20006

    Article  PubMed  Google Scholar 

  • Khan MA, Andrews S, Ismail-Khan R et al (2006) Overall and progression-free survival in metastatic melanoma: analysis of a single-institution database. Cancer Control 13:211–217

    PubMed  Google Scholar 

  • Kim KB, Eton O, Davis DW et al (2008) Phase II trial of imatinib mesylate in patients with metastatic melanoma. Br J Cancer 99:734–740. doi:10.1038/sj.bjc.6604482

    Article  PubMed  CAS  Google Scholar 

  • Kluger HM, DiVito K, Berger AJ et al (2004) Her2/neu is not a commonly expressed therapeutic target in melanoma–a large cohort tissue microarray study. Melanoma Res 14:207–210

    Article  PubMed  CAS  Google Scholar 

  • Kunisada T, Yoshida H, Yamazaki H et al (1998) Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development 125:2915–2923

    PubMed  CAS  Google Scholar 

  • Kunisada T, Yamazaki H, Hirobe T et al (2000) Keratinocyte expression of transgenic hepatocyte growth factor affects melanocyte development, leading to dermal melanocytosis. Mech Dev 94:67–78

    Article  PubMed  CAS  Google Scholar 

  • Lassam N, Bickford S (1992) Loss of C-Kit expression in cultured melanoma-cells. Oncogene 7:51–56

    PubMed  CAS  Google Scholar 

  • Linos E, Swetter SM, Cockburn MG et al (2009) Increasing burden of melanoma in the United States. J Invest Dermatol 129:1666–1674. doi:10.1038/jid.2008.423

    Article  PubMed  CAS  Google Scholar 

  • Longley BJ Jr, Morganroth GS, Tyrrell L et al (1993) Altered metabolism of mast-cell growth factor (c-kit ligand) in cutaneous mastocytosis. N Engl J Med 328:1302–1307. doi:10.1056/NEJM199305063281803

    Article  PubMed  Google Scholar 

  • Lutzky J, Bauer J, Bastian BC (2008) Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 21(4):492–495

    Article  PubMed  Google Scholar 

  • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318. doi:10.1038/nrm2672

    Article  PubMed  Google Scholar 

  • Maira S-M, Stauffer F, Brueggen J et al (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851–1863. doi:10.1158/1535-7163.MCT-08-0017

    Article  PubMed  CAS  Google Scholar 

  • Maldonado JL, Fridlyand J, Patel H et al (2003) Determinants of BRAF mutations in primary melanoma. J Natl Cancer Inst 95:1878–1890

    Article  PubMed  CAS  Google Scholar 

  • Margolin K, Longmate J, Baratta T et al (2005) CCI-779 in metastatic melanoma: a phase II trial of the California Cancer consortium. Cancer 104:1045–1048. doi:10.1002/cncr.21265

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Zsebo KM, Hogan BL (1990) Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature 347:667–669. doi:10.1038/347667a0

    Article  PubMed  CAS  Google Scholar 

  • McGovern VJ, Cochran AJ, Van der Esch EP et al (1986) The classification of malignant melanoma, its histological reporting and registration: a revision of the 1972 Sydney classification. Pathology 18:12–21

    Article  PubMed  CAS  Google Scholar 

  • Mita MM, Mita AC, Chu QS et al (2008) Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 26:361–367. doi:10.1200/JCO.2007.12.0345

    Article  PubMed  CAS  Google Scholar 

  • Montone KT, Belle P, Elder DE (1997) Proto-oncogene c-kit expression in malignant melanoma: protein loss with tumor progression. Mod Pathol 10(9):939–944

    PubMed  CAS  Google Scholar 

  • Natali PG, Nicotra MR, Winkler AB et al (1992) Progression of human cutaneous melanoma is associated with loss of expression of C-Kit protooncogene receptor. Int J Cancer 52:197–201

    Article  PubMed  CAS  Google Scholar 

  • Nesbit M, Nesbit HK, Bennett J et al (1999) Basic fibroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene 18:6469–6476. doi:10.1038/sj.onc.1203066

    Article  PubMed  CAS  Google Scholar 

  • Noonan FP, Otsuka T, Bang S et al (2000) Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res 60:3738–3743

    PubMed  CAS  Google Scholar 

  • O’Dwyer PJ, LoRusso P, DeMichele A et al (2007) A phase I dose escalation trial of a daily oral CDK 4/6 inhibitor PD-0332991. J Clin Oncol 2007 ASCO Ann Meet Proc 25

    Google Scholar 

  • Padua RA, Barrass NC, Currie GA (1985) Activation of N-ras in a human melanoma cell line. Mol Cell Biol 5:582–585

    PubMed  CAS  Google Scholar 

  • Palavalli LH, Prickett TD, Wunderlich JR et al (2009) Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat Genet 41:518–520. doi:10.1038/ng.340

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Bedikian A, Kim K et al (2011) A phase II study of gefitinib in patients with metastatic melanoma.–ASCO. http://www.asco.org/ascov2/Meetings/Abstracts?&vmview=abst_detail_view&confID=65&abstractID=34308. Accessed 3 Jun 2011

  • Potti A, Moazzam N, Langness E et al (2004) Immunohistochemical determination of HER-2/neu, c-Kit (CD117), and vascular endothelial growth factor (VEGF) overexpression in malignant melanoma. J Cancer Res Clin Oncol 130:80–86

    Article  PubMed  CAS  Google Scholar 

  • Prickett TD, Agrawal NS, Wei X et al (2009) Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet 41:1127–1132. doi:10.1038/ng.438

    Article  PubMed  CAS  Google Scholar 

  • Puri N, Ahmed S, Janamanchi V et al (2007) c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin Cancer Res 13:2246–2253. doi:10.1158/1078-0432.CCR-06-0776

    Article  PubMed  CAS  Google Scholar 

  • Rákosy Z, Vízkeleti L, Ecsedi S et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121:1729–1737. doi:10.1002/ijc.22928

    Article  PubMed  Google Scholar 

  • Reifenberger J, Wolter M, Bostrom J et al (2000) Allelic losses on chromosome arm 10q and mutation of the PTEN (MMAC1) tumour suppressor gene in primary and metastatic malignant melanomas. Virchows Arch 436:487–493

    Article  PubMed  CAS  Google Scholar 

  • Sarker D, Molife R, Evans TRJ et al (2008) A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res 14:2075–2081. doi:10.1158/1078-0432.CCR-07-1466

    Article  PubMed  CAS  Google Scholar 

  • Sauter ER, Nesbit M, Tichansky D et al (2001) Fibroblast growth factor-binding protein expression changes with disease progression in clinical and experimental human squamous epithelium. Int J Cancer 92:374–381

    Article  PubMed  CAS  Google Scholar 

  • Sauter ER, Yeo UC, Von Stemm A et al (2002) Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res 62:3200–3206

    PubMed  CAS  Google Scholar 

  • Serrano M, Lee H, Chin L et al (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37

    Article  PubMed  CAS  Google Scholar 

  • Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24:1770–1783. doi:10.1200/JCO.2005.03.7689

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Smalley KSM, Lioni M, Dalla Palma M et al (2008) Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther 7:2876–2883. doi:10.1158/1535-7163.MCT-08-0431

    Article  PubMed  CAS  Google Scholar 

  • Soni R, O’Reilly T, Furet P et al (2001) Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4. J Natl Cancer Inst 93:436–446

    Article  PubMed  CAS  Google Scholar 

  • Sousa SF, Fernandes PA, Ramos MJ (2008) Farnesyltransferase inhibitors: a detailed chemical view on an elusive biological problem. Curr Med Chem 15:1478–1492

    Article  PubMed  CAS  Google Scholar 

  • Sparrow LE, Heenan PJ (1999) Differential expression of epidermal growth factor receptor in melanocytic tumours demonstrated by immunohistochemistry and mRNA in situ hybridization. Australas J Dermatol 40:19–24

    Article  PubMed  CAS  Google Scholar 

  • Stahl JM, Sharma A, Cheung M et al (2004) Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 64:7002–7010

    Article  PubMed  CAS  Google Scholar 

  • Straume O, Akslen LA (2002) Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am J Pathol 160:1009–1019. doi:10.1016/S0002-9440(10)64922-X

    Article  PubMed  CAS  Google Scholar 

  • Takayama H, LaRochelle WJ, Sharp R et al (1997) Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 94:701–706

    Article  PubMed  CAS  Google Scholar 

  • Tran MA, Gowda R, Sharma A et al (2008) Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res 68:7638–7649. doi:10.1158/0008-5472.CAN-07-6614

    Article  PubMed  CAS  Google Scholar 

  • Trent JM, Meyskens FL, Salmon SE et al (1990) Relation of cytogenetic abnormalities and clinical outcome in metastatic melanoma. N Engl J Med 322:1508–1511

    Article  PubMed  CAS  Google Scholar 

  • Tsao H, Zhang X, Fowlkes K, Haluska FG (2000) Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res 60:1800–1804

    PubMed  CAS  Google Scholar 

  • Tsao H, Goel V, Wu H et al (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Investig Dermatol 122:337–341

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Funasaka Y, Ichihashi M, Mishima Y (1994) Stable and strong expression of basic fibroblast growth factor in naevus cell naevus contrasts with aberrant expression in melanoma. Br J Dermatol 130:320–324

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Sakurai H, Tsunoda S et al (2008) Heregulin-induced activation of ErbB3 by EGFR tyrosine kinase activity promotes tumor growth and metastasis in melanoma cells. Int J Cancer 123:340–347. doi:10.1002/ijc.23465

    Article  PubMed  CAS  Google Scholar 

  • Ugurel S, Hildenbrand R, Zimpfer A et al (2005) Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer 92:1398–1405

    Article  PubMed  CAS  Google Scholar 

  • van Dijk M, Sprenger S, Rombout P et al (2003) Distinct chromosomal aberrations in sinonasal mucosal melanoma as detected by comparative genomic hybridization. Genes Chromosom Cancer 36:151–158

    Article  PubMed  Google Scholar 

  • Van Raamsdonk CD, Bezrookove V, Green G et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602. doi:10.1038/nature07586

    Article  PubMed  Google Scholar 

  • Van Raamsdonk CD, Griewank KG, Crosby MB et al (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363:2191–2199. doi:10.1056/NEJMoa1000584

    Article  PubMed  Google Scholar 

  • Viros A, Fridlyand J, Bauer J et al (2008) Improving melanoma classification by integrating genetic and morphologic features. PLoS Med 5:e120

    Article  PubMed  Google Scholar 

  • Wang Y, Becker D (1997) Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 3:887–893

    Article  PubMed  CAS  Google Scholar 

  • Wellbrock C, Gomez A, Schartl M (1997) Signal transduction by the oncogenic receptor tyrosine kinase Xmrk in melanoma formation of Xiphophorus. Pigment Cell Res 10:34–40

    Article  PubMed  CAS  Google Scholar 

  • Willmore-Payne C, Holden JA, Hirschowitz S, Layfield LJ (2006) BRAF and c-kit gene copy number in mutation-positive malignant melanoma. Hum Pathol 37:520–527

    Article  PubMed  CAS  Google Scholar 

  • Wong CW, Fan YS, Chan TL et al (2005) BRAF and NRAS mutations are uncommon in melanomas arising in diverse internal organs. J Clin Pathol 58:640–644

    Article  PubMed  CAS  Google Scholar 

  • Wyman K, Atkins MB, Prieto V et al (2006a) Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer 106:2005–2011

    Article  PubMed  CAS  Google Scholar 

  • Wyman K, Kelley M, Puzanov I et al (2006b) Phase II study of erlotinib given daily for patients with metastatic melanoma (MM). J Clin Oncol 24

    Google Scholar 

  • Yarden Y (2001) The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8

    Article  PubMed  CAS  Google Scholar 

  • Zhou XP, Gimm O, Hampel H et al (2000) Epigenetic PTEN silencing in malignant melanomas without PTEN mutation [In process citation]. Am J Pathol 157:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Zsebo KM, Williams DA, Geissler EN et al (1990) Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213–224. doi:10.1016/0092-8674(90)90302-U

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris C. Bastian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daud, A., Bastian, B.C. (2010). Beyond BRAF in Melanoma. In: Mellinghoff, I., Sawyers, C. (eds) Therapeutic Kinase Inhibitors. Current Topics in Microbiology and Immunology, vol 355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_163

Download citation

Publish with us

Policies and ethics