Skip to main content

A Historical Perspective on the Dopamine D3 Receptor

  • Chapter
  • First Online:
Therapeutic Applications of Dopamine D3 Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 60))

Abstract

Before 1990, the multiplicity of dopamine receptors beyond D1 and D2 had remained a controversial concept, despite its substantial clinical implications, at a time when it was widely accepted that dopamine interacted with only two receptor subtypes, termed D1 and D2, differing one from the other by their pharmacological specificity and opposite effects on adenylyl cyclase. It was also generally admitted that the therapeutic efficacy of antipsychotics resulted from blockade of D2 receptors. Thanks to molecular biology techniques, the D3 receptor could be characterized as a distinct molecular entity having a restricted anatomical gene expression and different signaling, which could imply peculiar functions in controlling cognitive and emotional behaviors. Due to the structural similarities of D2 and D3 receptors, the search for D3-selective compounds proved to be difficult, but nevertheless led to the identification of fairly potent and in vitro and in vivo selective compounds. The latter permitted to confirm a role of D3 receptors in motor functions, addiction, cognition, and schizophrenia, which paved the way for the development of new drugs for the treatment of psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari P, Xie B, Semeano A, Bonifazi A, Battiti FO, Newman AH, Yano H, Shi L (2021) Chirality of novel bitopic agonists determines unique pharmacology at the dopamine D3 receptor. Biomol Ther 11:570

    CAS  Google Scholar 

  • Ahlgren-Beckendorf JA, Levant B (2004) Signaling mechanisms of the D3 dopamine receptor. J Recept Signal Transduct Res 24:117–130

    Article  CAS  Google Scholar 

  • Andreoli M, Tessari M, Pilla M, Valerio E, Hagan JJ, Heidbreder CA (2003) Selective antagonism at dopamine D3 receptors prevents nicotine-triggered relapse to nicotine-seeking behavior. Neuropsychopharmacology 28:1272–1280

    Article  CAS  Google Scholar 

  • Ashby CR Jr, Paul M, Gardner EL, Heidbreder CA, Hagan JJ (2003) Acute administration of the selective D3 receptor antagonist SB-277011A blocks the acquisition and expression of the conditioned place preference response to heroin in male rats. Synapse 48:154–156

    Article  CAS  Google Scholar 

  • Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258

    Article  CAS  Google Scholar 

  • Avalos-Fuentes A, Loya-López S, Flores-Pérez A, Recillas-Morales S, Cortés H, Paz-Bermúdez F, Aceves J, Erlij D, Florán B (2013) Presynaptic CaMKIIα modulates dopamine D3 receptor activation in striatonigral terminals of the rat brain in a Ca2+ dependent manner. Neuropharmacology 71:273–281

    Article  CAS  Google Scholar 

  • Battiti FO, Newman AH, Bonifazi A (2020) Exception that proves the rule: investigation of privileged stereochemistry in designing dopamine D(3)R bitopic agonists. ACS Med Chem Lett 11:1956–1964

    Article  CAS  Google Scholar 

  • Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2:577–588

    Article  CAS  Google Scholar 

  • Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C, Sokoloff P (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D(3) receptor function. Nat Med 9:762–767

    Article  CAS  Google Scholar 

  • Bioprojet (Aubin HJ) (2015) Efficacy and Safety of BP1.4979 in Smoking Cessation (Clinical Trials Registration No. NCT01785147). https://ClinicalTrials.gov/show/NCT01785147. Accessed 15 Dec 2021

  • Bioprojet (Ghorayeb I) (2020) Clinical Trial Assessing the Efficacy and Safety of BP1.4979 in Restless Legs Syndrome (Clinical Trial Registration No. NCT03345953). https://ClinicalTrials.gov/show/NCT03345953. Accessed 15 Dec 2021

  • Bitter I, Lieberman JA, Gaudoux F, Sokoloff P, Groc M, Chavda R, Delsol C, Barthe L, Brunner V, Fabre C (2019) Randomized, double-blind, placebo-controlled study of F17464, a preferential D 3 antagonist, in the treatment of acute exacerbation of schizophrenia. Neuropsychopharmacology 44:1917–1924

    Article  CAS  Google Scholar 

  • Boileau I, Guttman M, Rusjan P, Adams JR, Houle S, Tong J, Hornykiewicz O, Furukawa Y, Wilson AA, Kapur S, Kish SJ (2009) Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson's disease. Brain 132:1366–1375

    Article  Google Scholar 

  • Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz J-C (1997) Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A 94:3363–3367

    Article  CAS  Google Scholar 

  • Bouthenet ML, Souil E, Martres M-P, Sokoloff P, Giros B, Schwartz J-C (1991a) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with D2 receptor mRNA. Brain Res 564:203–219

    Article  CAS  Google Scholar 

  • Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC (1991b) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 564:203–219

    Article  CAS  Google Scholar 

  • Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336:783–787

    Article  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80:4546–4550

    Article  CAS  Google Scholar 

  • Burris KD, Filtz TM, Chumpradit S, Kung MP, Foulon C, Hensler JG, Kung HF, Molinoff PB (1994) Characterization of [125I](R)-trans-7-hydroxy-2-[N-propyl-N-(3′-iodo-2′-propenyl)amino] tetralin binding to dopamine D3 receptors in rat olfactory tubercle. J Pharmacol Exp Ther 268:935–942

    CAS  Google Scholar 

  • Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D3 dopamine receptors. Science 260:1814–1816

    Article  CAS  Google Scholar 

  • Caine SB, Koob GF, Parsons LH, Everitt BJ, Schwartz J-C, Sokoloff P (1997) D3 receptor functional test in vitro predicts potencies of dopamine agonists to reduce cocaine self-administration. Neuroreport 8:2373–2377

    Article  CAS  Google Scholar 

  • Carlsson A (1978) In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 1057–1070

    Google Scholar 

  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  CAS  Google Scholar 

  • Chio CL, Lajiness ME, Huff RM (1994) Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol 45:51–60

    CAS  Google Scholar 

  • Clark D, White FJ (1987) D1 dopamine receptor.The search for a function: a critical evaluation of the D1/D2 dopamine recpetor classification and its functional implications. Synapse 1:347–388

    Article  CAS  Google Scholar 

  • Collins GT, Witkin JM, Newman AH, Svensson KA, Grundt P, Cao J, Woods JH (2005) Dopamine agonist-induced yawning in rats: a dopamine D3 receptor-mediated behavior. J Pharmacol Exp Ther 314:310–319

    Article  CAS  Google Scholar 

  • Cosi C, Martel JC, Auclair AL, Collo G, Cavalleri L, Heusler P, Leriche L, Gaudoux F, Sokoloff P, Moser PC, Gatti-McArthur S (2021) Pharmacology profile of F17464, a dopamine D(3) receptor preferential antagonist. Eur J Pharmacol 890:173635

    Article  CAS  Google Scholar 

  • Cruz-Trujillo R, Avalos-Fuentes A, Rangel-Barajas C, Paz-Bermúdez F, Sierra A, Escartín-Perez E, Aceves J, Erlij D, Florán B (2013) D3 dopamine receptors interact with dopamine D1 but not D4 receptors in the GABAergic terminals of the SNr of the rat. Neuropharmacology 67:370–378

    Article  CAS  Google Scholar 

  • Dearry A, Gingrich JA, Falardeau P, Fremeau RT Jr, Bates MD, Caron MG (1990) Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 347:72–76

    Article  CAS  Google Scholar 

  • Di Ciano P, Mansouri E, Tong J, Wilson AA, Houle S, Boileau I, Duvauchelle T, Robert P, Schwartz JC, Le Foll B (2019) Occupancy of dopamine D(2) and D(3) receptors by a novel D3 partial agonist BP1.4979: a [(11)C]-(+)-PHNO PET study in humans. Neuropsychopharmacology 44:1284–1290

    Article  Google Scholar 

  • Diaz J, Lévesque D, Lammers CH, Griffon N, Martres MP, Schwartz JC, Sokoloff P (1995) Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 65:731–745

    Article  CAS  Google Scholar 

  • Diaz J, Pilon C, Le Foll B, Gros C, Triller A, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684

    Article  CAS  Google Scholar 

  • Dixon AK, Huber C, Lowe DA (1994) Clozapine promotes approach-oriented behavior in male mice. J Clin Psychiatry 55 Suppl B:4–7

    CAS  Google Scholar 

  • Durgam S, Earley W, Guo H, Li D, Németh G, Laszlovszky I, Fava M, Montgomery SA (2016a) Efficacy and safety of adjunctive cariprazine in inadequate responders to antidepressants: a randomized, double-blind, placebo-controlled study in adult patients with major depressive disorder. J Clin Psychiatry 77:371–378

    Article  Google Scholar 

  • Durgam S, Earley W, Lipschitz A, Guo H, Laszlovszky I, Németh G, Vieta E, Calabrese JR, Yatham LN (2016b) An 8-week randomized, double-blind, placebo-controlled evaluation of the safety and efficacy of cariprazine in patients with bipolar I depression. Am J Psychiatry 173:271–281

    Article  Google Scholar 

  • Duric V, Banasr M, Franklin T, Lepack A, Adham N, Kiss B, Gyertyán I, Duman RS (2017) Cariprazine exhibits anxiolytic and dopamine D3 receptor-dependent antidepressant effects in the chronic stress model. Int J Neuropsychopharmacol 20:788–796

    Article  CAS  Google Scholar 

  • European Medicines Agency (2017) Reagila: international non-proprietary name: cariprazine. London, UK. https://www.ema.europa.eu/en/documents/assessment-report/reagila-epar-public-assessment-report_en.pdf. Accessed 3 Dec 2021

  • Ferro A (2003) Renal dopamine receptors and hypertension. J Hypertens 21:37–38

    Article  CAS  Google Scholar 

  • Freedman SB, Patel S, Marwood R, Emms F, Seabrook GR, Knowles MR, McAllister G (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther 268:417–426

    CAS  Google Scholar 

  • Galaj E, Newman AH, Xi ZX (2020) Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: rationale, progress, and challenges. Neurosci Biobehav Rev 114:38–52

    Article  CAS  Google Scholar 

  • Garau L, Govoni S, Stefanini E, Trabucchi M, Spano PF (1978) Dopamine receptors: pharmacological and anatomical evidences indicate that two distinct dopamine receptor populations are present in rat striatum. Life Sci 23:1745–1750

    Article  CAS  Google Scholar 

  • Gilbert N, Meyer C (2003) Social anxiety and social comparison: differential links with restrictive and bulimic attitudes among nonclinical women. Eat Behav 4:257–264

    Article  Google Scholar 

  • Girgis RR, Xu X, Gil RB, Hackett E, Ojeil N, Lieberman JA, Slifstein M, Abi-Dargham A (2015) Antipsychotic binding to the dopamine-3 receptor in humans: a PET study with [(11)C]-(+)-PHNO. Schizophr Res 168:373–376

    Article  Google Scholar 

  • Girgis RR, Slifstein M, D'Souza D, Lee Y, Periclou A, Ghahramani P, Laszlovszky I, Durgam S, Adham N, Nabulsi N, Huang Y, Carson RE, Kiss B, Kapás M, Abi-Dargham A, Rakhit A (2016) Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [(11)C]-(+)-PHNO. Psychopharmacology (Berl) 233:3503–3512

    Article  CAS  Google Scholar 

  • Giros B, Sokoloff P, Martres MP, Riou JF, Emorine LJ, Schwartz JC (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–926

    Article  CAS  Google Scholar 

  • Graff-Guerrero A, Mamo D, Shammi CM, Mizrahi R, Marcon H, Barsoum P, Rusjan P, Houle S, Wilson AA, Kapur S (2009) The effect of antipsychotics on the high-affinity state of D2 and D3 receptors: a positron emission tomography study with [11C]-(+)-PHNO. Arch Gen Psychiatry 66:606–615

    Article  CAS  Google Scholar 

  • Graff-Guerrero A, Redden L, Abi-Saab W, Katz DA, Houle S, Barsoum P, Bhathena A, Palaparthy R, Saltarelli MD, Kapur S (2010) Blockade of [11C](+)-PHNO binding in human subjects by the dopamine D3 receptor antagonist ABT-925. Int J Neuropsychopharmacol 13:273–287

    Article  CAS  Google Scholar 

  • Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411:86–89

    Article  CAS  Google Scholar 

  • Heimer L, Zahm D, Alheid G (1995) Basal ganglia. In: Paxinos G (ed) The rat nervous system. Academic Press Inc., New York, pp 579–628

    Google Scholar 

  • Higley AE, Kiefer SW, Li X, Gaal J, Xi ZX, Gardner EL (2011) Dopamine D(3) receptor antagonist SB-277011A inhibits methamphetamine self-administration and methamphetamine-induced reinstatement of drug-seeking in rats. Eur J Pharmacol 659:187–192

    Article  CAS  Google Scholar 

  • Ikai Y, Takada M, Shinonaga Y, Mizuno N (1992) Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience 51:719–728

    Article  CAS  Google Scholar 

  • Ikai Y, Takada M, Mizuno N (1994) Single neurons in the ventral tegmental area that project to both the cerebral and cerebellar cortical areas by way of axon collaterals. Neuroscience 61:925–934

    Article  CAS  Google Scholar 

  • Jardemark K, Wadenberg ML, Grillner P, Svensson TH (2002) Dopamine D3 and D4 receptor antagonists in the treatment of schizophrenia. Curr Opin Investig Drugs 3:101–105

    CAS  Google Scholar 

  • Juncos JL, Engber TM, Raisman R, Susel Z, Thibaut F, Ploska A, Agid Y, Chase TN (1989) Continuous and intermittent levodopa differentially affect basal ganglia function. Ann Neurol 25:473–478

    Article  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initition and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    Article  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  CAS  Google Scholar 

  • Khaled MA, Pushparaj A, Di Ciano P, Diaz J, Le Foll B (2014) Dopamine D3 receptors in the basolateral amygdala and the lateral habenula modulate cue-induced reinstatement of nicotine seeking. Neuropsychopharmacology 39:3049–3058

    Article  CAS  Google Scholar 

  • Kiss B, Laszlovszky I, Horváth A, Schmidt E, Bugovics G, Orosz S, Hornok K, Gyertyán I, Agai-Csongor E, Domány G, Tihanyi K, Szombathelyi Z (2006) RGH-188, an atypical antipsychotic with dopamine D3/D2 antagonist/partial agonist properties: in vitro characterisation. Int J Neuropsychopharmacol 9

    Google Scholar 

  • Kiss B, Laszlovszky I, Krámos B, Visegrády A, Bobok A, Lévay G, Lendvai B, Román V (2021) Neuronal dopamine D3 receptors: translational implications for preclinical research and CNS disorders. Biomol Ther 11:104

    CAS  Google Scholar 

  • Klawans HL Jr (1973) The pharmacology of extrapyramidal movement disorders. Monogr Neural Sci 2:1–136

    Google Scholar 

  • Koeltzow TE, Xu M, Cooper DC, Hu XT, Tonegawa S, Wolf ME, White FJ (1998) Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 18:2231–2238

    Article  CAS  Google Scholar 

  • Lammers CH, Diaz J, Schwartz JC, Sokoloff P (2000) Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments. Mol Psychiatry 5:378–388

    Article  CAS  Google Scholar 

  • Lanza K, Bishop C (2021) Dopamine D3 receptor plasticity in Parkinson's disease and L-DOPA-induced dyskinesia. Biomedicine 9:314

    CAS  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31:371–384

    Article  CAS  Google Scholar 

  • Le Foll B, Francès H, Diaz J, Schwartz JC, Sokoloff P (2002) Role of the dopamine D3 receptor in reactivity to cocaine-associated cues in mice. Eur J Neurosci 15:2016–2026

    Article  Google Scholar 

  • Le Foll B, Diaz J, Sokoloff P (2003a) Increased dopamine D3 receptor expression accompanying behavioural sensitization to nicotine in rats. Synapse 47:176–183

    Article  Google Scholar 

  • Le Foll B, Schwartz J-C, Sokoloff P (2003b) Disruption of nicotine conditioning by dopamine D3 receptor ligands. Mol Psychiatry 8:225–230

    Article  Google Scholar 

  • Le Foll B, Diaz J, Sokoloff P (2005a) A single cocaine exposure increases BDNF and D3 receptor expressions:implications for drug-conditioning. Neuroreport 16:175–178

    Article  Google Scholar 

  • Le Foll B, Sokoloff P, Stark H, Goldberg SR (2005b) Dopamine D3 receptor ligands block nicotine-induced conditioned place preferences through a mechanism that does not involve discriminative-stimulus or antidepressant-like effects. Neuropsychopharmacology 30:720–730

    Article  Google Scholar 

  • Le Moine C, Bloch B (1996) Expression of D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with D1 and D2 dopamine receptors. Neuroscience 73:131–143

    Article  Google Scholar 

  • Lecrubier Y (2003) S. 27.02 a partial D3 receptor agonist in schizophrenia. Eur Neuropsychopharmacol:S167–S168

    Google Scholar 

  • Lévesque D (1996) Aminotetralin drugs and D3 receptor functions. What may partially selective D3 receptor ligands tell us about dopamine D3 receptor functions? Biochem Pharmacol 52:511–518

    Article  Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC, Sokoloff P (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 89:8155–8159

    Article  Google Scholar 

  • Lévesque D, Martres M-P, Diaz J, Griffon N, Lammers CH, Sokoloff P, Schwartz J-C (1995) A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons. Proc Natl Acad Sci U S A 92:1719–1723

    Article  Google Scholar 

  • Lv Y, Hu RR, Jing M, Zhao TY, Wu N, Song R, Li J, Hu G (2019) Selective dopamine D3 receptor antagonist YQA14 inhibits morphine-induced behavioral sensitization in wild type, but not in dopamine D3 receptor knockout mice. Acta Pharmacol Sin 40:583–588

    Article  CAS  Google Scholar 

  • Manvich DF, Petko AK, Branco RC, Foster SL, Porter-Stransky KA, Stout KA, Newman AH, Miller GW, Paladini CA, Weinshenker D (2019) Selective D(2) and D(3) receptor antagonists oppositely modulate cocaine responses in mice via distinct postsynaptic mechanisms in nucleus accumbens. Neuropsychopharmacology 44:1445–1455

    Article  CAS  Google Scholar 

  • Marshall JF, Ungerstedt U (1977) Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Eur J Pharmacol 41:361–367

    Article  CAS  Google Scholar 

  • Martin GE, Williams M, Pettibone DJ, Yarbrough GG, Clineschmidt BV, Jones JH (1984) Pharmacologic profile of a novel potent direct-acting dopamine agonist, (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO]. J Pharmacol Exp Ther 230:569–576

    CAS  Google Scholar 

  • Martres M-P, Sokoloff P, Delandre M, Schwartz J-C, Protais P, Costentin J (1984) Selection of dopamine antagonists discriminating various behavioral responses and radioligand binding sites. Naunyn Schmiedebergs Arch Pharmacol 325:102–115

    Article  CAS  Google Scholar 

  • Martres MP, Bouthenet ML, Sales N, Sokoloff P, Schwartz JC (1985) Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand. Science 228:752–755

    Article  CAS  Google Scholar 

  • Mengod G, Villaró MT, Landwehrmeyer GB, Martinez-Mir MI, Niznik HB, Sunahara RK, Seeman P, O'Dowd BF, Probst A, Palacios JM (1992) Visualization of dopamine D1, D2 and D3 receptor mRNAs in human and rat brain. Neurochem Int 20(Suppl):33s–43s

    Article  CAS  Google Scholar 

  • Micheli F, Arista L, Bonanomi G, Blaney FE, Braggio S, Capelli AM, Checchia A, Damiani F, Di-Fabio R, Fontana S, Gentile G, Griffante C, Hamprecht D, Marchioro C, Mugnaini M, Piner J, Ratti E, Tedesco G, Tarsi L, Terreni S, Worby A, Ashby CR Jr, Heidbreder C (2010) 1,2,4-Triazolyl azabicyclo[3.1.0]hexanes: a new series of potent and selective dopamine D(3) receptor antagonists. J Med Chem 53:374–391

    Article  CAS  Google Scholar 

  • Mizrahi R, Agid O, Borlido C, Suridjan I, Rusjan P, Houle S, Remington G, Wilson AA, Kapur S (2011) Effects of antipsychotics on D3 receptors: a clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO. Schizophr Res 131:63–68

    Article  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  CAS  Google Scholar 

  • Mohr P, Decker M, Enzensperger C, Lehmann J (2006) Dopamine/serotonin receptor ligands. 12: SAR studies on hexahydro-dibenz[d,g]azecines Lead to 4-chloro-7-methyl-5,6,7,8,9,14-hexahydrodibenz[d,g]azecin-3-ol, the first picomolar D5-selective dopamine-receptor antagonist. J Med Chem 49:2110–2116

    Article  CAS  Google Scholar 

  • Monsma FJ Jr, McVittie LD, Gerfen CR, Mahan LC, Sibley DR (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929

    Article  CAS  Google Scholar 

  • Mugnaini M, Iavarone L, Cavallini P, Griffante C, Oliosi B, Savoia C, Beaver J, Rabiner EA, Micheli F, Heidbreder C, Andorn A, Merlo Pich E, Bani M (2013) Occupancy of brain dopamine D3 receptors and drug craving: a translational approach. Neuropsychopharmacology 38:302–312

    Article  CAS  Google Scholar 

  • Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Le Foll B, Mulsant B, Pollock B, Graff-Guerrero A (2013) The potential role of dopamine D3 receptor neurotransmission in cognition. Eur Neuropsychopharmacol 23:799–813

    Article  CAS  Google Scholar 

  • Narendran R, Slifstein M, Guillin O, Hwang Y, Hwang DR, Scher E, Reeder S, Rabiner E, Laruelle M (2006a) Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo. Synapse 60:485–495

    Article  CAS  Google Scholar 

  • Narendran R, Slifstein M, Guillin O, Hwang Y, Hwang DR, Scher E, Reeder S, Rabiner E, Laruelle M (2006b) Dopamine (D(2/3)) receptor agonist positron emission tomography radiotracer [(11)C]-(+)-PHNO is a D(3) receptor preferring agonist in vivo. Synapse 60:485–495

    Article  CAS  Google Scholar 

  • Németh G, Laszlovszky I, Czobor P, Szalai E, Szatmári B, Harsányi J, Barabássy Á, Debelle M, Durgam S, Bitter I (2017) Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomised, double-blind, controlled trial. Lancet 389:1103–1113

    Article  Google Scholar 

  • Nürnberger A, Räbiger M, Mack A, Diaz J, Sokoloff P, Mühlbauer B, Luippold G (2004) Subapical localization of the dopamine D3 receptor in proximal tubules of the rat kidney. J Histochem Cytochem 52:1647–1655

    Article  Google Scholar 

  • Payer DE, Guttman M, Kish SJ, Tong J, Adams JR, Rusjan P, Houle S, Furukawa Y, Wilson AA, Boileau I (2016) D3 dopamine receptor-preferring [11C]PHNO PET imaging in Parkinson patients with dyskinesia. Neurology 86:224–230

    Article  CAS  Google Scholar 

  • Pennartz CM, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719–761

    Article  CAS  Google Scholar 

  • Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG, Schwartz JC, Everitt BJ, Sokoloff P (1999) Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400:371–375

    Article  CAS  Google Scholar 

  • Rabiner EA, Slifstein M, Nobrega J, Plisson C, Huiban M, Raymond R, Diwan M, Wilson AA, McCormick P, Gentile G, Gunn RN, Laruelle MA (2009) In vivo quantification of regional dopamine-D3 receptor binding potential of (+)-PHNO: studies in non-human primates and transgenic mice. Synapse 63:782–793

    Article  CAS  Google Scholar 

  • Reavill C, Taylor SG, Wood MD, Ashmeade T, Austin NE, Avenell KY, Boyfield I, Branch CL, Cilia J, Coldwell MC, Hadley MS, Hunter AJ, Jeffrey P, Jewitt F, Johnson CN, Jones DN, Medhurst AD, Middlemiss DN, Nash DJ, Riley GJ, Routledge C, Stemp G, Thewlis KM, Trail B, Vong AK, Hagan JJ (2000) Pharmacological actions of a novel, high-affinity, and selective human dopamine D(3) receptor antagonist, SB-277011-A. J Pharmacol Exp Ther 294:1154–1165

    CAS  Google Scholar 

  • Redden L, Rendenbach-Mueller B, Abi-Saab WM, Katz DA, Goenjian A, Robieson WZ, Wang Y, Goss SL, Greco NT, Saltarelli MD (2011) A double-blind, randomized, placebo-controlled study of the dopamine D3 receptor antagonist ABT-925 in patients with acute schizophrenia. J Clin Psychopharmacol 31:221–225

    Article  CAS  Google Scholar 

  • Robarge MJ, Husbands SM, Kieltyka A, Brodbeck R, Thurkauf A, Newman AH (2001) Design and synthesis of [(2,3-dichlorophenyl)piperazin-1-yl]alkylfluorenylcarboxamides as novel ligands selective for the dopamine D3 receptor subtype. J Med Chem 44:3175–3186

    Article  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  CAS  Google Scholar 

  • Robinson SW, Caron MG (1997) Selective inhibition of adenylyl cyclase type V by the dopamine D3 receptor. Mol Pharmacol 52:508–514

    Article  CAS  Google Scholar 

  • Sabioni P, Di Ciano P, Le Foll B (2016) Effect of a D3 receptor antagonist on context-induced reinstatement of nicotine seeking. Prog Neuropsychopharmacol Biol Psychiatry 64:149–154

    Article  CAS  Google Scholar 

  • Sachs GS, Greenberg WM, Starace A, Lu K, Ruth A, Laszlovszky I, Németh G, Durgam S (2015) Cariprazine in the treatment of acute mania in bipolar I disorder: a double-blind, placebo-controlled, phase III trial. J Affect Disord 174:296–302

    Article  CAS  Google Scholar 

  • Sautel F, Griffon N, Lévesque D, Pilon C, Schwartz JC, Sokoloff P (1995a) A functional test identifies dopamine agonists selective for D3 versus D2 receptors. Neuroreport 6:329–332

    Article  CAS  Google Scholar 

  • Sautel F, Griffon N, Sokoloff P, Schwartz JC, Launay C, Simon P, Costentin J, Schoenfelder A, Garrido F, Mann A et al (1995b) Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J Pharmacol Exp Ther 275:1239–1246

    CAS  Google Scholar 

  • Searle GE, Beaver JD, Tziortzi A, Comley RA, Bani M, Ghibellini G, Merlo-Pich E, Rabiner EA, Laruelle M, Gunn RN (2013) Mathematical modelling of [(1)(1)C]-(+)-PHNO human competition studies. Neuroimage 68:119–132

    Article  CAS  Google Scholar 

  • Slifstein M, Abi-Dargham A, Girgis RR, Suckow RF, Cooper TB, Divgi CR, Sokoloff P, Leriche L, Carberry P, Oya S, Joseph SK, Guiraud M, Montagne A, Brunner V, Gaudoux F, Tonner F (2020) Binding of the D3-preferring antipsychotic candidate F17464 to dopamine D3 and D2 receptors: a PET study in healthy subjects with [(11)C]-(+)-PHNO. Psychopharmacology (Berl) 237:519–527

    Article  CAS  Google Scholar 

  • Smart K, Gallezot JD, Nabulsi N, Labaree D, Zheng MQ, Huang Y, Carson RE, Hillmer AT, Worhunsky PD (2020) Separating dopamine D(2) and D(3) receptor sources of [(11)C]-(+)-PHNO binding potential: independent component analysis of competitive binding. Neuroimage 214:116762

    Article  CAS  Google Scholar 

  • Sokoloff P, Le Foll B (2017) The dopamine D3 receptor, a quarter century later. Eur J Neurosci 45:2–19

    Article  Google Scholar 

  • Sokoloff P, Martres MP, Delandre M, Redouane K, Schwartz JC (1984) 3H-dopamine binding sites differ in rat striatum and pituitary. Naunyn Schmiedebergs Arch Pharmacol 327:221–227

    Article  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  CAS  Google Scholar 

  • Sokoloff P, Abi-Dargham A, Slifstein M, Martel J-C, Heusler P, Ludovic L, Girgis R, Suckow RF, Cooper T, Divgi CR (2016) Translational imaging studies supporting the development of F17464: a new antipsychotic drug with preferential D3 antagonist/5HT1A partial agonist properties. ACNP 55th annual meeting. 9 Dec 2016. Florida, USA. Nature Publishing Group, UK

    Google Scholar 

  • Stemp G, Ashmeade T, Branch CL, Hadley MS, Hunter AJ, Johnson CN, Nash DJ, Thewlis KM, Vong AKK, Austin NE, Jeffrey P, Avenell KY, Boyfield I, Hagan JJ, Middlemiss DN, Reavill C, Riley GJ, Routledge C, Wood M (2000) Design and synthesis of trans-N-[4-[2-(6-Cyano-1,2,3,4-tetrahydroisoquinolin-2- yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): a potent and selective dopamine D3 receptor antagonist with high Oral bioavailability and CNS penetration in the rat. J Med Chem 43:1878–1885

    Article  CAS  Google Scholar 

  • Stoessl AJ (2016) Comment: increased D3 binding-A substrate for levodopa-induced dyskinesias? Neurology 86:228

    Article  Google Scholar 

  • Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y et al (1990) Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347:80–83

    Article  CAS  Google Scholar 

  • Sunahara RK, Guan HC, O'Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HH, Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619

    Article  CAS  Google Scholar 

  • Svensson K, Hjorth S, Clark D, Carlsson A, Wikstrom H, Ansersson B, Sanchez D, Johansson AM, Arvidsson LE, Hacksell U (1986a) (+)-UH 232 and (+)-AJ 76: novel stereoselective dopamine receptor antagonists with preferential action on autoreceptors. J Neural Transm 65:1–27

    Article  CAS  Google Scholar 

  • Svensson K, Johansson AM, Magnusson T, Carlsson A (1986b) (+)-AJ 76 and (+)-UH 232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn-Schmiedegerg’s Arch Pharmacol 334:234–245

    Article  CAS  Google Scholar 

  • Tang L, Todd RD, O'Malley KL (1994) Dopamine D2 and D3 receptors inhibit dopamine release. J Pharmacol Exp Ther 270:475–479

    CAS  Google Scholar 

  • Unger L, Garcia-Ladona F, Wernet W, Sokoloff P, Wicke K, Gross G (2002) In vitro characterization of the selective dopamine D3 receptor antagonist A-437203. Program no. 894.5. Abstract viewer/itinerary planner. Society for Neuroscience, Washington, DC

    Google Scholar 

  • Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    Article  Google Scholar 

  • Vengeliene V, Leonardi-Essmann F, Perreau-Lenz S, Gebicke-Haerter P, Drescher K, Gross G, Spanagel R (2006) The dopamine D3 receptor plays an essential role in alcohol-seeking and relapse. FASEB J 20:2223–2233

    Article  CAS  Google Scholar 

  • Vorel SR, Ashby CRJ, Paul M, Liu X, Hayes R, Hagan JJ, Middlemiss DN, Stemp G, Gardner EL (2002) Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J Neurosci 22:9595–9603

    Article  CAS  Google Scholar 

  • Willeit M, Ginovart N, Kapur S, Houle S, Hussey D, Seeman P, Wilson AA (2006) High-affinity states of human brain dopamine D2/3 receptors imaged by the agonist [11C]-(+)-PHNO. Biol Psychiatry 59:389–394

    Article  CAS  Google Scholar 

  • Witkin JM, Levant B, Zapata A, Kaminski R, Gasior M (2008) The dopamine D3/D2 agonist (+)-PD-128,907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] protects against acute and cocaine-kindled seizures in mice: further evidence for the involvement of D3 receptors. J Pharmacol Exp Ther 326:930–938

    Article  CAS  Google Scholar 

  • Wolf ME, Roth R (1987) Dopamine autoreceptors. In: Creese I, Fraser C (eds) Dopamine receptors. Alan R Liss Inc., New York, pp 45–96

    Google Scholar 

  • Wolstencroft EC, Simic G, thi Man N, Holt I, Lam le T, Buckland PR, Morris GE (2007) Endosomal location of dopamine receptors in neuronal cell cytoplasm. J Mol Histol 38:333–340

    Article  CAS  Google Scholar 

  • Xi ZX, Gilbert JG, Pak AC, Ashby CR Jr, Heidbreder CA, Gardner EL (2005) Selective dopamine D3 receptor antagonism by SB-277011A attenuates cocaine reinforcement as assessed by progressive-ratio and variable-cost-variable-payoff fixed-ratio cocaine self-administration in rats. Eur J Neurosci 21:3427–3438

    Article  Google Scholar 

  • Xu W, Wang X, Tocker AM, Huang P, Reith ME, Liu-Chen LY, Smith AB 3rd, Kortagere S (2017) Functional characterization of a novel series of biased signaling dopamine D3 receptor agonists. ACS Chem Nerosci 8:486–500

    Article  CAS  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767

    Article  CAS  Google Scholar 

  • Zhou QY, Grandy DK, Thambi L, Kushner JA, Van Tol HH, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (1990) Cloning and expression of human and rat D1 dopamine receptors. Nature 347:76–80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Le Foll .

Editor information

Editors and Affiliations

Ethics declarations

Dr. Bernard Le Foll has obtained funding from Pfizer Inc. (GRAND Awards, including salary support) for investigator-initiated projects. Dr. Le Foll has obtained funding from Indivior for a clinical trial sponsored by Indivior. Dr. Le Foll has in-kind donations of cannabis products from Aurora Cannabis Enterprises Inc. and study medication donations from Pfizer Inc. (varenicline for smoking cessation) and Bioprojet Pharma. He was also provided a coil for a transcranial magnetic stimulation (TMS) study from Brainsway. Dr. Le Foll has obtained industry funding from Canopy Growth Corporation (through research grants handled by the Centre for Addiction and Mental Health and the University of Toronto), Bioprojet Pharma, Alcohol Countermeasure Systems (ACS), and Alkermes. Lastly, Dr. Le Foll has received in-kind donations of nabiximols from GW Pharmaceuticals for past studies funded by CIHR and NIH.

He has participated in a session of a National Advisory Board Meeting (Emerging Trends BUP-XR) for Indivior Canada and has been consultant for Shinogi. He is supported by CAMH, a clinician-scientist award from the department of Family and Community Medicine of the University of Toronto and a Chair in Addiction Psychiatry from the department of Psychiatry of University of Toronto.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sokoloff, P., Le Foll, B. (2022). A Historical Perspective on the Dopamine D3 Receptor. In: Boileau, I., Collo, G. (eds) Therapeutic Applications of Dopamine D3 Receptor Function. Current Topics in Behavioral Neurosciences, vol 60. Springer, Cham. https://doi.org/10.1007/7854_2022_315

Download citation

Publish with us

Policies and ethics