Skip to main content

The Role of Stress in Bipolar Disorder

  • Chapter
  • First Online:
Bipolar Disorder: From Neuroscience to Treatment

Abstract

Stress is a major risk factor for bipolar disorder. Even though we do not completely understand how stress increases the risk for the onset and poorer course of bipolar disorder, knowledge of stress physiology is rapidly evolving. Following stress, stress hormones – including (nor)adrenaline and corticosteroid – reach the brain and change neuronal function in a time-, region-, and receptor-dependent manner. Stress has direct consequences for a range of cognitive functions which are time-dependent. Directly after stress, emotional processing is increased at the cost of higher brain functions. In the aftermath of stress, the reverse is seen, i.e., increased executive function and contextualization of information. In bipolar disorder, basal corticosteroid levels (under non-stressed conditions) are generally found to be increased with blunted responses in response to experimental stress. Moreover, patients who have bipolar disorder generally show impaired brain function, including reward processing. There is some evidence for a causal role of (dysfunction of) the stress system in the etiology of bipolar disorder and their effects on brain system functionality. However, longitudinal studies investigating the functionality of the stress systems in conjunction with detailed information on the development and course of bipolar disorder are vital to understand in detail how stress increases the risk for bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnsten AFT (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartova L, Meyer BM, Diers K et al (2015) Reduced default mode network suppression during a working memory task in remitted major depression. J Psychiatr Res 64:9–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Belvederi Murri M, Prestia D, Mondelli V et al (2016) The HPA axis in bipolar disorder: systematic review and meta-analysis. Psychoneuroendocrinology 63:327–342

    Article  CAS  PubMed  Google Scholar 

  • Berger M, Kraeuter AK, Romanik D et al (2016) Cortisol awakening response in patients with psychosis: systematic review and meta-analysis. Neurosci Biobehav Rev 68:157–166

    Article  CAS  PubMed  Google Scholar 

  • Berghorst LH, Bogdan R, Frank MJ, Pizzagalli DA (2013) Acute stress selectively reduces reward sensitivity. Front Hum Neurosci 7:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Berghorst LH, Kumar P, Greve DN et al (2016) Stress and reward processing in bipolar disorder: a functional magnetic resonance imaging study. Bipolar Disord 18:602–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertolino A, Frye M, Callicott JH et al (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53:906–913

    Article  PubMed  Google Scholar 

  • Bogdan R, Pizzagalli DA (2006) Acute stress reduces reward responsiveness: implications for depression. Biol Psychiatry 60:1147–1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Bora E, Fornito A, Yücel M, Pantelis C (2010) Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 67:1097–1105

    Article  PubMed  Google Scholar 

  • Brenner K, Liu A, Laplante DP et al (2009) Cortisol response to a psychosocial stressor in schizophrenia: blunted, delayed, or normal? Psychoneuroendocrinology 34:859–868

    Article  CAS  PubMed  Google Scholar 

  • Brown SM, Henning S, Wellman CL (2005) Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex 15:1714–1722

    Article  PubMed  Google Scholar 

  • Cancel A, Dallel S, Zine A et al (2019) Understanding the link between childhood trauma and schizophrenia: a systematic review of neuroimaging studies. Neurosci Biobehav Rev 107:492–504

    Article  PubMed  Google Scholar 

  • Chai XJ, Whitfield-Gabrieli S, Shinn AK et al (2011) Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology 36:2009–2017

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaumette B, Kebir O, Mam-Lam-Fook C et al (2016) Salivary cortisol in early psychosis: new findings and meta-analysis. Psychoneuroendocrinology 63:262–270

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-M, Chang W-H, Chen M-H et al (2017) Co-aggregation of major psychiatric disorders in individuals with first-degree relatives with schizophrenia: a nationwide population-based study. Mol Psychiatry 23:1756–1763

    Article  PubMed  Google Scholar 

  • Ciufolini S, Dazzan P, Kempton MJ et al (2014) HPA axis response to social stress is attenuated in schizophrenia but normal in depression: evidence from a meta-analysis of existing studies. Neurosci Biobehav Rev 47:359–368

    Article  PubMed  Google Scholar 

  • De Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  CAS  Google Scholar 

  • Gillespie CF, Nemeroff CB (2005) Hypercortisolemia and depression. Psychosom Med 67:S1 26–S1 28

    Article  Google Scholar 

  • Girshkin L, Matheson SL, Shepherd AM, Green MJ (2014) Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis. Psychoneuroendocrinology 49:187–206

    Article  CAS  PubMed  Google Scholar 

  • Gold PW, Goodwin FK, Chrousos GP (1988) Clinical and biochemical manifestations of depression. N Engl J Med 319:413–420

    Article  CAS  PubMed  Google Scholar 

  • Gong JY, Chen G, Jia Y et al (2019) Disrupted functional connectivity within the default mode network and salience network in unmedicated bipolar II disorder. Prog Neuro Psychopharmacol Biol Psychiatry 88:11–18

    Article  Google Scholar 

  • Goya-Maldonado R, Brodmann K, Keil M et al (2016) Differentiating unipolar and bipolar depression by alterations in large-scale brain networks. Hum Brain Mapp 37:808–818

    Article  PubMed  Google Scholar 

  • Grimm S, Boesiger P, Beck J et al (2009) Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 34:932–943

    Article  PubMed  Google Scholar 

  • Havermans R, Nicolson NA, Berkhof J, deVries MW (2010) Mood reactivity to daily events in patients with remitted bipolar disorder. Psychiatry Res 179:47–52

    Article  PubMed  Google Scholar 

  • Havermans R, Nicolson NA, Berkhof J, deVries MW (2011) Patterns of salivary cortisol secretion and responses to daily events in patients with remitted bipolar disorder. Psychoneuroendocrinology 36:258–265

    Article  CAS  PubMed  Google Scholar 

  • Henckens MJAG, van Wingen GA, Joëls M, Fernández G (2011) Time-dependent corticosteroid modulation of prefrontal working memory processing. Proc Natl Acad Sci U S A 108:5801–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JP (2018) Regulation of Hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell Mol Neurobiol 38:25–35

    Article  CAS  PubMed  Google Scholar 

  • Hermans EJ, Van Marle HJF, Ossewaarde L et al (2011) Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 334(80):1151–1153

    Article  CAS  PubMed  Google Scholar 

  • Hermans EJ, Henckens MJAG, Joëls M, Fernández G (2014) Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci 37:304–314

    Article  CAS  PubMed  Google Scholar 

  • Houtepen LC, Boks MPM, Kahn RS et al (2015) Antipsychotic use is associated with a blunted cortisol stress response: a study in euthymic bipolar disorder patients and their unaffected siblings. Eur Neuropsychopharmacol 25:77–84

    Article  CAS  PubMed  Google Scholar 

  • Jawahar MC, Murgatroyd C, Harrison EL, Baune BT (2015) Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disorders. Clin Epigenetics 7:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joëls M, Baram TZ (2009) The neuro-symphony of stress. Nat Rev Neurosci 10:459–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joëls M, Sarabdjitsingh RA, Karst H (2012) Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev 64:901–938

    Article  PubMed  CAS  Google Scholar 

  • Karcher NR, Rogers BP, Woodward ND (2019) Functional connectivity of the striatum in schizophrenia and psychotic bipolar disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 4:956–965

    PubMed  PubMed Central  Google Scholar 

  • Karst H, Joëls M (2016) Severe stress hormone conditions cause an extended window of excitability in the mouse basolateral amygdala. Neuropharmacology 110:175–180

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum C, Pirke KM, Hellhammer DH (1993) The “Trier social stress test” – a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28:76–81

    Article  CAS  PubMed  Google Scholar 

  • Konradi C, Zimmerman EI, Yang CK et al (2011) Hippocampal interneurons in bipolar disorder. Arch Gen Psychiatry 68:340–350

    Article  PubMed  Google Scholar 

  • Koper JW, van Rossum EFC, van den Akker ELT (2014) Glucocorticoid receptor polymorphisms and haplotypes and their expression in health and disease. Steroids 92:62–73

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Berghorst LH, Nickerson LD et al (2014) Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience 266:1–12

    Article  CAS  PubMed  Google Scholar 

  • Landin-Romero R, Novo P, Vicens V et al (2013) EMDR therapy modulates the default mode network in a subsyndromal, traumatized bipolar patient. Neuropsychobiology 67:181–184

    Article  PubMed  Google Scholar 

  • Levy BH, Tasker JG (2012) Synaptic regulation of the hypothalamic-pituitary-adrenal axis and its modulation by glucocorticoids and stress. Front Cell Neurosci 6:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis AH, Porcelli AJ, Delgado MR (2014) The effects of acute stress exposure on striatal activity during Pavlovian conditioning with monetary gains and losses. Front Behav Neurosci 8:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Lex C, Bäzner E, Meyer TD (2017) Does stress play a significant role in bipolar disorder? A meta- analysis. J Affect Disord 208:298–308

    Article  PubMed  Google Scholar 

  • Lightman SL, Wiles CC, Atkinson HC et al (2008) The significance of glucocorticoid pulsatility. Eur J Pharmacol 583:255–262

    Article  CAS  PubMed  Google Scholar 

  • Magariños AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69:83–88

    Article  PubMed  Google Scholar 

  • Magariños AM, McEwen BS, Flügge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16:3534–3540

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamah D, Barch DM, Repovš G (2013) Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia. J Affect Disord 150:601–609

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew I, Gardin TM, Tandon N et al (2014) Medial temporal lobe structures and hippocampal subfields in psychotic disorders: findings from the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP) study. JAMA Psychiat 71:769–777

    Article  Google Scholar 

  • Meijer OC (2002) Coregulator proteins and corticosteroid action in the brain. J Neuroendocrinol 14:499–505

    Article  CAS  PubMed  Google Scholar 

  • Meijer OC, Buurstede JC, Schaaf MJM (2019) Corticosteroid receptors in the brain: transcriptional mechanisms for specificity and context-dependent effects. Cell Mol Neurobiol 39:539–549

    Article  CAS  PubMed  Google Scholar 

  • Merikangas KR, Akiskal HS, Angst J et al (2007) Lifetime and 12-month prevalence of bipolar spectrum disorder in the national comorbidity survey replication. Arch Gen Psychiatry 64:543–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra R, Jadhav S, McEwen BS et al (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A 102:9371–9376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya ER, Bos PA, Terburg D et al (2014) Cortisol administration induces global down-regulation of the brain’s reward circuitry. Psychoneuroendocrinology 47:31–42

    Article  CAS  PubMed  Google Scholar 

  • Myin-Germeys I, Peeters F, Havermans R et al (2003) Emotional reactivity to daily life stress in psychosis and affective disorder: an experience sampling study. Acta Psychiatr Scand 107:124–131

    Article  CAS  PubMed  Google Scholar 

  • Oei NYL, Veer IM, Wolf OT et al (2012) Stress shifts brain activation towards ventral “affective” areas during emotional distraction. Soc Cogn Affect Neurosci 7:403–412

    Article  PubMed  Google Scholar 

  • Öngür D, Lundy M, Greenhouse I et al (2010) Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res Neuroimaging 183:59–68

    Article  Google Scholar 

  • Pariante CM (2008) The role of multi-drug resistance p-glycoprotein in glucocorticoid function: studies in animals and relevance in humans. Eur J Pharmacol 583:263–271

    Article  CAS  PubMed  Google Scholar 

  • Pomarol-Clotet E, Moro N, Sarró S et al (2012) Failure of de-activation in the medial frontal cortex in mania: evidence for default mode network dysfunction in the disorder. World J Biol Psychiatry 13:616–626

    Article  PubMed  Google Scholar 

  • Porcelli AJ, Lewis AH, Delgado MR (2012) Acute stress influences neural circuits of reward processing. Front Neurosci 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin S, Hermans EJ, van Marle HJF et al (2009) Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol Psychiatry 66:25–32

    Article  PubMed  Google Scholar 

  • Roozendaal B, McGaugh JL (2011) Memory modulation. Behav Neurosci 125:797–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rush AJ, Giles DE, Schiesser MA et al (1996) The dexamethasone suppression test in patients with mood disorders. J Clin Psychiatry 57:470–484

    Article  CAS  PubMed  Google Scholar 

  • Rybakowski JK, Twardowska K (1999) The dexamethasone/corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiatr Res 33:363–370

    Article  CAS  PubMed  Google Scholar 

  • Schmider J, Lammers CH, Gotthardt U et al (1995) Combined dexamethasone/corticotropin- releasing hormone test in acute and remitted manic patients, in acute depression, and in normal controls: I. Biol Psychiatry 38:797–802

    Article  CAS  PubMed  Google Scholar 

  • Schreiter S, Spengler S, Willert A et al (2016) Neural alterations of fronto-striatal circuitry during reward anticipation in euthymic bipolar disorder. Psychol Med 46:3187–3198

    Article  CAS  PubMed  Google Scholar 

  • Schwabe L (2017) Memory under stress: from single systems to network changes. Eur J Neurosci 45:478–489

    Article  PubMed  Google Scholar 

  • Seckl JR (2004) 11β-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr Opin Pharmacol 4:597–602

    Article  CAS  PubMed  Google Scholar 

  • Sha Z, Wager TD, Mechelli A, He Y (2019) Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol Psychiatry 85:379–388

    Article  PubMed  Google Scholar 

  • ter Heegde F, De Rijk RH, Vinkers CH (2015) The brain mineralocorticoid receptor and stress resilience. Psychoneuroendocrinology 52:92–110

    Article  PubMed  CAS  Google Scholar 

  • Turecki G, Ota VK, Belangero SI et al (2014) Early life adversity, genomic plasticity, and psychopathology. Lancet Psychiatry 1:461–466

    Article  PubMed  PubMed Central  Google Scholar 

  • van Leeuwen JMC, Vink M, Fernández G, Hermans EJ, Joëls M, Kahn RS, Vinkers CH (2018) At-risk individuals display altered brain activity following stress. Neuropsychopharmacology. 43(9):1954–1960

    Google Scholar 

  • van Leeuwen JMC, Vink M, Joëls M et al (2019a) Increased responses of the reward circuitry to positive task feedback following acute stress in healthy controls but not in siblings of schizophrenia patients. NeuroImage 184:547–554

    Article  PubMed  Google Scholar 

  • van Leeuwen JMC, Vink M, Joëls M et al (2019b) Reward-related striatal responses following stress in healthy individuals and patients with bipolar disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 4:966–974

    PubMed  Google Scholar 

  • van Marle HJF, Hermans EJ, Qin S, Fernández G (2009) From specificity to sensitivity: how acute stress affects amygdala processing of biologically salient stimuli. Biol Psychiatry 66:649–655

    Article  PubMed  Google Scholar 

  • van Oort J, Tendolkar I, Hermans EJ et al (2017) How the brain connects in response to acute stress: a review at the human brain systems level. Neurosci Biobehav Rev 83:281–297

    Article  PubMed  Google Scholar 

  • Van Stegeren A, Rohleder N, Everaerd W, Wolf OT (2006) Salivary alpha amylase as marker for adrenergic activity during stress: effect of betablockade. Psychoneuroendocrinology 31:137–141

    Article  PubMed  CAS  Google Scholar 

  • Vogel S, Fernández G, Joëls M, Schwabe L (2016) Cognitive adaptation under stress: a case for the mineralocorticoid receptor. Trends Cogn Sci 20:192–203

    Article  PubMed  Google Scholar 

  • Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang W, Fan X et al (2017) Resting-state functional connectivity changes within the default mode network and the salience network after antipsychotic treatment in early-phase schizophrenia. Neuropsychiatr Dis Treat 13:397–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson S, Gallagher P, Ritchie JC et al (2004) Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br J Psychiatry 184:496–502

    Article  PubMed  Google Scholar 

  • Whitton AE, Treadway MT, Pizzagalli DA (2015) Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry 28:7–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Wieck A, Grassi-Oliveira R, do Prado CH et al (2013) Differential neuroendocrine and immune responses to acute psychosocial stress in women with type 1 bipolar disorder. Brain Behav Immun 34:47–55

    Article  CAS  PubMed  Google Scholar 

  • Zorn JV, Schür RR, Boks MP et al (2017) Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology 77:25–36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umeoka, E.H.L., van Leeuwen, J.M.C., Vinkers, C.H., Joëls, M. (2020). The Role of Stress in Bipolar Disorder. In: Young, A.H., Juruena, M.F. (eds) Bipolar Disorder: From Neuroscience to Treatment. Current Topics in Behavioral Neurosciences, vol 48. Springer, Cham. https://doi.org/10.1007/7854_2020_151

Download citation

Publish with us

Policies and ethics