Skip to main content

The Role of the Central Histaminergic System in Behavioral State Control

  • Chapter
  • First Online:
The Functional Roles of Histamine Receptors

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 59))

Abstract

Histamine is a small monoamine signaling molecule that plays a role in many peripheral and central physiological processes, including the regulation of wakefulness. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and histamine neurons are thought to promote wakefulness and vigilance maintenance – under certain environmental and/or behavioral contexts – through their diffuse innervation of the cortex and other wake-promoting brain circuits. Histamine neurons also contain a number of other putative neurotransmitters, although the functional role of these co-transmitters remains incompletely understood. Within the brain histamine operates through three receptor subtypes that are located on pre- and post-synaptic membranes. Some histamine receptors exhibit constitutive activity, and hence exist in an activated state even in the absence of histamine. Newer medications used to reduce sleepiness in narcolepsy patients in fact enhance histamine signaling by blunting the constitutive activity of these histamine receptors. In this chapter, we provide an overview of the central histamine system with an emphasis on its role in behavioral state regulation and how drugs targeting histamine receptors are used clinically to treat a wide range of sleep-wake disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmanova S, Grotell M, Kauhanen J, Linden A-M, Korpi ER, Panula P (2020) Increased sensitivity of mice lacking extrasynaptic δ-containing GABAA receptors to histamine receptor 3 antagonists. Front Pharmacol 11:594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916(1–2):172–191

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen MS, Alanen S, Szabat E, Visser TJ, Panula P (1992) Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse, and guinea pig. J Comp Neurol 323(1):103–116

    Article  CAS  PubMed  Google Scholar 

  • Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL, Lin JS (2009) Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 29(46):14423–14438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302(5911):832–837

    Article  CAS  PubMed  Google Scholar 

  • Atzori M, Lau D, Tansey EP, Chow A, Ozaita A, Rudy B, McBain CJ (2000) H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking. Nat Neurosci 3(8):791–798

    Article  CAS  PubMed  Google Scholar 

  • Bayer L, Eggermann E, Serafin M, Saint-Mleux B, Machard D, Jones B, Muhlethaler M (2001) Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci 14(9):1571–1575

    Article  CAS  PubMed  Google Scholar 

  • Berg AP, Bayliss DA (2007) Striatal cholinergic interneurons express a receptor-insensitive homomeric TASK-3-like background K+ current. J Neurophysiol 97(2):1546–1552

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Centurion C, Gerashchenko D, Shiromani PJ (2007) Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 27(51):14041–14048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blandina P, Munari L, Provensi G, Passani MB (2012) Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouthenet ML, Ruat M, Sales N, Garbarg M, Schwartz JC (1988) A detailed mapping of histamine H1-receptors in guinea-pig central nervous system established by autoradiography with [125I]iodobolpyramine. Neuroscience 26(2):553–600

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Haas HL (1999) On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus. J Physiol 515(Pt 3):777–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63(6):637–672

    Article  CAS  PubMed  Google Scholar 

  • Chang RS, Tran VT, Snyder SH (1979) Heterogeneity of histamine H1-receptors: species variations in [3H]mepyramine binding of brain membranes. J Neurochem 32(6):1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289(5798):537–542

    Article  CAS  PubMed  Google Scholar 

  • Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, Beuckmann CT, Chemelli RM, Sakurai T, Yanagisawa M, Saper CB, Scammell TE (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21(19):RC168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22(3):977–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu M, Huang Z-L, Qu W-M, Eguchi N, Yao M-H, Urade Y (2004) Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats. Neurosci Res 49(4):417–420

    Article  CAS  PubMed  Google Scholar 

  • Cilz NI, Lei S (2017) Histamine facilitates GABAergic transmission in the rat entorhinal cortex: roles of H1 and H2 receptors, Na+ −permeable cation channels, and inward rectifier K+ channels. Hippocampus 27(5):613–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai H, Kaneko K, Kato H, Fujii S, Jing Y, Xu A, Sakurai E, Kato M, Okamura N, Kuramasu A, Yanai K (2007) Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci Res 57(2):306–313

    Article  CAS  PubMed  Google Scholar 

  • Dauvilliers Y, Verbraecken J, Partinen M, Hedner J, Saaresranta T, Georgiev O, Tiholov R, Lecomte I, Tamisier R, Lévy P, Scart-Gres C, Lecomte J-M, Schwartz J-C, Pépin J-L, HAROSA II Study Group Collaborators et al (2020) Am J Respir Crit Care Med 201(9):1135–1145

    Article  PubMed  PubMed Central  Google Scholar 

  • Denoyer M, Sallanon M, Buda C, Kitahama K, Jouvet M (1991) Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat. Brain Res 539(2):287–303

    Article  CAS  PubMed  Google Scholar 

  • Ellender TJ, Huerta-Ocampo I, Deisseroth K, Capogna M, Bolam JP (2011) Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J Neurosci 31(43):15340–15351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ericson H, Watanabe T, Kohler C (1987) Morphological analysis of the tuberomammillary nucleus in the rat brain: delineation of subgroups with antibody against L-histidine decarboxylase as a marker. J Comp Neurol 263(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Ericson H, Blomqvist A, Köhler C (1991) Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. J Comp Neurol 311(1):45–64

    Article  CAS  PubMed  Google Scholar 

  • Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001a) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 21(23):9273–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson KS, Stevens DR, Haas HL (2001b) Serotonin excites tuberomammillary neurons by activation of Na(+)/ca(2+)-exchange. Neuropharmacology 40(3):345–351

    Article  CAS  PubMed  Google Scholar 

  • Eriksson KS, Sergeeva OA, Selbach O, Haas HL (2004) Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. Eur J Neurosci 19(5):1278–1284

    Article  PubMed  Google Scholar 

  • Flik G, Folgering JHA, Cremers TIHF, Westerink BHC, Dremencov E (2015) Interaction between brain histamine and serotonin, norepinephrine, and dopamine systems: in vivo microdialysis and electrophysiology study. J Mol Neurosci 56(2):320–328

    Article  CAS  PubMed  Google Scholar 

  • Fujita A, Bonnavion P, Wilson MH, Mickelsen LE, Bloit J, de Lecea L, Jackson AC (2017) Hypothalamic tuberomammillary nucleus neurons: electrophysiological diversity and essential role in arousal stability. J Neurosci 37(39):9574–9592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser PJ, Orchinik M, Raju I, Lowry CA (2009) Distribution of organic cation transporter 3, a corticosterone-sensitive monoamine transporter, in the rat brain. J Comp Neurol 512(4):529–555

    Article  CAS  PubMed  Google Scholar 

  • Gbahou F, Rouleau A, Morisset S, Parmentier R, Crochet S, Lin J-S, Ligneau X, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz J-C, Arrang J-M (2003) Protean agonism at histamine H3 receptors in vitro and in vivo. Proc Natl Acad Sci U S A 100(19):11086–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerashchenko D, Chou TC, Blanco-Centurion CA, Saper CB, Shiromani PJ (2004) Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Sleep 27(7):1275–1281

    Article  PubMed  Google Scholar 

  • Ghamari N, Zarei O, Arias-Montaño J-A, Reiner D, Dastmalchi S, Stark H, Hamzeh-Mivehroud M (2019) Histamine H3 receptor antagonists/inverse agonists: where do they go? Pharmacol Ther 200:69–84

    Article  CAS  PubMed  Google Scholar 

  • Gorelova N, Reiner PB (1996) Histamine depolarizes cholinergic septal neurons. J Neurophysiol 75(2):707–714

    Article  CAS  PubMed  Google Scholar 

  • Haas HL, Konnerth A (1983) Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302(5907):432–434

    Article  CAS  PubMed  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4(2):121–130

    Article  CAS  PubMed  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88(3):1183–1241

    Article  CAS  PubMed  Google Scholar 

  • Hasanein P (2011) Two histamine H2 receptor antagonists, zolantidine and cimetidine, modulate nociception in cholestatic rats. J Psychopharmacol 25(2):281–288

    Article  PubMed  Google Scholar 

  • Iida T, Yoshikawa T, Matsuzawa T, Naganuma F, Nakamura T, Miura Y, Mohsen AS, Harada R, Iwata R, Yanai K (2015) Histamine H3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion. Glia 63(7):1213–1225

    Article  PubMed  Google Scholar 

  • Inagaki N, Yamatodani A, Ando-Yamamoto M, Tohyama M, Watanabe T, Wada H (1988) Organization of histaminergic fibers in the rat brain. J Comp Neurol 273(3):283–300

    Article  CAS  PubMed  Google Scholar 

  • Inagaki N, Toda K, Taniuchi I, Panula P, Yamatodani A, Tohyama M, Watanabe T, Wada H (1990) An analysis of histaminergic efferents of the tuberomammillary nucleus to the medial preoptic area and inferior colliculus of the rat. Exp Brain Res 80(2):374–380

    Article  CAS  PubMed  Google Scholar 

  • Jin CY, Panula P (2005) The laminar histamine receptor system in human prefrontal cortex suggests multiple levels of histaminergic regulation. Neuroscience 132(1):137–149

    Article  CAS  PubMed  Google Scholar 

  • John J, Thannickal TC, McGregor R, Ramanathan L, Ohtsu H, Nishino S, Sakai N, Yamanaka A, Stone C, Cornford M, Siegel JM (2013) Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann Neurol 74(6):786–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler C, Swanson LW, Haglund L, Wu JY (1985) The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat. Neuroscience 16(1):85–110

    Article  PubMed  Google Scholar 

  • Köhler C, Ericson H, Watanabe T, Polak J, Palay SL, Palay V, Chan-Palay V (1986) Galanin immunoreactivity in hypothalamic neurons: further evidence for multiple chemical messengers in the tuberomammillary nucleus. J Comp Neurol 250(1):58–64

    Article  PubMed  Google Scholar 

  • Korotkova TM, Sergeeva OA, Ponomarenko AA, Haas HL (2005) Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology 49(1):129–134

    Article  CAS  PubMed  Google Scholar 

  • Kroeger D, Absi G, Gagliardi C, Bandaru SS, Madara JC, Ferrari LL, Arrigoni E, Munzberg H, Scammell TE, Saper CB, Vetrivelan R (2018) Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat Commun 9(1):4129

    Article  PubMed  PubMed Central  Google Scholar 

  • Krout KE, Kawano J, Mettenleiter TC, Loewy AD (2002) CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110(1):73–92

    Article  CAS  PubMed  Google Scholar 

  • Krystal AD, Richelson E, Roth T (2013) Review of the histamine system and the clinical effects of H1 antagonists: basis for a new model for understanding the effects of insomnia medications. Sleep Med Rev 17(4):263–272

    Article  PubMed  Google Scholar 

  • Kukko-Lukjanov TK, Panula P (2003) Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J Chem Neuroanat 25(4):279–292

    Article  CAS  PubMed  Google Scholar 

  • Leenaars CHC, Freymann J, Jakobs K, Menon JML, Van Ee TJ, Elzinga J, Kempkes RWM, Zoer B, Drinkenburg PWHIM (2018) A systematic search and mapping review of studies on intracerebral microdialysis of amino acids, and systematized review of studies on circadian rhythms. J Circadian Rhythms 16:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ligneau X, Perrin D, Landais L, Camelin J-C, Calmels TPG, Berrebi-Bertrand I, Lecomte J-M, Parmentier R, Anaclet C, Lin J-S, Bertaina-Anglade V, la Rochelle CD, d’Aniello F, Rouleau A, Gbahou F, Arrang J-M, Ganellin CR, Stark H, Schunack W, Schwartz J-C (2007) BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: preclinical pharmacology. J Pharmacol Exp Ther 320(1):365–375

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16(4):1523–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J-S, Dauvilliers Y, Arnulf I, Bastuji H, Anaclet C, Parmentier R, Kocher L, Yanagisawa M, Lehert P, Ligneau X, Perrin D, Robert P, Roux M, Lecomte J-M, Schwartz J-C (2008) An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin-/- mice and patients. Neurobiol Dis 30(1):74–83

    Article  PubMed  Google Scholar 

  • Lin JS, Sergeeva OA, Haas HL (2011) Histamine H3 receptors and sleep-wake regulation. J Pharmacol Exp Ther 336(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Liu YW, Li J, Ye JH (2010) Histamine regulates activities of neurons in the ventrolateral preoptic nucleus. J Physiol 588(Pt 21):4103–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM (1990) Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res 526(2):322–327

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Williamson A (1991) Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. J Neurosci 11(10):3188–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelsen KA, Lozada A, Kaslin J, Karlstedt K, Kukko-Lukjanov T-K, Holopainen I, Ohtsu H, Panula P (2005) Histamine-immunoreactive neurons in the mouse and rat suprachiasmatic nucleus. Eur J Neurosci 22(8):1997–2004

    Article  PubMed  Google Scholar 

  • Mickelsen LE, Flynn WF, Springer K, Wilson L, Beltrami EJ, Bolisetty M, Robson P, Jackson AC (2020) Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. elife 9:e58901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miklós IH, Kovács KJ (2003) Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci 18(11):3069–3079

    Article  PubMed  Google Scholar 

  • Mochizuki T, Yamatodani A, Okakura K, Takemura M, Inagaki N, Wada H (1991) In vivo release of neuronal histamine in the hypothalamus of rats measured by microdialysis. Naunyn Schmiedeberg's Arch Pharmacol 343(2):190–195

    Article  CAS  Google Scholar 

  • Monti JM (2010) The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med Rev 14(5):307–317

    Article  PubMed  Google Scholar 

  • Morisset S, Rouleau A, Ligneau X, Gbahou F, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz JC, Arrang JM (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408(6814):860–864

    Article  CAS  PubMed  Google Scholar 

  • Mukai Y, Nagayama A, Itoi K, Yamanaka A (2020) Identification of substances which regulate activity of corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus. Sci Rep 10(1):13639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muschamp JW, Hollander JA, Thompson JL, Voren G, Hassinger LC, Onvani S, Kamenecka TM, Borgland SL, Kenny PJ, Carlezon WA (2014) Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc Natl Acad Sci U S A 111(16):E1648–E1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganuma F, Nakamura T, Yoshikawa T, Iida T, Miura Y, Kárpáti A, Matsuzawa T, Yanai A, Mogi A, Mochizuki T, Okamura N, Yanai K (2017) Histamine N-methyltransferase regulates aggression and the sleep-wake cycle. Sci Rep 7(1):15899

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Jang I-S (2012) Muscarinic M4 receptors regulate GABAergic transmission in rat tuberomammillary nucleus neurons. Neuropharmacology 63(6):936–944

    Article  CAS  PubMed  Google Scholar 

  • Nomura H, Mizuta H, Norimoto H, Masuda F, Miura Y, Kubo A, Kojima H, Ashizuka A, Matsukawa N, Baraki Z, Hitora-Imamura N, Nakayama D, Ishikawa T, Okada M, Orita K, Saito R, Yamauchi N, Sano Y, Kusuhara H, Minami M, Takahashi H, Ikegaya Y (2019) Central histamine boosts perirhinal cortex activity and restores forgotten object memories. Biol Psychiatry 86(3):230–239

    Article  CAS  PubMed  Google Scholar 

  • Palacios JM, Wamsley JK, Kuhar MJ (1981) The distribution of histamine H1-receptors in the rat brain: an autoradiographic study. Neuroscience 6(1):15–37

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Nuutinen S (2013) The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 14(7):472–487

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A 81(8):2572–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28(3):585–610

    Article  CAS  PubMed  Google Scholar 

  • Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22(17):7695–7711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmentier R, Kolbaev S, Klyuch BP, Vandael D, Lin JS, Selbach O, Haas HL, Sergeeva OA (2009) Excitation of histaminergic tuberomamillary neurons by thyrotropin-releasing hormone. J Neurosci 29(14):4471–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmentier R, Zhao Y, Perier M, Akaoka H, Lintunen M, Hou Y, Panula P, Watanabe T, Franco P, Lin JS (2016) Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: a study using a knockout mouse model. Neuropharmacology 106:20–34

    Article  CAS  PubMed  Google Scholar 

  • Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, Fuller PM (2017) Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8(1):1405

    Article  PubMed  PubMed Central  Google Scholar 

  • Pillot C, Heron A, Cochois V, Tardivel-Lacombe J, Ligneau X, Schwartz J-C, Arrang J-M (2002) A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience 114(1):173–193

    Article  CAS  PubMed  Google Scholar 

  • Purón-Sierra L, Miranda MI (2014) Histaminergic modulation of cholinergic release from the nucleus basalis magnocellularis into insular cortex during taste aversive memory formation. PLoS One 9(3):e91120

    Article  PubMed  PubMed Central  Google Scholar 

  • Puttonen HAJ, Semenova S, Sundvik M, Panula P (2017) Storage of neural histamine and histaminergic neurotransmission is VMAT2 dependent in the zebrafish. Sci Rep 7(1):3060

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozov SV, Zant JC, Karlstedt K, Porkka-Heiskanen T, Panula P (2014) Periodic properties of the histaminergic system of the mouse brain. Eur J Neurosci 39(2):218–228

    Article  PubMed  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y (2019) Histamine: neural circuits and new medications. Sleep 1:42(1)

    Google Scholar 

  • Schlicker E, Kathmann M (2017) Role of the histamine H3 receptor in the central nervous system. Handb Exp Pharmacol 241:277–299

    Article  CAS  PubMed  Google Scholar 

  • Schlicker E, Behling A, Lummen G, Gothert M (1992) Histamine H3A receptor-mediated inhibition of noradrenaline release in the mouse brain cortex. Naunyn Schmiedeberg's Arch Pharmacol 345(4):489–493

    Article  CAS  Google Scholar 

  • Schneider EH, Neumann D, Seifert R (2014) Modulation of behavior by the histaminergic system: lessons from HDC-, H3R- and H4R-deficient mice. Neurosci Biobehav Rev 47:101–121

    Article  PubMed  Google Scholar 

  • Schone C, Cao ZF, Apergis-Schoute J, Adamantidis A, Sakurai T, Burdakov D (2012) Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci 32(36):12437–12443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schone C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D (2014) Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 7(3):697–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz J-C (2011) The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol 163(4):713–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbach O, Brown RE, Haas HL (1997) Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology 36(11–12):1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Senba E, Daddona PE, Watanabe T, Wu JY, Nagy JI (1985) Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons of the rat. J Neurosci 5(12):3393–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senba E, Daddona PE, Nagy JI (1987) Adenosine deaminase-containing neurons in the olfactory system of the rat during development. Brain Res Bull 18(5):635–648

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Hofman MA, van Wamelen DJ, Van Someren EJW, Bao A-M, Swaab DF (2012) Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases. Sleep 35(5):713–715

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271(5246):216–219

    Article  CAS  PubMed  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18(12):4705–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver R, Silverman AJ, Vitković L, Lederhendler II (1996) Mast cells in the brain: evidence and functional significance. Trends Neurosci 19(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Simons FER (2004) Advances in H1-antihistamines. N Engl J Med 351(21):2203–2217

    Article  CAS  PubMed  Google Scholar 

  • Staines WA, Yamamoto T, Daddona PE, Nagy JI (1986) Neuronal colocalization of adenosine deaminase, monoamine oxidase, galanin and 5-hydroxytryptophan uptake in the tuberomammillary nucleus of the rat. Brain Res Bull 17(3):351–365

    Article  CAS  PubMed  Google Scholar 

  • Steininger TL, Gong H, McGinty D, Szymusiak R (2001) Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 429(4):638–653

    Article  CAS  PubMed  Google Scholar 

  • Stevens DR, Kuramasu A, Eriksson KS, Selbach O, Haas HL (2004) Alpha 2-adrenergic receptor-mediated presynaptic inhibition of GABAergic IPSPs in rat histaminergic neurons. Neuropharmacology 46(7):1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V, Hough LB, McCarley RW (2002) Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 113(3):663–670

    Article  CAS  PubMed  Google Scholar 

  • Szakacs Z, Dauvilliers Y, Mikhaylov V, Poverennova I, Krylov S, Jankovic S, Sonka K, Lehert P, Lecomte I, Lecomte J-M, Schwartz J-C, HARMONY-CTP Study Group (2017) Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16(3):200–207

    Article  CAS  PubMed  Google Scholar 

  • Tabarean IV (2013) Functional pharmacology of H1 histamine receptors expressed in mouse preoptic/anterior hypothalamic neurons. Br J Pharmacol 170(2):415–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabarean IV, Sanchez-Alavez M, Sethi J (2012) Mechanism of H2 histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus. Neuropharmacology 63(2):171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Morishima Y, Matsuyama T, Hayashi H, Watanabe T, Wada H (1986) Histaminergic axons in the neostriatum and cerebral cortex of the rat: a correlated light and electron microscopic immunocytochemical study using histidine decarboxylase as a marker. Brain Res 364(1):114–123

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tokita S, Kotani H (2003) Generation and characterization of highly constitutive active histamine H3 receptors. J Pharmacol Exp Ther 307(1):213–218

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26(40):10292–10298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda N, Inagaki S, Shiosaka S, Taguchi Y, Oertel WH, Tohyama M, Watanabe T, Wada H (1984) Immunohistochemical evidence for the coexistence of histidine decarboxylase-like and glutamate decarboxylase-like immunoreactivities in nerve cells of the magnocellular nucleus of the posterior hypothalamus of rats. Proc Natl Acad Sci U S A 81(23):7647–7650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd WD, Venner A, Anaclet C, Broadhurst RY, De Luca R, Bandaru SS, Issokson L, Hablitz LM, Cravetchi O, Arrigoni E, Campbell JN, Allen CN, Olson DP, Fuller PM (2020) Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun 11(1):4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB (2008) Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 11(9):998–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traiffort E, Vizuete ML, Tardivel-Lacombe J, Souil E, Schwartz JC, Ruat M (1995) The guinea pig histamine H2 receptor: gene cloning, tissue expression and chromosomal localization of its human counterpart. Biochem Biophys Res Commun 211(2):570–577

    Article  CAS  PubMed  Google Scholar 

  • Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490(7419):262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tritsch NX, Oh WJ, Gu C, Sabatini BL (2014) Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. elife 3:e01936

    Article  PubMed  PubMed Central  Google Scholar 

  • Valko PO, Gavrilov YV, Yamamoto M, Reddy H, Haybaeck J, Mignot E, Baumann CR, Scammell TE (2013) Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann Neurol 74(6):794–804

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Vázquez H, Gonzalez-Sandoval C, Vega AV, Arias-Montaño J-A, Barral J (2020) Histamine H3 receptor activation modulates glutamate release in the corticostriatal synapse by acting at CaV2.1 (P/Q-type) calcium channels and GIRK (KIR3) potassium channels. Cell Mol Neurobiol 17. https://doi.org/10.1007/s10571-020-00980-6

  • Venner A, Mochizuki T, De Luca R, Anaclet C, Scammell TE, Saper CB, Arrigoni E, Fuller PM (2019) Reassessing the role of histaminergic tuberomammillary neurons in arousal control. J Neurosci 39(45):8929–8939

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu MT, Du G, Bayliss DA, Horner RL (2015) TASK channels on basal forebrain cholinergic neurons modulate electrocortical signatures of arousal by histamine. J Neurosci 35(40):13555–13567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada H, Inagaki N, Itowi N, Yamatodani A (1991a) Histaminergic neuron system in the brain: distribution and possible functions. Brain Res Bull 27(3–4):367–370

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Inagaki N, Yamatodani A, Watanabe T (1991b) Is the histaminergic neuron system a regulatory center for whole-brain activity? Trends Neurosci 14(9):415–418

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Yanai K (2001) Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography. Tohoku J Exp Med 195(4):197–217

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Williams RH, Chee MJ, Kroeger D, Ferrari LL, Maratos-Flier E, Scammell TE, Arrigoni E (2014) Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J Neurosci 34(17):6023–6029

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojcik SM, Katsurabayashi S, Guillemin I, Friauf E, Rosenmund C, Brose N, Rhee J-S (2006) A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50(4):575–587

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Yoshikawa T, Naganuma F, Kikkawa T, Osumi N, Yanai K (2020) Chronic brain histamine depletion in adult mice induced depression-like behaviours and impaired sleep-wake cycle. Neuropharmacology 175:108179

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Ochi J, Daddona PE, Nagy JI (1990) Ultrastructural immunolocalization of adenosine deaminase in histaminergic neurons of the tuberomammillary nucleus of rat. Brain Res 527(2):335–341

    Article  CAS  PubMed  Google Scholar 

  • Yanovsky Y, Li S, Klyuch BP, Yao Q, Blandina P, Passani MB, Lin JS, Haas HL, Sergeeva OA (2011) L-Dopa activates histaminergic neurons. J Physiol 589(Pt 6):1349–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa T, Naganuma F, Iida T, Nakamura T, Harada R, Mohsen AS, Kasajima A, Sasano H, Yanai K (2013) Molecular mechanism of histamine clearance by primary human astrocytes. Glia 61(6):905–916

    Article  PubMed  Google Scholar 

  • Yoshikawa T, Nakamura T, Yanai K (2019) Histamine N-methyltransferase in the brain. Int J Mol Sci 10:20(3)

    Google Scholar 

  • Yoshikawa T, Nakamura T, Yanai K (2021) Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol 178(4):750–769

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zecharia A, Zhang Z, Yang Q, Yustos R, Jager P, Vyssotski AL, Maywood ES, Chesham JE, Ma Y, Brickley SG, Hastings MH, Franks NP, Wisden W (2014) Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol 24(23):2838–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Ye Z, Houston CM, Zecharia AY, Ma Y, Zhang Z, Uygun DS, Parker S, Vyssotski AL, Yustos R, Franks NP, Brickley SG, Wisden W (2015) Wakefulness is governed by GABA and histamine cotransmission. Neuron 87(1):164–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Ma Y, Harding EC, Yustos R, Vyssotski AL, Franks NP, Wisden W (2019) Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Sleep 42(5):zsz031

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi ZF, Matthews MR (1997) Exocytotic release from neuronal cell bodies, dendrites and nerve terminals in sympathetic ganglia of the rat, and its differential regulation. Neuroscience 80(3):861–891

    Article  CAS  PubMed  Google Scholar 

  • Zant JC, Rozov S, Wigren H-K, Panula P, Porkka-Heiskanen T (2012) Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons. J Neurosci 32(38):13244–13254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecharia AY, Yu X, Gotz T, Ye Z, Carr DR, Wulff P, Bettler B, Vyssotski AL, Brickley SG, Franks NP, Wisden W (2012) GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J Neurosci 32(38):13062–13075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-Y, Yu L, Zhuang Q-X, Peng S-Y, Zhu J-N, Wang J-J (2013) Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 170(1):156–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elda Arrigoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arrigoni, E., Fuller, P.M. (2021). The Role of the Central Histaminergic System in Behavioral State Control. In: Yanai, K., Passani, M.B. (eds) The Functional Roles of Histamine Receptors. Current Topics in Behavioral Neurosciences, vol 59. Springer, Cham. https://doi.org/10.1007/7854_2021_263

Download citation

Publish with us

Policies and ethics