Skip to main content

Promising Developments in the Use of Induced Pluripotent Stem Cells in Research of ADHD

Part of the Current Topics in Behavioral Neurosciences book series (CTBN,volume 57)

Abstract

Although research using animal models, peripheral and clinical biomarkers, multimodal neuroimaging techniques and (epi)genetic information has advanced our understanding of Attention-Deficit Hyperactivity Disorder (ADHD), the aetiopathology of this neurodevelopmental disorder has still not been elucidated. Moreover, as the primary affected tissue is the brain, access to samples is problematic. Alternative models are therefore required, facilitating cellular and molecular analysis. Recent developments in stem cell research have introduced the possibility to reprogram somatic cells from patients, in this case ADHD, and healthy controls back into their pluripotent state, meaning that they can then be differentiated into any cell or tissue type. The potential to translate patients’ somatic cells into stem cells, and thereafter to use 2- and 3-dimensional (2D and 3D) neuronal cells to model neurodevelopmental disorders and/or test novel drug therapeutics, is discussed in this chapter.

Keywords

  • Attention-deficit disorder (ADD)
  • Attention-deficit hyperactivity disorder (ADHD)
  • Cell models
  • Induced pluripotent stem cells (iPSC)
  • Neuronal cells
  • Personalized modelling

Cristine Marie Yde Ohki, Rhiannon V. McNeill, Sarah Kittel-Schneider, and Edna Grünblatt shared first and last authorship.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADD:

Attention-deficit disorder

ADHD:

Attention-deficit hyperactivity disorder

ASD:

Autism spectrum disorder

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

CRISPR-cas9:

Clustered regularly interspaced short palindromic repeats-D/CRISPR-associated protein 9

CSF:

Cerebrospinal fluid

CNS:

Central nervous system

CNV:

Copy number variants

2D /3D:

Two/three dimension(al)

DNA:

Deoxyribonucleic acid

ESC:

Embryonic stem cell

fMRI:

Functional magnetic resonance imaging

GLUT3:

Glucose transporter-3 (SCL2A3)

GSK3-β:

Glycogen synthase kinase 3-β

GWAS:

Genome-wide association study (studies)

iPSC:

Induced pluripotent stem cell

MRI:

Magnetic resonance imaging

mRNA:

Messenger RNA

PRS:

Polygenic risk score(s)

SNP:

Single nucleotide polymorphism

References

  • Aasen T, Izpisua Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5(2):371–382

    CrossRef  CAS  PubMed  Google Scholar 

  • Alsop B (2007) Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD). J Neurosci Methods 162(1–2):42–48

    CrossRef  PubMed  Google Scholar 

  • Amin ND, Pasca SP (2018) Building models of brain disorders with three-dimensional organoids. Neuron 100(2):389–405

    CrossRef  CAS  PubMed  Google Scholar 

  • Anand D, Colpo GD, Zeni G, Zeni CP, Teixeira AL (2017) Attention-deficit/hyperactivity disorder and inflammation: what does current knowledge tell us? A systematic review. Front Psych 8:228

    CrossRef  Google Scholar 

  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl 1):33–41

    CrossRef  CAS  PubMed  Google Scholar 

  • Bagley JA, Reumann D, Bian S, Levi-Strauss J, Knoblich JA (2017) Fused cerebral organoids model interactions between brain regions. Nat Methods 14(7):743–751

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108(34):14234–14239

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonvicini C, Faraone SV, Scassellati C (2018) Common and specific genes and peripheral biomarkers in children and adults with attention-deficit/hyperactivity disorder. World J Biol Psychiatry 19(2):80–100

    CrossRef  PubMed  Google Scholar 

  • Brookes KJ, Neale BM, Sugden K, Khan N, Asherson P, D'Souza UM (2007) Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. Am J Med Genet B Neuropsychiatr Genet 144B(8):1070–1078

    CrossRef  CAS  PubMed  Google Scholar 

  • Cheffer A, Flitsch LJ, Krutenko T, Roderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brustle O (2020) Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 11(1):99

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Choi SW, Mak TS, O'Reilly PF (2020) Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc 15(9):2759–2772

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lange GM (2017) Understanding the cellular and molecular alterations in PTSD brains: the necessity of post-mortem brain tissue. Eur J Psychotraumatol 8(1):1341824

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dean B (2004) The neurobiology of bipolar disorder: findings using human postmortem central nervous system tissue. Aust N Z J Psychiatry 38(3):135–140

    CrossRef  PubMed  Google Scholar 

  • Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, Baldursson G, Belliveau R, Bybjerg-Grauholm J, Baekvad-Hansen M, Cerrato F, Chambert K, Churchhouse C, Dumont A, Eriksson N, Gandal M, Goldstein JI, Grasby KL, Grove J, Gudmundsson OO, Hansen CS, Hauberg ME, Hollegaard MV, Howrigan DP, Huang H, Maller JB, Martin AR, Martin NG, Moran J, Pallesen J, Palmer DS, Pedersen CB, Pedersen MG, Poterba T, Poulsen JB, Ripke S, Robinson EB, Satterstrom FK, Stefansson H, Stevens C, Turley P, Walters GB, Won H, Wright MJ, Consortium AWGotPG, Early L, Genetic Epidemiology C, and Me Research T, Andreassen OA, Asherson P, Burton CL, Boomsma DI, Cormand B, Dalsgaard S, Franke B, Gelernter J, Geschwind D, Hakonarson H, Haavik J, Kranzler HR, Kuntsi J, Langley K, Lesch KP, Middeldorp C, Reif A, Rohde LA, Roussos P, Schachar R, Sklar P, EJS S-B, Sullivan PF, Thapar A, Tung JY, Waldman ID, Medland SE, Stefansson K, Nordentoft M, Hougaard DM, Werge T, Mors O, Mortensen PB, Daly MJ, Faraone SV, Borglum AD, Neale BM (2019) Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 51(1):63–75

    CrossRef  CAS  PubMed  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    CrossRef  PubMed  CAS  Google Scholar 

  • Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3(5):519–532

    CrossRef  CAS  PubMed  Google Scholar 

  • Emery B, Barres BA (2008) Unlocking CNS cell type heterogeneity. Cell 135(4):596–598

    CrossRef  CAS  PubMed  Google Scholar 

  • Falk A, Heine VM, Harwood AJ, Sullivan PF, Peitz M, Brustle O, Shen S, Sun YM, Glover JC, Posthuma D, Djurovic S (2016) Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry 21(9):1167–1179

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraone SV, Larsson H (2019) Genetics of attention deficit hyperactivity disorder. Mol Psychiatry 24(4):562–575

    CrossRef  CAS  PubMed  Google Scholar 

  • Ferrer I, Martinez A, Boluda S, Parchi P, Barrachina M (2008) Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank 9(3):181–194

    CrossRef  CAS  PubMed  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainetdinov RR (2010) Strengths and limitations of genetic models of ADHD. Atten Defic Hyperact Disord 2(1):21–30

    CrossRef  PubMed  Google Scholar 

  • Grossmann L, Yde Ohki CM, Doring C, Hoffmann P, Herms S, Werling AM, Walitza S, Grunblatt E (2021) Generation of integration-free induced pluripotent stem cell lines from four pediatric ADHD patients. Stem Cell Res 53:102268

    CrossRef  CAS  PubMed  Google Scholar 

  • Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells – opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10(12):915–929

    CrossRef  CAS  PubMed  Google Scholar 

  • Hamada A, Akagi E, Yamasaki S, Nakatao H, Obayashi F, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T (2020) Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cell Dev Biol Anim 56(1):85–95

    CrossRef  CAS  PubMed  Google Scholar 

  • Hanger B, Couch A, Rajendran L, Srivastava DP, Vernon AC (2020) Emerging developments in human induced pluripotent stem cell-derived microglia: implications for modelling psychiatric disorders with a neurodevelopmental origin. Front Psych 11:789

    CrossRef  Google Scholar 

  • Hess JL, Akutagava-Martins GC, Patak JD, Glatt SJ, Faraone SV (2018) Why is there selective subcortical vulnerability in ADHD? Clues from postmortem brain gene expression data. Mol Psychiatry 23(8):1787–1793

    CrossRef  CAS  PubMed  Google Scholar 

  • Hochedlinger K (2008) Transcription factor-induced epigenetic reprogramming. Cell Res 18(1):S4–S4

    CrossRef  Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654

    CrossRef  CAS  PubMed  Google Scholar 

  • Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275

    CrossRef  CAS  PubMed  Google Scholar 

  • Huch M, Knoblich JA, Lutolf MP, Martinez-Arias A (2017) The hope and the hype of organoid research. Development 144(6):938–941

    CrossRef  CAS  PubMed  Google Scholar 

  • Jansch C, Gunther K, Waider J, Ziegler GC, Forero A, Kollert S, Svirin E, Puhringer D, Kwok CK, Ullmann R, Maierhofer A, Flunkert J, Haaf T, Edenhofer F, Lesch KP (2018) Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3. Stem Cell Res 28:136–140

    CrossRef  CAS  PubMed  Google Scholar 

  • Jarick I, Volckmar AL, Putter C, Pechlivanis S, Nguyen TT, Dauvermann MR, Beck S, Albayrak O, Scherag S, Gilsbach S, Cichon S, Hoffmann P, Degenhardt F, Nothen MM, Schreiber S, Wichmann HE, Jockel KH, Heinrich J, Tiesler CM, Faraone SV, Walitza S, Sinzig J, Freitag C, Meyer J, Herpertz-Dahlmann B, Lehmkuhl G, Renner TJ, Warnke A, Romanos M, Lesch KP, Reif A, Schimmelmann BG, Hebebrand J, Scherag A, Hinney A (2014) Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder. Mol Psychiatry 19(1):115–121

    CrossRef  CAS  PubMed  Google Scholar 

  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kurtz A, Yuan BZ, Zeng F, Lomax G, Loring JF, Crook J, Ju JH, Clarke L, Inamdar MS, Pera M, Firpo MT, Sheldon M, Rahman N, O'Shea O, Pranke P, Zhou Q, Isasi R, Rungsiwiwut R, Kawamata S, Oh S, Ludwig T, Masui T, Novak TJ, Takahashi T, Fujibuchi W, Koo SK, Stacey GN (2017) Report of the international stem cell banking initiative workshop activity: current hurdles and progress in seed-stock banking of human pluripotent stem cells. Stem Cells Transl Med 6(11):1956–1962

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Klapper SD, Garg P, Dagar S, Lenk K, Gottmann K, Nieweg K (2019) Astrocyte lineage cells are essential for functional neuronal differentiation and synapse maturation in human iPSC-derived neural networks. Glia 67(10):1893–1909

    CrossRef  PubMed  Google Scholar 

  • Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9(10):2329–2340

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    CrossRef  CAS  PubMed  Google Scholar 

  • Leo D, Gainetdinov RR (2013) Transgenic mouse models for ADHD. Cell Tissue Res 354(1):259–271

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Leo D, Sorrentino E, Volpicelli F, Eyman M, Greco D, Viggiano D, di Porzio U, Perrone-Capano C (2003) Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci Biobehav Rev 27(7):661–669

    CrossRef  CAS  PubMed  Google Scholar 

  • Lesch KP, Selch S, Renner TJ, Jacob C, Nguyen TT, Hahn T, Romanos M, Walitza S, Shoichet S, Dempfle A, Heine M, Boreatti-Hummer A, Romanos J, Gross-Lesch S, Zerlaut H, Wultsch T, Heinzel S, Fassnacht M, Fallgatter A, Allolio B, Schafer H, Warnke A, Reif A, Ropers HH, Ullmann R (2011) Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree. Mol Psychiatry 16(5):491–503

    CrossRef  CAS  PubMed  Google Scholar 

  • Li D, Sham PC, Owen MJ, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15(14):2276–2284

    CrossRef  CAS  PubMed  Google Scholar 

  • Li W, Zhou H, Abujarour R, Zhu S, Young Joo J, Lin T, Hao E, Scholer HR, Hayek A, Ding S (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27(12):2992–3000

    CrossRef  CAS  PubMed  Google Scholar 

  • Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A, Ding S (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6(11):805–808

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X (2019) Studying human neurological disorders using induced pluripotent stem cells: from 2D monolayer to 3D organoid and blood brain barrier models. Compr Physiol 9(2):565–611

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ (2009) Generation of induced pluripotent stem cells from human blood. Blood 113(22):5476–5479

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105(8):2883–2888

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Luciani M, Gritti A, Meneghini V (2020) Human iPSC-based models for the development of therapeutics targeting neurodegenerative lysosomal storage diseases. Front Mol Biosci 7:224

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng L (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28(4):713–720

    CrossRef  CAS  PubMed  Google Scholar 

  • Martin J, O'Donovan MC, Thapar A, Langley K, Williams N (2015) The relative contribution of common and rare genetic variants to ADHD. Transl Psychiatry 5:e506

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeill RV, Ziegler GC, Radtke F, Nieberler M, Lesch KP, Kittel-Schneider S (2020) Mental health dished up-the use of iPSC models in neuropsychiatric research. J Neural Transm (Vienna) 127(11):1547–1568

    CrossRef  Google Scholar 

  • Mizee MR, Miedema SS, van der Poel M, Adelia, Schuurman KG, van Strien ME, Melief J, Smolders J, Hendrickx DA, Heutinck KM, Hamann J, Huitinga I (2017) Isolation of primary microglia from the human post-mortem brain: effects of ante- and post-mortem variables. Acta Neuropathol Commun 5(1):16

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen Nguyen HT, Kato H, Sato H, Yamaza H, Sakai Y, Ohga S, Nonaka K, Masuda K (2019) Positive effect of exogenous brain-derived neurotrophic factor on impaired neurite development and mitochondrial function in dopaminergic neurons derived from dental pulp stem cells from children with attention deficit hyperactivity disorder. Biochem Biophys Res Commun 513(4):1048–1054

    CrossRef  CAS  PubMed  Google Scholar 

  • Palladino VS, McNeill R, Reif A, Kittel-Schneider S (2019) Genetic risk factors and gene-environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet 29(3):63–78

    CrossRef  CAS  PubMed  Google Scholar 

  • Palladino VS, Chiocchetti AG, Frank L, Haslinger D, McNeill R, Radtke F, Till A, Haupt S, Brustle O, Gunther K, Edenhofer F, Hoffmann P, Reif A, Kittel-Schneider S (2020) Energy metabolism disturbances in cell models of PARK2 CNV carriers with ADHD. J Clin Med 9(12)

    Google Scholar 

  • Prigione A, Lichtner B, Kuhl H, Struys EA, Wamelink M, Lehrach H, Ralser M, Timmermann B, Adjaye J (2011) Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells 29(9):1338–1348

    CrossRef  CAS  PubMed  Google Scholar 

  • Qiu MG, Ye Z, Li QY, Liu GJ, Xie B, Wang J (2011) Changes of brain structure and function in ADHD children. Brain Topogr 24(3-4):243–252

    CrossRef  PubMed  Google Scholar 

  • Raab S, Klingenstein M, Liebau S, Linta L (2014) A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014:768391

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ramos-Quiroga JA, Sanchez-Mora C, Casas M, Garcia-Martinez I, Bosch R, Nogueira M, Corrales M, Palomar G, Vidal R, Coll-Tane M, Bayes M, Cormand B, Ribases M (2014) Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder. J Psychiatr Res 49:60–67

    CrossRef  PubMed  Google Scholar 

  • Re S, Dogan AA, Ben-Shachar D, Berger G, Werling AM, Walitza S, Grunblatt E (2018) Improved generation of induced pluripotent stem cells from hair derived keratinocytes – a tool to study neurodevelopmental disorders as ADHD. Front Cell Neurosci 12:321

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohani L, Johnson AA, Naghsh P, Rancourt DE, Ulrich H, Holland H (2018) Concise review: molecular cytogenetics and quality control: clinical guardians for pluripotent stem cells. Stem Cells Transl Med 7(12):867–875

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Roman T, Rohde LA, Hutz MH (2004) Polymorphisms of the dopamine transporter gene: influence on response to methylphenidate in attention deficit-hyperactivity disorder. Am J Pharmacogenomics 4(2):83–92

    CrossRef  CAS  PubMed  Google Scholar 

  • Russell VA (2011) Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci. Chapter 9:Unit 9 35

    Google Scholar 

  • Sabitha KR, Shetty AK, Upadhya D (2020) Patient-derived iPSC modeling of rare neurodevelopmental disorders: molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 121:201–219

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena S, Hanwate M, Deb K, Sharma V, Totey S (2008) FGF2 secreting human fibroblast feeder cells: a novel culture system for human embryonic stem cells. Mol Reprod Dev 75(10):1523–1532

    CrossRef  CAS  PubMed  Google Scholar 

  • Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, DeVine A, Ettenger A, Fitzgerald K, Godfrey M, Gupta D, McPherson J, Malwadkar P, Gupta M, Bell B, Doi A, Jung N, Li X, Lynes MS, Brookes E, Cherry AB, Demirbas D, Tsankov AM, Zon LI, Rubin LL, Feinberg AP, Meissner A, Cowan CA, Daley GQ (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33(1):58–63

    CrossRef  CAS  PubMed  Google Scholar 

  • Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574

    CrossRef  CAS  PubMed  Google Scholar 

  • Shibamiya A, Schulze E, Krauss D, Augustin C, Reinsch M, Schulze ML, Steuck S, Mearini G, Mannhardt I, Schulze T, Klampe B, Werner T, Saleem U, Knaust A, Laufer SD, Neuber C, Lemme M, Behrens CS, Loos M, Weinberger F, Fuchs S, Eschenhagen T, Hansen A, Ulmer BM (2020) Cell banking of hiPSCs: a practical guide to cryopreservation and quality control in basic research. Curr Protoc Stem Cell Biol 55(1):e127

    CrossRef  CAS  PubMed  Google Scholar 

  • Silk TJ, Genc S, Anderson V, Efron D, Hazell P, Nicholson JM, Kean M, Malpas CB, Sciberras E (2016) Developmental brain trajectories in children with ADHD and controls: a longitudinal neuroimaging study. BMC Psychiatry 16:59

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Sochacki J, Devalle S, Reis M, Mattos P, Rehen S (2016) Generation of urine iPS cell lines from patients with attention deficit hyperactivity disorder (ADHD) using a non-integrative method. Stem Cell Res 17(1):102–106

    CrossRef  CAS  PubMed  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan S, Stacey GN, Akazawa C, Aoyama N, Baptista R, Bedford P, Bennaceur Griscelli A, Chandra A, Elwood N, Girard M, Kawamata S, Hanatani T, Latsis T, Lin S, Ludwig TE, Malygina T, Mack A, Mountford JC, Noggle S, Pereira LV, Price J, Sheldon M, Srivastava A, Stachelscheid H, Velayudhan SR, Ward NJ, Turner ML, Barry J, Song J (2018) Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen Med 13(7):859–866

    CrossRef  CAS  PubMed  Google Scholar 

  • Sun H, Chen Y, Huang Q, Lui S, Huang X, Shi Y, Xu X, Sweeney JA, Gong Q (2018) Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: a radiomics analysis. Radiology 287(2):620–630

    CrossRef  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CrossRef  CAS  PubMed  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    CrossRef  CAS  PubMed  Google Scholar 

  • Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484

    CrossRef  CAS  PubMed  Google Scholar 

  • Takikawa S, Ray C, Wang X, Shamis Y, Wu TY, Li X (2013) Genomic imprinting is variably lost during reprogramming of mouse iPS cells. Stem Cell Res 11(2):861–873

    CrossRef  CAS  PubMed  Google Scholar 

  • Thome J, Ehlis AC, Fallgatter AJ, Krauel K, Lange KW, Riederer P, Romanos M, Taurines R, Tucha O, Uzbekov M, Gerlach M (2012) Biomarkers for attention-deficit/hyperactivity disorder (ADHD). A consensus report of the WFSBP task force on biological markers and the World Federation of ADHD. World J Biol Psychiatry 13(5):379–400

    CrossRef  PubMed  Google Scholar 

  • Tian A, Muffat J, Li Y (2020) Studying human neurodevelopment and diseases using 3D brain organoids. J Neurosci 40(6):1186–1193

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong J, Lee KM, Liu X, Nefzger CM, Vijayakumar P, Hawi Z, Pang KC, Parish CL, Polo JM, Bellgrove MA (2019) Generation of four iPSC lines from peripheral blood mononuclear cells (PBMCs) of an attention deficit hyperactivity disorder (ADHD) individual and a healthy sibling in an Australia-Caucasian family. Stem Cell Res 34:101353

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang T, Warren ST, Jin P (2013) Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 4(11):820–832

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki S, Hamada A, Akagi E, Nakatao H, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T (2016) Generation of cleidocranial dysplasia-specific human induced pluripotent stem cells in completely serum-, feeder-, and integration-free culture. In Vitro Cell Dev Biol Anim 52(2):252–264

    CrossRef  CAS  PubMed  Google Scholar 

  • Yde Ohki CM, Grossmann L, Doring C, Hoffmann P, Herms S, Werling AM, Walitza S, Grunblatt E (2021) Generation of integration-free induced pluripotent stem cells from healthy individuals. Stem Cell Res 53:102269

    CrossRef  CAS  PubMed  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Grünblatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yde Ohki, C.M., McNeill, R.V., Nieberler, M., Radtke, F., Kittel-Schneider, S., Grünblatt, E. (2022). Promising Developments in the Use of Induced Pluripotent Stem Cells in Research of ADHD. In: Stanford, S.C., Sciberras, E. (eds) New Discoveries in the Behavioral Neuroscience of Attention-Deficit Hyperactivity Disorder. Current Topics in Behavioral Neurosciences, vol 57. Springer, Cham. https://doi.org/10.1007/7854_2022_346

Download citation