Skip to main content

Immune Cell Contributors to the Female Sex Bias in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

  • Chapter
  • First Online:
Sex Differences in Brain Function and Dysfunction

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 62))

Abstract

Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS) that leads to axonal damage and accumulation of disability. Relapsing-remitting MS (RR-MS) is the most frequent presentation of MS and this form of MS is three times more prevalent in females than in males. This female bias in MS is apparent only after puberty, suggesting a role for sex hormones in this regulation; however, very little is known of the biological mechanisms that underpin the sex difference in MS onset. Experimental autoimmune encephalomyelitis (EAE) is an animal model of RR-MS that presents more severely in females in certain mouse strains and thus has been useful to study sex differences in CNS autoimmunity. Here, we overview the immunopathogenesis of MS and EAE and how immune mechanisms in these diseases differ between a male and female. We further describe how females exhibit more robust myelin-specific T helper (Th) 1 immunity in MS and EAE and how this sex bias in Th cells is conveyed by sex hormone effects on the T cells, antigen presenting cells, regulatory T cells, and innate lymphoid cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Aire:

Autoimmune regulator

APC:

Antigen presenting cell

BBB:

Blood-brain barrier

cDC:

Classical dendritic cell

CFA:

Complete Freund’s adjuvant

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DC:

Dendritic cell

DC1:

Type 1 classical dendritic cell

DC2:

Type 2 classical dendritic cell

E2:

17-beta-estradiol

EAE:

Experimental autoimmune encephalomyelitis

Gd:

Gadolinium

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GWAS:

Genome-wide susceptibility study

IFN:

Interferon

Ig:

Immunoglobulin

IL:

Interleukin

ILC2:

Type 2 innate lymphoid cell

LPS:

Lipopolysaccharide

MBP:

Myelin basic protein

MHC:

Major histocompatibility complex

MHC-II:

Major histocompatibility complex class II

MMP:

Matrix metalloproteinase

MOG:

Myelin oligodendrocyte glycoprotein

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

NK:

Natural killer cell

NKT:

Natural killer T cell

PLP:

Myelin proteolipid protein

PPAR:

Peroxisome proliferator-activated receptor

PP-MS:

Primary progressive multiple sclerosis

PTX:

Pertussis toxin

RR-MS:

Relapsing-remitting multiple sclerosis

S1PR:

Sphingosine-1-phosphate receptor

SP-MS:

Secondary progressive multiple sclerosis

TCR:

T cell receptor

TEC:

Thymic epithelial cell

Th:

T helperspiepr146 cell

TLR:

Toll-like receptor

TMEV:

Theiler’s murine encephalomyelitis virus

TNF:

Tumour necrosis factor

Tr1:

Type I regulatory cell

Treg:

T regulatory cell

TSPO-PET:

18-kDa translocator protein positron emission tomography

References

  • Abdullah M, Chai PS, Chong MY, Tohit ER, Ramasamy R, Pei CP et al (2012) Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol 272(2):214–219

    CAS  PubMed  Google Scholar 

  • Abraham M, Shapiro S, Karni A, Weiner HL, Miller A (2005) Gelatinases (MMP-2 and MMP-9) are preferentially expressed by Th1 vs. Th2 cells. J Neuroimmunol 163(1–2):157–164

    CAS  PubMed  Google Scholar 

  • Achiron A, Gurevich M (2009) Gender effects in relapsing-remitting multiple sclerosis: correlation between clinical variables and gene expression molecular pathways. J Neurol Sci 286(1–2):47–53

    CAS  PubMed  Google Scholar 

  • Afshan G, Afzal N, Qureshi S (2012) CD4+CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin Lab 58(5–6):567–571

    PubMed  Google Scholar 

  • Aguirre-Gamboa R, Joosten I, Urbano PCM, van der Molen RG, van Rijssen E, van Cranenbroek B et al (2016) Differential effects of environmental and genetic factors on T and B cell immune traits. Cell Rep 17(9):2474–2487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn JJ, O'Mahony J, Moshkova M, Hanwell HE, Singh H, Zhang MA et al (2015) Puberty in females enhances the risk of an outcome of multiple sclerosis in children and the development of central nervous system autoimmunity in mice. Mult Scler 21(6):735–748

    PubMed  Google Scholar 

  • Akkad DA, Arning L, Ibrahim SM, Epplen JT (2007) Sex specifically associated promoter polymorphism in multiple sclerosis affects interleukin 4 expression levels. Genes Immun 8(8):703–706

    CAS  PubMed  Google Scholar 

  • Alley J, Khasabov S, Simone D, Beitz A, Rodriguez M, Njenga MK (2003) More severe neurologic deficits in SJL/J male than female mice following Theiler’s virus-induced CNS demyelination. Exp Neurol 180(1):14–24

    PubMed  Google Scholar 

  • Almolda B, Costa M, Montoya M, Gonzalez B, Castellano B (2009) CD4 microglial expression correlates with spontaneous clinical improvement in the acute Lewis rat EAE model. J Neuroimmunol 209(1–2):65–80

    CAS  PubMed  Google Scholar 

  • Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S et al (2015) Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74:14–24

    CAS  PubMed  Google Scholar 

  • Amadori A, Zamarchi R, De Silvestro G, Forza G, Cavatton G, Danieli GA et al (1995) Genetic control of the CD4/CD8 T-cell ratio in humans. Nat Med 1(12):1279–1283

    CAS  PubMed  Google Scholar 

  • Annibali V, Ristori G, Angelini DF, Serafini B, Mechelli R, Cannoni S et al (2011) CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 134(Pt 2):542–554

    PubMed  Google Scholar 

  • Antulov R, Weinstock-Guttman B, Cox JL, Hussein S, Durfee J, Caiola C et al (2009) Gender-related differences in MS: a study of conventional and nonconventional MRI measures. Mult Scler 15(3):345–354

    CAS  PubMed  Google Scholar 

  • Arnold AP (2009) Mouse models for evaluating sex chromosome effects that cause sex differences in non-gonadal tissues. J Neuroendocrinol 21(4):377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ascherio A, Munger KL, White R, Kochert K, Simon KC, Polman CH et al (2014) Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 71(3):306–314

    PubMed  PubMed Central  Google Scholar 

  • Astier AL, Meiffren G, Freeman S, Hafler DA (2006) Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 116(12):3252–3257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192(3):393–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bansil S, Lee HJ, Jindal S, Holtz CR, Cook SD (1999) Correlation between sex hormones and magnetic resonance imaging lesions in multiple sclerosis. Acta Neurol Scand 99(2):91–94

    CAS  PubMed  Google Scholar 

  • Bao M, Yang Y, Jun HS, Yoon JW (2002) Molecular mechanisms for gender differences in susceptibility to T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 168(10):5369–5375

    CAS  PubMed  Google Scholar 

  • Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269):94–98

    PubMed  Google Scholar 

  • Bearoff F, Case LK, Krementsov DN, Wall EH, Saligrama N, Blankenhorn EP et al (2015) Identification of genetic determinants of the sexual dimorphism in CNS autoimmunity. PLoS One 10(2):e0117993

    PubMed  PubMed Central  Google Scholar 

  • Bebo BF Jr, Vandenbark AA, Offner H (1996) Male SJL mice do not relapse after induction of EAE with PLP 139-151. J Neurosci Res 45(6):680–689

    CAS  PubMed  Google Scholar 

  • Bebo BF Jr, Schuster JC, Vandenbark AA, Offner H (1998) Gender differences in experimental autoimmune encephalomyelitis develop during the induction of the immune response to encephalitogenic peptides. J Neurosci Res 52(4):420–426

    CAS  PubMed  Google Scholar 

  • Bebo BF Jr, Schuster JC, Vandenbark AA, Offner H (1999) Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. J Immunol 162(1):35–40

    CAS  PubMed  Google Scholar 

  • Becher B, Tugues S, Greter M (2016) GM-CSF: from growth factor to central mediator of tssue inflammation. Immunity 45(5):963–973

    CAS  PubMed  Google Scholar 

  • Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 78(4):318–323

    CAS  PubMed  Google Scholar 

  • Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA, Kuchroo VK (1998) IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J Immunol 161(7):3299–3306

    CAS  PubMed  Google Scholar 

  • Biechele G, Franzmeier N, Blume T, Ewers M, Luque JM, Eckenweber F et al (2020) Glial activation is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of neurodegenerative diseases. J Neuroinflammation 17(1):374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G et al (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6(10):1167–1175

    CAS  PubMed  Google Scholar 

  • Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795

    CAS  PubMed  Google Scholar 

  • Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128(2):191–213

    CAS  PubMed  Google Scholar 

  • Bostrom I, Stawiarz L, Landtblom AM (2013) Sex ratio of multiple sclerosis in the National Swedish MS register (SMSreg). Mult Scler 19(1):46–52

    PubMed  Google Scholar 

  • Brahmachari S, Pahan K (2010) Gender-specific expression of beta1 integrin of VLA-4 in myelin basic protein-primed T cells: implications for gender bias in multiple sclerosis. J Immunol 184(11):6103–6113

    CAS  PubMed  Google Scholar 

  • Briggs FB, Hill E (2020) Estimating the prevalence of multiple sclerosis using 56.6 million electronic health records from the United States. Mult Scler 26(14):1948–1952

    PubMed  Google Scholar 

  • Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A et al (2019) Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321(2):175–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruck W (2005) The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 252 Suppl 5:v3–v9

    PubMed  Google Scholar 

  • Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42(5):783–793

    CAS  PubMed  Google Scholar 

  • Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E (2009) Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 132(Pt 12):3329–3341

    PubMed  Google Scholar 

  • Butovsky O, Weiner HL (2018) Microglial signatures and their role in health and disease. Nat Rev Neurosci 19(10):622–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butterfield RJ, Blankenhorn EP, Roper RJ, Zachary JF, Doerge RW, Sudweeks J et al (1999) Genetic analysis of disease subtypes and sexual dimorphisms in mouse experimental allergic encephalomyelitis (EAE): relapsing/remitting and monophasic remitting/nonrelapsing EAE are immunogenetically distinct. J Immunol 162(5):3096–3102

    CAS  PubMed  Google Scholar 

  • Butterfield RJ, Roper RJ, Rhein DM, Melvold RW, Haynes L, Ma RZ et al (2003) Sex-specific quantitative trait loci govern susceptibility to Theiler’s murine encephalomyelitis virus-induced demyelination. Genetics 163(3):1041–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cahill LS, Zhang MA, Ramaglia V, Whetstone H, Sabbagh MP, Yi TJ et al (2019) Aged hind-limb clasping experimental autoimmune encephalomyelitis models aspects of the neurodegenerative process seen in multiple sclerosis. Proc Natl Acad Sci U S A 116(45):22710–22720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calippe B, Douin-Echinard V, Delpy L, Laffargue M, Lelu K, Krust A et al (2010) 17Beta-estradiol promotes TLR4-triggered proinflammatory mediator production through direct estrogen receptor alpha signaling in macrophages in vivo. J Immunol 185(2):1169–1176

    CAS  PubMed  Google Scholar 

  • Camina-Tato M, Morcillo-Suarez C, Bustamante MF, Ortega I, Navarro A, Muntasell A et al (2010) Gender-associated differences of perforin polymorphisms in the susceptibility to multiple sclerosis. J Immunol 185(9):5392–5404

    CAS  PubMed  Google Scholar 

  • Canto E, Oksenberg JR (2018) Multiple sclerosis genetics. Mult Scler 24(1):75–79

    CAS  PubMed  Google Scholar 

  • Cao Y, Goods BA, Raddassi K, Nepom GT, Kwok WW, Love JC et al (2015) Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci Transl Med 7(287):287ra74

    PubMed  PubMed Central  Google Scholar 

  • Carbone F, De Rosa V, Carrieri PB, Montella S, Bruzzese D, Porcellini A et al (2014) Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat Med 20(1):69–74

    CAS  PubMed  Google Scholar 

  • Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434(7031):400–404

    CAS  PubMed  Google Scholar 

  • Castellazzi M, Ligi D, Contaldi E, Quartana D, Fonderico M, Borgatti L et al (2018) Multiplex matrix metalloproteinases analysis in the cerebrospinal fuid reveals potential specific patterns in multiple sclerosis patients. Front Neurol 9:1080

    PubMed  PubMed Central  Google Scholar 

  • Catuneanu A, Paylor JW, Winship I, Colbourne F, Kerr BJ (2019) Sex differences in central nervous system plasticity and pain in experimental autoimmune encephalomyelitis. Pain 160(5):1037–1049

    PubMed  Google Scholar 

  • Celius EG, Harbo HF, Egeland T, Vartdal F, Vandvik B, Spurkiand A (2000) Sex and age at diagnosis are correlated with the HLA-DR2, DQ6 haplotype in multiple sclerosis. J Neurol Sci 178(2):132–135

    CAS  PubMed  Google Scholar 

  • Chao MJ, Herrera BM, Ramagopalan SV, Deluca G, Handunetthi L, Orton SM et al (2010) Parent-of-origin effects at the major histocompatibility complex in multiple sclerosis. Hum Mol Genet 19(18):3679–3689

    CAS  PubMed  Google Scholar 

  • Chitnis T, Glanz B, Jaffin S, Healy B (2009) Demographics of pediatric-onset multiple sclerosis in an MS center population from the northeastern United States. Mult Scler 15(5):627–631

    CAS  PubMed  Google Scholar 

  • Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L et al (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567

    CAS  PubMed  Google Scholar 

  • Cohen-Solal JF, Jeganathan V, Hill L, Kawabata D, Rodriguez-Pinto D, Grimaldi C et al (2008) Hormonal regulation of B-cell function and systemic lupus erythematosus. Lupus 17(6):528–532

    CAS  PubMed  Google Scholar 

  • Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T (1998) Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in multiple sclerosis group. N Engl J Med 339(5):285–291

    CAS  PubMed  Google Scholar 

  • Cossburn M, Ingram G, Hirst C, Ben-Shlomo Y, Pickersgill TP, Robertson NP (2012) Age at onset as a determinant of presenting phenotype and initial relapse recovery in multiple sclerosis. Mult Scler 18(1):45–54

    CAS  PubMed  Google Scholar 

  • Crawford MP, Yan SX, Ortega SB, Mehta RS, Hewitt RE, Price DA et al (2004) High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103(11):4222–4231

    CAS  PubMed  Google Scholar 

  • Cree BA (2014) Genetics of primary progressive multiple sclerosis. Handb Clin Neurol 122:211–230

    PubMed  Google Scholar 

  • Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F, Pelczar P et al (2015) The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43(3):502–514

    CAS  PubMed  Google Scholar 

  • Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG, McCandless EE et al (2014) Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J Clin Invest 124(6):2571–2584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cua DJ, Hinton DR, Stohlman SA (1995) Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. Th2-mediated suppression of autoimmune disease. J Immunol 155(8):4052–4059

    CAS  PubMed  Google Scholar 

  • Dasgupta S, Jana M, Liu X, Pahan K (2005) Myelin basic protein-primed T cells of female but not male mice induce nitric-oxide synthase and proinflammatory cytokines in microglia: implications for gender bias in multiple sclerosis. J Biol Chem 280(38):32609–32617

    CAS  PubMed  Google Scholar 

  • Datta G, Colasanti A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O et al (2017) Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 140(11):2927–2938

    PubMed  Google Scholar 

  • de Andres C, Fernandez-Paredes L, Tejera-Alhambra M, Alonso B, Ramos-Medina R, Sanchez-Ramon S (2017) Activation of blood CD3(+)CD56(+)CD8(+) T cells during pregnancy and multiple sclerosis. Front Immunol 8:196

    PubMed  PubMed Central  Google Scholar 

  • Delpy L, Douin-Echinard V, Garidou L, Bruand C, Saoudi A, Guery JC (2005) Estrogen enhances susceptibility to experimental autoimmune myasthenia gravis by promoting type 1-polarized immune responses. J Immunol 175(8):5050–5057

    CAS  PubMed  Google Scholar 

  • Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558

    CAS  PubMed  Google Scholar 

  • Dhaeze T, Lachance C, Tremblay L, Grasmuck C, Bourbonniere L, Larouche S et al (2019) Sex-dependent factors encoded in the immune compartment dictate relapsing or progressive phenotype in demyelinating disease. JCI. Insight 4(6):e124885

    Google Scholar 

  • Ding M, Wong JL, Rogers NE, Ignarro LJ, Voskuhl RR (1997) Gender differences of inducible nitric oxide production in SJL/J mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 77(1):99–106

    CAS  PubMed  Google Scholar 

  • Dobson R, Ramagopalan S, Giovannoni G (2012) The effect of gender in clinically isolated syndrome (CIS): a meta-analysis. Mult Scler 18(5):600–604

    PubMed  Google Scholar 

  • Dolezal O, Gabelic T, Horakova D, Bergsland N, Dwyer MG, Seidl Z et al (2013) Development of gray matter atrophy in relapsing-remitting multiple sclerosis is not gender dependent: results of a 5-year follow-up study. Clin Neurol Neurosurg 115 Suppl 1:S42–S48

    PubMed  Google Scholar 

  • Doroshenko ER, Drohomyrecky PC, Gower A, Whetstone H, Cahill LS, Ganguly M et al (2021) Peroxisome proliferator-activated receptor-delta deficiency in microglia results in exacerbated axonal injury and tissue loss in experimental autoimmune encephalomyelitis. Front Immunol 12:570425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doss P, Umair M, Baillargeon J, Fazazi R, Fudge N, Akbar I et al (2021) Male sex chromosomal complement exacerbates the pathogenicity of Th17 cells in a chronic model of central nervous system autoimmunity. Cell Rep 34(10):108833

    CAS  PubMed  Google Scholar 

  • Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A et al (2016) Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest 126(4):1525–1537

    PubMed  PubMed Central  Google Scholar 

  • Drohomyrecky PC, Doroshenko ER, Akkermann R, Moshkova M, Yi TJ, Zhao FL et al (2019) Peroxisome proliferator-activated receptor-delta acts within peripheral myeloid cells to limit Th cell priming during experimental autoimmune encephalomyelitis. J Immunol 203(10):2588–2601

    CAS  PubMed  Google Scholar 

  • Dunn SE, Ousman SS, Sobel RA, Zuniga L, Baranzini SE, Youssef S et al (2007) Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J Exp Med 204(2):321–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn SE, Lee H, Pavri FR, Zhang MA (2015a) Sex-based differences in multiple sclerosis (part I): biology of disease incidence. In: La Flamme A, Orian J (eds) Emerging and evolving topics in multiple sclerosis pathogenesis and treatments current topics in behavioral neurosciences. Springer, Cham, pp 29–56

    Google Scholar 

  • Dunn SE, Gunde E, Lee H (2015b) Sex-based differences in multiple sclerosis (MS): part II: rising incidence of multiple sclerosis in women and the vulnerability of men to progression of this disease. In: La Flamme A, Orian J (eds) Emerging and evolving topics in multiple sclerosis pathogenesis and treatments. Current topics in behavioral neurosciences, 26. Springer, Cham, pp 57–86

    Google Scholar 

  • Dusi S, Angiari S, Pietronigro EC, Lopez N, Angelini G, Zenaro E et al (2019) LFA-1 controls Th1 and Th17 motility behavior in the inflamed central nervous system. Front Immunol 10:2436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eidinger D, Garrett TJ (1972) Studies of the regulatory effects of the sex hormones on antibody formation and stem cell differentiation. J Exp Med 136(5):1098–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eikelenboom MJ, Killestein J, Uitdehaag BM, Polman CH (2005) Sex differences in proinflammatory cytokine profiles of progressive patients in multiple sclerosis. Mult Scler 11(5):520–523

    CAS  PubMed  Google Scholar 

  • Falcone M, Rajan AJ, Bloom BR, Brosnan CF (1998) A critical role for IL-4 in regulating disease severity in experimental allergic encephalomyelitis as demonstrated in IL-4-deficient C57BL/6 mice and BALB/c mice. J Immunol 160(10):4822–4830

    CAS  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43(6):809–814

    CAS  PubMed  Google Scholar 

  • Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW et al (1991) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146(10):3444–3451

    CAS  PubMed  Google Scholar 

  • Flauzino T, Alfieri DF, de Carvalho Jennings Pereira WL, Oliveira SR, Kallaur AP, Lozovoy MAB et al (2019) The rs3761548 FOXP3 variant is associated with multiple sclerosis and transforming growth factor beta1 levels in female patients. Inflamm Res 68(11):933–943

    CAS  PubMed  Google Scholar 

  • Foster SC, Daniels C, Bourdette DN, Bebo BF Jr (2003) Dysregulation of the hypothalamic-pituitary-gonadal axis in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 140(1–2):78–87

    CAS  PubMed  Google Scholar 

  • Fox HS, Bond BL, Parslow TG (1991) Estrogen regulates the IFN-gamma promoter. J Immunol 146(12):4362–4367

    CAS  PubMed  Google Scholar 

  • Fransen NL, Hsiao CC, van der Poel M, Engelenburg HJ, Verdaasdonk K, Vincenten MCJ et al (2020) Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 143(6):1714–1730

    PubMed  Google Scholar 

  • Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78(5):710–721

    PubMed  PubMed Central  Google Scholar 

  • Fuller AC, Kang B, Kang HK, Yahikozowa H, Dal Canto MC, Kim BS (2005) Gender bias in Theiler’s virus-induced demyelinating disease correlates with the level of antiviral immune responses. J Immunol 175(6):3955–3963

    CAS  PubMed  Google Scholar 

  • Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A (2009) The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets 8(1):40–52

    CAS  PubMed  Google Scholar 

  • Giles DA, Washnock-Schmid JM, Duncker PC, Dahlawi S, Ponath G, Pitt D et al (2018) Myeloid cell plasticity in the evolution of central nervous system autoimmunity. Ann Neurol 83(1):131–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golden LC, Itoh Y, Itoh N, Iyengar S, Coit P, Salama Y et al (2019) Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes. Proc Natl Acad Sci U S A 116(52):26779–26787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goris A, Heggarty S, Marrosu MG, Graham C, Billiau A, Vandenbroeck K (2002) Linkage disequilibrium analysis of chromosome 12q14-15 in multiple sclerosis: delineation of a 118-kb interval around interferon-gamma (IFNG) that is involved in male versus female differential susceptibility. Genes Immun 3(8):470–476

    CAS  PubMed  Google Scholar 

  • Greer JM, Csurhes PA, Pender MP, McCombe PA (2004) Effect of gender on T-cell proliferative responses to myelin proteolipid protein antigens in patients with multiple sclerosis and controls. J Autoimmun 22(4):345–352

    CAS  PubMed  Google Scholar 

  • Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V et al (2012) IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol 188(12):6287–6299

    CAS  PubMed  Google Scholar 

  • Gross CC, Schulte-Mecklenbeck A, Runzi A, Kuhlmann T, Posevitz-Fejfar A, Schwab N et al (2016) Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc Natl Acad Sci U S A 113(21):E2973–E2982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot-Sestier MV, Araiz AR, Mela V, Gaban AS, O'Neill E, Joshi L et al (2021) Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer’s disease. Commun Biol 4(1):711

    PubMed  PubMed Central  Google Scholar 

  • Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, Meyer N et al (2018) Transcriptional and translational differences of microglia from male and female brains. Cell Rep 24(10):2773–83.e6

    CAS  PubMed  Google Scholar 

  • Hamedani SY, Taheri M, Sajjadi E, Omrani MD, Mazdeh M, Arsang-Jang S et al (2016) Up regulation of MMP9 gene expression in female patients with multiple sclerosis. Hum Antibodies 24(3–4):59–64

    CAS  PubMed  Google Scholar 

  • Hanamsagar R, Bilbo SD (2016) Sex differences in neurodevelopmental and neurodegenerative disorders: focus on microglial function and neuroinflammation during development. J Steroid Biochem Mol Biol 160:127–133

    CAS  PubMed  Google Scholar 

  • Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, Bilbo SD (2018) Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 66(2):460

    PubMed  Google Scholar 

  • Hedstrom AK, Hillert J, Olsson T, Alfredsson L (2014) Reverse causality behind the association between reproductive history and MS. Mult Scler 20(4):406–411

    CAS  PubMed  Google Scholar 

  • Held U, Heigenhauser L, Shang C, Kappos L, Polman C, Sylvia Lawry Centre for MSR (2005) Predictors of relapse rate in MS clinical trials. Neurology 65(11):1769–1773

    CAS  PubMed  Google Scholar 

  • Hensiek AE, Sawcer SJ, Feakes R, Deans J, Mander A, Akesson E et al (2002) HLA-DR 15 is associated with female sex and younger age at diagnosis in multiple sclerosis. J Neurol Neurosurg Psychiatry 72(2):184–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernan MA, Hohol MJ, Olek MJ, Spiegelman D, Ascherio A (2000) Oral contraceptives and the incidence of multiple sclerosis. Neurology 55(6):848–854

    CAS  PubMed  Google Scholar 

  • Hewagama A, Patel D, Yarlagadda S, Strickland FM, Richardson BC (2009) Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun 10(5):509–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoghooghi V, Palmer AL, Frederick A, Jiang Y, Merkens JE, Balakrishnan A et al (2020) Cystatin C plays a sex-dependent detrimental role in experimental autoimmune encephalomyelitis. Cell Rep 33(1):108236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Stohlman SA (2012) Peritoneal macrophage from male and female SJL mice differ in IL-10 expression and macrophage maturation. J Leukoc Biol 91(4):571–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Kirwin SJ, Stohlman SA (2011) Increased T regulatory cells lead to development of Th2 immune response in male SJL mice. Autoimmunity 44(3):219–228

    CAS  PubMed  Google Scholar 

  • Ifergan I, Kebir H, Alvarez JI, Marceau G, Bernard M, Bourbonniere L et al (2011) Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on alpha4 integrin. Brain 134(Pt 12):3560–3577

    PubMed  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium (2019) Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365(6460):eaav7188

    PubMed Central  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium, Sawcer S, Hellenthal G, Pirinen M, Spencer CC et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219

    Google Scholar 

  • Irizar H, Munoz-Culla M, Zuriarrain O, Goyenechea E, Castillo-Trivino T, Prada A et al (2012) HLA-DRB1*15:01 and multiple sclerosis: a female association? Mult Scler 18(5):569–577

    PubMed  Google Scholar 

  • Jackle K, Zeis T, Schaeren-Wiemers N, Junker A, van der Meer F, Kramann N et al (2020) Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain 143(7):2073–2088

    PubMed  Google Scholar 

  • Jacobsen M, Cepok S, Quak E, Happel M, Gaber R, Ziegler A et al (2002) Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125(Pt 3):538–550

    PubMed  Google Scholar 

  • Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183(11):7169–7177

    PubMed  Google Scholar 

  • Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I et al (2018) Memory B cells activate brain-homing, autoreactive CD4(+) T cells in multiple sclerosis. Cell 175(1):85–100.e23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jilek S, Schluep M, Rossetti AO, Guignard L, Le Goff G, Pantaleo G et al (2007) CSF enrichment of highly differentiated CD8+ T cells in early multiple sclerosis. Clin Immunol 123(1):105–113

    CAS  PubMed  Google Scholar 

  • Juedes AE, Ruddle NH (2001) Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol 166(8):5168–5175

    CAS  PubMed  Google Scholar 

  • Kalincik T, Vivek V, Jokubaitis V, Lechner-Scott J, Trojano M, Izquierdo G et al (2013) Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain 136(Pt 12):3609–3617

    PubMed  Google Scholar 

  • Kampman MT, Aarseth JH, Grytten N, Benjaminsen E, Celius EG, Dahl OP et al (2013) Sex ratio of multiple sclerosis in persons born from 1930 to 1979 and its relation to latitude in Norway. J Neurol 260(6):1481–1488

    PubMed  Google Scholar 

  • Kantarci OH, Goris A, Hebrink DD, Heggarty S, Cunningham S, Alloza I et al (2005) IFNG polymorphisms are associated with gender differences in susceptibility to multiple sclerosis. Genes Immun 6(2):153–161

    CAS  PubMed  Google Scholar 

  • Kantarci OH, Hebrink DD, Schaefer-Klein J, Sun Y, Achenbach S, Atkinson EJ et al (2008) Interferon gamma allelic variants: sex-biased multiple sclerosis susceptibility and gene expression. Arch Neurol 65(3):349–357

    PubMed  Google Scholar 

  • Kappel CA, Melvold RW, Kim BS (1990) Influence of sex on susceptibility in the Theiler’s murine encephalomyelitis virus model for multiple sclerosis. J Neuroimmunol 29(1–3):15–19

    CAS  PubMed  Google Scholar 

  • Karrenbauer VD, Bedri SK, Hillert J, Manouchehrinia A (2021) Cerebrospinal fluid oligoclonal immunoglobulin gamma bands and long-term disability progression in multiple sclerosis: a retrospective cohort study. Sci Rep 11(1):14987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawanokuchi J, Shimizu K, Nitta A, Yamada K, Mizuno T, Takeuchi H et al (2008) Production and functions of IL-17 in microglia. J Neuroimmunol 194(1–2):54–61

    CAS  PubMed  Google Scholar 

  • Kearns PKA, Paton M, O'Neill M, Waters C, Colville S, McDonald J et al (2019) Regional variation in the incidence rate and sex ratio of multiple sclerosis in Scotland 2010-2017: findings from the Scottish multiple sclerosis register. J Neurol 266(10):2376–2386

    PubMed  PubMed Central  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M et al (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13(10):1173–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N et al (2009) Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 66(3):390–402

    CAS  PubMed  Google Scholar 

  • Kim S, Voskuhl RR (1999) Decreased IL-12 production underlies the decreased ability of male lymph node cells to induce experimental autoimmune encephalomyelitis. J Immunol 162(9):5561–5568

    CAS  PubMed  Google Scholar 

  • King IL, Dickendesher TL, Segal BM (2009) Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113(14):3190–3197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kissick HT, Sanda MG, Dunn LK, Pellegrini KL, On ST, Noel JK et al (2014) Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Natl Acad Sci U S A 111(27):9887–9892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein SL, Marriott I, Fish EN (2015) Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg 109(1):9–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovats S (2012) Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: mechanisms and implications for immunity. Horm Behav 62(3):254–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kragt J, van Amerongen B, Killestein J, Dijkstra C, Uitdehaag B, Polman C et al (2009) Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler 15(1):9–15

    CAS  PubMed  Google Scholar 

  • Krementsov DN, Noubade R, Dragon JA, Otsu K, Rincon M, Teuscher C (2014) Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells. Ann Neurol 75(1):50–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205(7):1535–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY et al (2021) The role of natural killer cells in autoimmune diseases. Front Immunol 12:622306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlmann T, Goldschmidt T, Antel J, Wegner C, Konig F, Metz I et al (2009) Gender differences in the histopathology of MS? J Neurol Sci 286(1–2):86–91

    CAS  PubMed  Google Scholar 

  • Kunchok A, Chen JJ, McKeon A, Mills JR, Flanagan EP, Pittock SJ (2020) Coexistence of myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies in adult and pediatric patients. JAMA Neurol 77(2):257–259

    PubMed  Google Scholar 

  • Lafaille JJ, Keere FV, Hsu AL, Baron JL, Haas W, Raine CS et al (1997) Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 186(2):307–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lassmann H, Bradl M (2017) Multiple sclerosis: experimental models and reality. Acta Neuropathol 133(2):223–244

    CAS  PubMed  Google Scholar 

  • Lee BW, Yap HK, Chew FT, Quah TC, Prabhakaran K, Chan GS et al (1996) Age- and sex-related changes in lymphocyte subpopulations of healthy Asian subjects: from birth to adulthood. Cytometry 26(1):8–15

    CAS  PubMed  Google Scholar 

  • Li DK, Zhao GJ, Paty DW, University of British Columbia MS/MRI Analysis Research Group. The SPECTRIMS Study Group (2001) Randomized controlled trial of interferon-beta-1a in secondary progressive MS: MRI results. Neurology 56(11):1505–1513

    CAS  PubMed  Google Scholar 

  • Li DK, Held U, Petkau J, Daumer M, Barkhof F, Fazekas F et al (2006) MRI T2 lesion burden in multiple sclerosis: a plateauing relationship with clinical disability. Neurology 66(9):1384–1389

    CAS  PubMed  Google Scholar 

  • Liva SM, Voskuhl RR (2001) Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J Immunol 167(4):2060–2067

    CAS  PubMed  Google Scholar 

  • Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508

    CAS  PubMed  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    CAS  PubMed  Google Scholar 

  • Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I (2018) Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol 135(4):511–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luna RM, Kormendy D, Brunner-Weinzierl MC (2010) Female-biased incidence of experimental autoimmune encephalomyelitis reflects sexually dimorphic expression of surface CTLA-4 (CD152) on T lymphocytes. Gend Med 7(4):296–308

    PubMed  Google Scholar 

  • Lunemann A, Tackenberg B, DeAngelis T, da Silva RB, Messmer B, Vanoaica LD et al (2011) Impaired IFN-gamma production and proliferation of NK cells in multiple sclerosis. Int Immunol 23(2):139–148

    PubMed  PubMed Central  Google Scholar 

  • Magyari M, Koch-Henriksen N, Pfleger CC, Sorensen PS (2013) Reproduction and the risk of multiple sclerosis. Mult Scler 19(12):1604–1609

    PubMed  Google Scholar 

  • Magyari M, Koch-Henriksen N, Laursen B, Sorensen PS (2014) Gender effects on treatment response to interferon-beta in multiple sclerosis. Acta Neurol Scand 130(6):374–379

    CAS  PubMed  Google Scholar 

  • Malchow S, Leventhal DS, Lee V, Nishi S, Socci ND, Savage PA (2016) Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44(5):1102–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maret A, Coudert JD, Garidou L, Foucras G, Gourdy P, Krust A et al (2003) Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor alpha expression in hematopoietic cells. Eur J Immunol 33(2):512–521

    CAS  PubMed  Google Scholar 

  • Martin R, Sospedra M, Eiermann T, Olsson T (2021) Multiple sclerosis: doubling down on MHC. Trends Genet 37(9):784–797

    CAS  PubMed  Google Scholar 

  • Martinez MA, Olsson B, Bau L, Matas E, Cobo Calvo A, Andreasson U et al (2015) Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult Scler 21(5):550–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massilamany C, Thulasingam S, Steffen D, Reddy J (2011) Gender differences in CNS autoimmunity induced by mimicry epitope for PLP 139-151 in SJL mice. J Neuroimmunol 230(1–2):95–104

    CAS  PubMed  Google Scholar 

  • Matyszak MK, Perry VH (1996) The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 74(2):599–608

    CAS  PubMed  Google Scholar 

  • McGeachy MJ, Stephens LA, Anderton SM (2005) Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 175(5):3025–3032

    CAS  PubMed  Google Scholar 

  • Miclea A, Salmen A, Zoehner G, Diem L, Kamm CP, Chaloulos-Iakovidis P et al (2019) Age-dependent variation of female preponderance across different phenotypes of multiple sclerosis: a retrospective cross-sectional study. CNS Neurosci Ther 25(4):527–531

    CAS  PubMed  Google Scholar 

  • Miteva L, Trenova A, Slavov G, Stanilova S (2019) IL12B gene polymorphisms have sex-specific effects in relapsing-remitting multiple sclerosis. Acta Neurol Belg 119(1):83–93

    PubMed  Google Scholar 

  • Mitsdoerffer M, Peters A (2016) Tertiary lymphoid organs in central nervous system autoimmunity. Front Immunol 7:451

    PubMed  PubMed Central  Google Scholar 

  • Moldovan IR, Cotleur AC, Zamor N, Butler RS, Pelfrey CM (2008) Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens. J Neuroimmunol 193(1–2):161–169

    CAS  PubMed  Google Scholar 

  • MSIF (2020) Atlas of MS, 3rd edn. Multiple Sclerosis International Federation. https://www.msif.org/resource/atlas-of-ms-2020/

    Google Scholar 

  • Munger KL, Bentzen J, Laursen B, Stenager E, Koch-Henriksen N, Sorensen TI et al (2013) Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Mult Scler 19(10):1323–1329

    PubMed  PubMed Central  Google Scholar 

  • Murphy KL, Fischer R, Swanson KA, Bhatt IJ, Oakley L, Smeyne R et al (2020) Synaptic alterations and immune response are sexually dimorphic in a non-pertussis toxin model of experimental autoimmune encephalomyelitis. Exp Neurol 323:113061

    CAS  PubMed  Google Scholar 

  • Nalawade SA, Ji N, Raphael I, Pratt A 3rd, Kraig E, Forsthuber TG (2018) Aire is not essential for regulating neuroinflammatory disease in mice transgenic for human autoimmune-diseases associated MHC class II genes HLA-DR2b and HLA-DR4. Cell Immunol 331:38–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen AL, Eastaugh A, van der Walt A, Jokubaitis VG (2019) Pregnancy and multiple sclerosis: clinical effects across the lifespan. Autoimmun Rev 18(10):102360

    PubMed  Google Scholar 

  • Nielsen NM, Jorgensen KT, Stenager E, Jensen A, Pedersen BV, Hjalgrim H et al (2011) Reproductive history and risk of multiple sclerosis. Epidemiology 22(4):546–552

    PubMed  Google Scholar 

  • Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D et al (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488(7413):675–679

    CAS  PubMed  Google Scholar 

  • Olsson T, Barcellos LF, Alfredsson L (2017) Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 13(1):25–36

    CAS  PubMed  Google Scholar 

  • Paharkova-Vatchkova V, Maldonado R, Kovats S (2004) Estrogen preferentially promotes the differentiation of CD11c+ CD11b(intermediate) dendritic cells from bone marrow precursors. J Immunol 172(3):1426–1436

    CAS  PubMed  Google Scholar 

  • Palaszynski KM, Loo KK, Ashouri JF, Liu HB, Voskuhl RR (2004) Androgens are protective in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neuroimmunol 146(1–2):144–152

    CAS  PubMed  Google Scholar 

  • Palaszynski KM, Smith DL, Kamrava S, Burgoyne PS, Arnold AP, Voskuhl RR (2005) A yin-yang effect between sex chromosome complement and sex hormones on the immune response. Endocrinology 146(8):3280–3285

    CAS  PubMed  Google Scholar 

  • Papenfuss TL, Rogers CJ, Gienapp I, Yurrita M, McClain M, Damico N et al (2004) Sex differences in experimental autoimmune encephalomyelitis in multiple murine strains. J Neuroimmunol 150(1–2):59–69

    CAS  PubMed  Google Scholar 

  • Pelfrey CM, Cotleur AC, Lee JC, Rudick RA (2002) Sex differences in cytokine responses to myelin peptides in multiple sclerosis. J Neuroimmunol 130(1–2):211–223

    CAS  PubMed  Google Scholar 

  • Pido-Lopez J, Imami N, Aspinall R (2001) Both age and gender affect thymic output: more recent thymic migrants in females than males as they age. Clin Exp Immunol 125(3):409–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Planas R, Metz I, Ortiz Y, Vilarrasa N, Jelcic I, Salinas-Riester G et al (2015) Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions. Ann Clin Transl Neurol 2(9):875–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plantone D, Marti A, Frisullo G, Iorio R, Damato V, Nociti V et al (2013) Circulating CD56dim NK cells expressing perforin are increased in progressive multiple sclerosis. J Neuroimmunol 265(1–2):124–127

    CAS  PubMed  Google Scholar 

  • Pollinger B, Krishnamoorthy G, Berer K, Lassmann H, Bosl MR, Dunn R et al (2009) Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206(6):1303–1316

    PubMed  PubMed Central  Google Scholar 

  • Ponsonby AL, Lucas RM, van der Mei IA, Dear K, Valery PC, Pender MP et al (2012) Offspring number, pregnancy, and risk of a first clinical demyelinating event: the AusImmune study. Neurology 78(12):867–874

    PubMed  Google Scholar 

  • Pozzilli C, Tomassini V, Marinelli F, Paolillo A, Gasperini C, Bastianello S (2003) ‘Gender gap’ in multiple sclerosis: magnetic resonance imaging evidence. Eur J Neurol 10(1):95–97

    CAS  PubMed  Google Scholar 

  • Proekt I, Miller CN, Lionakis MS, Anderson MS (2017) Insights into immune tolerance from AIRE deficiency. Curr Opin Immunol 49:71–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahn EJ, Iannitti T, Donahue RR, Taylor BK (2014) Sex differences in a mouse model of multiple sclerosis: neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ 5(1):4

    PubMed  PubMed Central  Google Scholar 

  • Ramagopalan SV, Herrera BM, Bell JT, Dyment DA, Deluca GC, Lincoln MR et al (2008) Parental transmission of HLA-DRB1*15 in multiple sclerosis. Hum Genet 122(6):661–663

    CAS  PubMed  Google Scholar 

  • Ramagopalan SV, Valdar W, Criscuoli M, DeLuca GC, Dyment DA, Orton SM et al (2009) Age of puberty and the risk of multiple sclerosis: a population based study. Eur J Neurol 16(3):342–347

    CAS  PubMed  Google Scholar 

  • Reich DS, Lucchinetti CF, Calabresi PA (2018) Multiple sclerosis. N Engl J Med 378(2):169–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roach CA, Cross AH (2020) Anti-CD20 B cell treatment for relapsing multiple sclerosis. Front Neurol 11:595547

    PubMed  Google Scholar 

  • Robinson AP, Harp CT, Noronha A, Miller SD (2014) The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 122:173–189

    PubMed  PubMed Central  Google Scholar 

  • Rojas JI, Patrucco L, MIguez J, Sinay V, Cassara FP, Caceres F et al (2017) Gender ratio trends over time in multiple sclerosis patients from Argentina. J Clin Neurosci 38:84–86

    CAS  PubMed  Google Scholar 

  • Rothhammer V, Heink S, Petermann F, Srivastava R, Claussen MC, Hemmer B et al (2011) Th17 lymphocytes traffic to the central nervous system independently of alpha4 integrin expression during EAE. J Exp Med 208(12):2465–2476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotstein DL, Chen H, Wilton AS, Kwong JC, Marrie RA, Gozdyra P et al (2018) Temporal trends in multiple sclerosis prevalence and incidence in a large population. Neurology 90(16):e1435–e1e41

    PubMed  Google Scholar 

  • Russi AE, Walker-Caulfield ME, Ebel ME, Brown MA (2015) Cutting edge: c-kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J Immunol 194(12):5609–5613

    CAS  PubMed  Google Scholar 

  • Russi AE, Ebel ME, Yang Y, Brown MA (2018) Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc Natl Acad Sci U S A 115(7):E1520–E15E9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salou M, Nicol B, Garcia A, Laplaud DA (2015) Involvement of CD8(+) T cells in multiple sclerosis. Front Immunol 6:604

    PubMed  PubMed Central  Google Scholar 

  • Sankaran-Walters S, Macal M, Grishina I, Nagy L, Goulart L, Coolidge K et al (2013) Sex differences matter in the gut: effect on mucosal immune activation and inflammation. Biol Sex Differ 4(1):10

    PubMed  PubMed Central  Google Scholar 

  • Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J et al (2018) Impact of genetic polymorphisms on human immune cell gene expression. Cell 175(6):1701–1715.e16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider-Hohendorf T, Gorlich D, Savola P, Kelkka T, Mustjoki S, Gross CC et al (2018) Sex bias in MHC I-associated shaping of the adaptive immune system. Proc Natl Acad Sci U S A 115(9):2168–2173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonheim MM, Popescu V, Rueda Lopes FC, Wiebenga OT, Vrenken H, Douw L et al (2012) Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology 79(17):1754–1761

    PubMed  Google Scholar 

  • Seillet C, Laffont S, Tremollieres F, Rouquie N, Ribot C, Arnal JF et al (2012) The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor alpha signaling. Blood 119(2):454–464

    CAS  PubMed  Google Scholar 

  • Shin HJ, Hyun JW, Kim SH, Park MS, Sohn EH, Baek SH et al (2019) Changing patterns of multiple sclerosis in Korea: toward a more baseline MRI lesions and intrathecal humoral immune responses. Mult Scler Relat Disord 35:209–214

    PubMed  Google Scholar 

  • Sinha S, Kaler LJ, Proctor TM, Teuscher C, Vandenbark AA, Offner H (2008) IL-13-mediated gender difference in susceptibility to autoimmune encephalomyelitis. J Immunol 180(4):2679–2685

    CAS  PubMed  Google Scholar 

  • Siracusa MC, Overstreet MG, Housseau F, Scott AL, Klein SL (2008) 17beta-estradiol alters the activity of conventional and IFN-producing killer dendritic cells. J Immunol 180(3):1423–1431

    CAS  PubMed  Google Scholar 

  • Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, Rajewsky K et al (2004) Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci U S A 101(8):2428–2433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, King JK et al (2008) A role for sex chromosome complement in the female bias in autoimmune disease. J Exp Med 205(5):1099–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stromnes IM, Goverman JM (2006a) Active induction of experimental allergic encephalomyelitis. Nat Protoc 1(4):1810–1819

    CAS  PubMed  Google Scholar 

  • Stromnes IM, Goverman JM (2006b) Passive induction of experimental allergic encephalomyelitis. Nat Protoc 1(4):1952–1960

    CAS  PubMed  Google Scholar 

  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99(1):21–78

    CAS  PubMed  Google Scholar 

  • Tassoni A, Farkhondeh V, Itoh Y, Itoh N, Sofroniew MV, Voskuhl RR (2019) The astrocyte transcriptome in EAE optic neuritis shows complement activation and reveals a sex difference in astrocytic C3 expression. Sci Rep 9(1):10010

    PubMed  PubMed Central  Google Scholar 

  • Tejera-Alhambra M, Alonso B, Teijeiro R, Ramos-Medina R, Aristimuno C, Valor L et al (2012) Perforin expression by CD4+ regulatory T cells increases at multiple sclerosis relapse: sex differences. Int J Mol Sci 13(6):6698–6710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J et al (2018) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172(3):500–16.e16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tillack K, Naegele M, Haueis C, Schippling S, Wandinger KP, Martin R et al (2013) Gender differences in circulating levels of neutrophil extracellular traps in serum of multiple sclerosis patients. J Neuroimmunol 261(1–2):108–119

    CAS  PubMed  Google Scholar 

  • Tomassini V, Onesti E, Mainero C, Giugni E, Paolillo A, Salvetti M et al (2005) Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J Neurol Neurosurg Psychiatry 76(2):272–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tremlett H, Zhao Y, Joseph J, Devonshire V, Neurologists UC (2008) Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry 79(12):1368–1374

    CAS  PubMed  Google Scholar 

  • Tremlett H, Zhu F, Ascherio A, Munger KL (2018) Sun exposure over the life course and associations with multiple sclerosis. Neurology 90(14):e1191–e11e9

    PubMed  PubMed Central  Google Scholar 

  • Trend S, Jones AP, Cha L, Byrne SN, Geldenhuys S, Fabis-Pedrini MJ et al (2018) Higher serum immunoglobulin G3 levels may predict the development of multiple sclerosis in individuals with clinically isolated syndrome. Front Immunol 9:1590

    PubMed  PubMed Central  Google Scholar 

  • Trojano M, Lucchese G, Graziano G, Taylor BV, Simpson S Jr, Lepore V et al (2012) Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS One 7(10):e48078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tutuncu M, Tang J, Zeid NA, Kale N, Crusan DJ, Atkinson EJ et al (2013) Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult Scler 19(2):188–198

    PubMed  Google Scholar 

  • Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108(4):557–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Walderveen MA, Lycklama ANGJ, Ader HJ, Jongen PJ, Polman CH, Castelijns JA et al (2001) Hypointense lesions on T1-weighted spin-echo magnetic resonance imaging: relation to clinical characteristics in subgroups of patients with multiple sclerosis. Arch Neurol 58(1):76–81

    PubMed  Google Scholar 

  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7):971–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villard-Mackintosh L, Vessey MP (1993) Oral contraceptives and reproductive factors in multiple sclerosis incidence. Contraception 47(2):161–168

    CAS  PubMed  Google Scholar 

  • Voskuhl RR (2020) The effect of sex on multiple sclerosis risk and disease progression. Mult Scler 26(5):554–560

    PubMed  PubMed Central  Google Scholar 

  • Voskuhl RR, Palaszynski K (2001) Sex hormones in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neuroscientist 7(3):258–270

    CAS  PubMed  Google Scholar 

  • Voskuhl RR, Pitchekian-Halabi H, MacKenzie-Graham A, McFarland HF, Raine CS (1996) Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis. Ann Neurol 39(6):724–733

    CAS  PubMed  Google Scholar 

  • Voskuhl RR, Sawalha AH, Itoh Y (2018) Sex chromosome contributions to sex differences in multiple sclerosis susceptibility and progression. Mult Scler 24(1):22–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vukusic S, Hutchinson M, Hours M, Moreau T, Cortinovis-Tourniaire P, Adeleine P et al (2004) Pregnancy and multiple sclerosis (the PRIMS study): clinical predictors of post-partum relapse. Brain 127(Pt 6):1353–1360

    PubMed  Google Scholar 

  • Waisman A, Johann L (2018) Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. J Mol Med (Berl) 96(12):1279–1292

    CAS  PubMed  Google Scholar 

  • Wang J, Jelcic I, Muhlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y et al (2020) HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183(5):1264–1281.e20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wawrusiewicz-Kurylonek N, Chorazy M, Posmyk R, Zajkowska O, Zajkowska A, Kretowski AJ et al (2018) The FOXP3 rs3761547 gene polymorphism in multiple sclerosis as a male-specific risk factor. NeuroMolecular Med 20(4):537–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weatherby SJ, Mann CL, Davies MB, Fryer AA, Haq N, Strange RC et al (2000) A pilot study of the relationship between gadolinium-enhancing lesions, gender effect and polymorphisms of antioxidant enzymes in multiple sclerosis. J Neurol 247(6):467–470

    CAS  PubMed  Google Scholar 

  • Weatherby SJ, Thomson W, Pepper L, Donn R, Worthington J, Mann CL et al (2001) HLA-DRB1 and disease outcome in multiple sclerosis. J Neurol 248(4):304–310

    CAS  PubMed  Google Scholar 

  • Weinstein Y, Ran S, Segal S (1984) Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J Immunol 132(2):656–661

    CAS  PubMed  Google Scholar 

  • Westerlind H, Bostrom I, Stawiarz L, Landtblom AM, Almqvist C, Hillert J (2014) New data identify an increasing sex ratio of multiple sclerosis in Sweden. Mult Scler 20(12):1578–1583

    PubMed  PubMed Central  Google Scholar 

  • Wiedrick J, Meza-Romero R, Gerstner G, Seifert H, Chaudhary P, Headrick A et al (2021) Sex differences in EAE reveal common and distinct cellular and molecular components. Cell Immunol 359:104242

    CAS  PubMed  Google Scholar 

  • Wilcoxen SC, Kirkman E, Dowdell KC, Stohlman SA (2000) Gender-dependent IL-12 secretion by APC is regulated by IL-10. J Immunol 164(12):6237–6243

    CAS  PubMed  Google Scholar 

  • Williams JL, Kithcart AP, Smith KM, Shawler T, Cox GM, Whitacre CC (2011) Memory cells specific for myelin oligodendrocyte glycoprotein (MOG) govern the transfer of experimental autoimmune encephalomyelitis. J Neuroimmunol 234(1–2):84–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211(8):1533–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, Sakaguchi S et al (2004) IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int Immunol 16(2):249–256

    CAS  PubMed  Google Scholar 

  • Zhang MA, Rego D, Moshkova M, Kebir H, Chruscinski A, Nguyen H et al (2012) Peroxisome proliferator-activated receptor (PPAR)alpha and -gamma regulate IFNgamma and IL-17A production by human T cells in a sex-specific way. Proc Natl Acad Sci U S A 109(24):9505–9510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MA, Ahn JJ, Zhao FL, Selvanantham T, Mallevaey T, Stock N et al (2015) Antagonizing peroxisome proliferator-activated receptor alpha activity selectively enhances Th1 immunity in male mice. J Immunol 195(11):5189–5202

    CAS  PubMed  Google Scholar 

  • Zhou Y, Claflin SB, Stankovich J, van der Mei I, Simpson S Jr, Roxburgh RH et al (2020) Redefining the multiple sclerosis severity score (MSSS): the effect of sex and onset phenotype. Mult Scler 26(13):1765–1774

    PubMed  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu ML, Bakhru P, Conley B, Nelson JS, Free M, Martin A et al (2016) Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun 7:11350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140(7):1900–1913

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon E. Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alvarez-Sanchez, N., Dunn, S.E. (2022). Immune Cell Contributors to the Female Sex Bias in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. In: Gibson, C., Galea, L.A.M. (eds) Sex Differences in Brain Function and Dysfunction. Current Topics in Behavioral Neurosciences, vol 62. Springer, Cham. https://doi.org/10.1007/7854_2022_324

Download citation

Publish with us

Policies and ethics