Skip to main content

The Relationship Between Spatial Attention and Eye Movements

  • Chapter
  • First Online:
Processes of Visuospatial Attention and Working Memory

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 41))

Abstract

The nature of the relationship between spatial attention and eye movements has been the subject of intense debate for more than 40 years. Two ideas have dominated this debate. First is the idea that spatial attention shares common neural mechanisms with eye movement programming, characterizing attention as an eye movement that has been prepared but not executed. Second, based on the observation that attention shifts to saccade targets, several theories have proposed that saccade programming necessarily recruits attentional resources. In this chapter, we review the evidence for each of these ideas and discuss some of the limitations and challenges in confirming their predictions. Although they are clearly dependent under some circumstances, dissociations between spatial attention and eye movements, and clear differences in their basic functions, point to the existence of two interconnected, but separate, systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that both these models describe fixation selection in search within a uniform texture; presumably other selection mechanisms come into play in more structured or meaningful scenes.

References

  • Becker W, Juergens R (1979) An analysis of the saccadic system by means of double step stimuli. Vis Res 19(9):967–983

    Article  CAS  PubMed  Google Scholar 

  • Belopolsky AV, Theeuwes J (2009) When are attention and saccade preparation dissociated? Psychol Sci 20(11):1340–1347

    Article  PubMed  Google Scholar 

  • Belopolsky AV, Theeuwes J (2012) Updating the premotor theory: the allocation of attention is not always accompanied by saccade preparation. J Exp Psychol Hum Percept Perform 38(4):902–914

    Article  PubMed  Google Scholar 

  • Berger A, Henik A (2000) The endogenous modulation of IOR is nasal-temporal asymmetric. J Cogn Neurosci 12(3):421–428

    Article  CAS  PubMed  Google Scholar 

  • Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon PJ, Theeuwes J, Belopolsky AV (2017) Eye abduction reduces but does not eliminate competition in the oculomotor system. J Vis 17(5):1–10

    Article  Google Scholar 

  • Born S, Mottet I, Kerzel D (2014) Presaccadic perceptual facilitation effects depend on saccade execution: evidence from the stop-signal paradigm. J Vis 14(3):1–10

    Article  Google Scholar 

  • Briand KA, Klein RM (1987) Is Posner’s beam the same as Treisman’s glue?: on the relation between visual orienting and feature integration theory. J Exp Psychol Hum Percept Perform 13(2):228–241

    Article  CAS  PubMed  Google Scholar 

  • Broadbent DE (1957) A mechanical model for human attention and immediate memory. Psychol Rev 64(3):205–215

    Article  CAS  PubMed  Google Scholar 

  • Bundesen C (1990) A theory of visual attention. Psychol Rev 97(4):523–547

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh P, Hunt AR, Afraz A, Rolfs M (2010) Visual stability based on remapping of attention pointers. Trends Cogn Sci 14(4):147–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke AD, Hunt AR (2016) Failure of intuition when choosing whether to invest in a single goal or split resources between two goals. Psychol Sci 27(1):64–74

    Article  PubMed  Google Scholar 

  • Clarke AD, Green P, Chantler MJ, Hunt AR (2016) Human search for a target on a textured background is consistent with a stochastic model. J Vis 16(7):1–16

    Article  Google Scholar 

  • Clarke AD, Stainer MJ, Tatler BW, Hunt AR (2017a) The saccadic flow baseline: accounting for image-independent biases in fixation behavior. J Vis 17(11):1–19

    Article  Google Scholar 

  • Clarke AD, Mahon A, Irvine A, Hunt AR (2017b) People are unable to recognize or report on their own eye movements. Q J Exp Psychol 70(11):2251–2270

    Article  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Craighero L, Nascimben M, Fadiga L (2004) Eye position effects orienting of visuospatial attention. Curr Biol 14(4):331–333

    Article  CAS  PubMed  Google Scholar 

  • Descartes, R (1633) Treatise on man (trans: Steele Hall T, 1972). Harvard University Press and Oxford University Press, Cambridge, MA

    Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36(12):1827–1837

    Article  CAS  PubMed  Google Scholar 

  • Dorris MC, Par M, Munoz DP (1997) Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurosci 17(21):8566–8579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255(5040):90–92

    Article  CAS  PubMed  Google Scholar 

  • Fehd HM, Seiffert AE (2008) Eye movements during multiple object tracking: where do participants look? Cognition 108(1):201–209

    Article  PubMed  Google Scholar 

  • Findlay JM, Walker R (1999) A model of saccade generation based on parallel processing and competitive inhibition. Behav Brain Sci 22(4):661–621

    Article  CAS  PubMed  Google Scholar 

  • Friesen CK, Kingstone A (1998) The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychon Bull Rev 5(3):490–495

    Article  Google Scholar 

  • Gabay S, Henik A, Gradstein L (2010) Ocular motor ability and covert attention in patients with Duane Retraction Syndrome. Neuropsychologia 48(10):3102–3109

    Article  PubMed  Google Scholar 

  • Garey LJ, Powell TPS (1968) The projection of the retina in the cat. J Anat 102(2):189–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godijn R, Theeuwes J (2002) Parallel programming of saccades: evidence for a competitive integration model. J Exp Psychol Hum Percept Perform 28(5):1039–1054

    Article  PubMed  Google Scholar 

  • Godijn R, Theeuwes J (2004) The relationship between inhibition of return and saccade trajectory deviations. J Exp Psychol Hum Percept Perform 30(3):538–554

    Article  PubMed  Google Scholar 

  • Goldberg ME, Wurtz RH (1972) Activity of superior colliculus in behaving monkeys. II. Effect of attention on neuronal responses. J Neurophysiol 35(4):560–574

    Article  CAS  PubMed  Google Scholar 

  • Golomb JD, Kanwisher N (2011) Higher level visual cortex represents retinotopic, not spatiotopic, object location. Cereb Cortex 22(12):2794–2810

    Article  PubMed  PubMed Central  Google Scholar 

  • Golomb JD, L’Heureux ZE, Kanwisher N (2014) Feature-binding errors after eye movements and shifts of attention. Psychol Sci 25(5):1067–1078

    Article  PubMed  Google Scholar 

  • Gregory NJ, Hermens F, Facey R, Hodgson TL (2016) The developmental trajectory of attentional orienting to socio-biological cues. Exp Brain Res 234(4):1351–1362

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall N, Colby C (2014) S-cone visual stimuli activate superior colliculus neurons in old world monkeys: implications for understanding blindsight. J Cogn Neurosci 26(6):1234–1256

    Article  PubMed  Google Scholar 

  • Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cogn Sci 9(4):188–194

    Article  PubMed  Google Scholar 

  • Hayhoe M, Ballard D (2014) Modeling task control of eye movements. Curr Biol 24(13):R622–R628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins E, Rayner K (2015) Transaccadic processing: stability, integration, and the potential role of remapping. Atten Percept Psychophys 77(1):3–27

    Article  PubMed  Google Scholar 

  • Hodgson TL, Müller HJ (1999) Attentional orienting in two-dimensional space. Q J Exp Psychol 52(3):615–623

    Article  Google Scholar 

  • Hodgson TL, Müller HJ, O’Leary MJ (1999) Attentional localization prior to simple and directed manual responses. Percept Psychophys 61(2):308–312

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JE, Subramanian B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57(6):787–795

    Article  CAS  PubMed  Google Scholar 

  • Hood BM, Willen JD, Driver JD (1998) Adult’s eyes trigger shifts of visual attention in human infants. Psychol Sci 9(2):131–134

    Article  Google Scholar 

  • Hunt AR, Cavanagh P (2011) Remapped visual masking. J Vis 11(1):1–8

    Article  Google Scholar 

  • Hunt AR, Kingstone A (2003a) Covert and overt voluntary attention: linked or independent? Cogn Brain Res 18(1):102–105

    Article  Google Scholar 

  • Hunt AR, Kingstone A (2003b) Inhibition of return: dissociating attentional and oculomotor components. J Exp Psychol Hum Percept Perform 29(5):1068–1074

    Article  PubMed  Google Scholar 

  • Hunt AR, Olk B, von Mühlenen A, Kingstone A (2004) Integration of competing saccade programs. Cogn Brain Res 19(2):206–208

    Article  Google Scholar 

  • Ignashchenkova A, Dicke PW, Haarmeier T, Thier P (2004) Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci 7(1):56–64

    Article  CAS  PubMed  Google Scholar 

  • Jonides J (1981) Voluntary versus automatic control over the mind’s eye movements. In: Long AD (ed) Attention and performance IX. Lawrence Erlbaum, Hillsadale, pp 187–203

    Google Scholar 

  • Juan CH, Shorter-Jacobi SM, Schall JD (2004) Dissociation of spatial attention and saccade preparation. Proc Natl Acad Sci 101(43):15541–15544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AZ, Blohm G, McPeek RM, Lefevre P (2009) Differential influence of attention on gaze and head movements. J Neurophysiol 101:198–206

    Article  PubMed  Google Scholar 

  • Kingstone A, Klein RM (1993) Visual offsets facilitate saccadic latency: does pre disengagement of attention mediate this gap effect? J Exp Psychol Hum Percept Perform 19(6):1251–1265

    Article  CAS  PubMed  Google Scholar 

  • Klein RM (1980) Does oculomotor readiness mediate cognitive control of visual attention? In: Nickerson R (ed) Attention and performance VIII. Academic Press, New York, pp 259–276

    Google Scholar 

  • Klein RM (2004) On the control of visual orienting. In: Posner MI (ed) Cognitive neuroscience of attention. Guilford Press, New York, pp 29–44

    Google Scholar 

  • Klein R (2009) On the control of attention. Can J Exp Psychol 63(3):240

    Article  PubMed  Google Scholar 

  • Klein RM, Pontefract A (1994) Does oculomotor readiness mediate cognitive control of visual attention? Revisited! In: Nickerson R (ed) Attention and performance XV: conscious and nonconscious information processing. Erlbaum, Hillsdale, pp 333–350

    Google Scholar 

  • Kopesz K (1995) Saccadic reaction time in gap/overlap paradigm: a model based on integration of intentional and visual information on neural, dynamic fields. Vis Res 35:2911–2925

    Article  Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35(13):1897–1916

    Article  CAS  PubMed  Google Scholar 

  • Lambert A, Norris A, Naiker N, Aitken V (2000) Effects of informative peripheral cues on eye movements: revisiting William James’ “derived attention”. Vis Cogn 7(5):545–569

    Article  Google Scholar 

  • Land MF (2018) The evolution of gaze shifting eye movements. In: Hodgson T (ed) Processes of visuo-spatial attention and working memory. Current topics in behavioural neurosciences. Springer, Cham

    Google Scholar 

  • Land MF, McLeod P (2000) From eye movements to actions: how batsmen hit the ball. Nat Neurosci 3(12):1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Land MF, Mennie N, Rusted J (1999) The roles of vision and eye movements in the control of activities of daily living. Perception 28(11):1311–1328

    Article  CAS  PubMed  Google Scholar 

  • Lu ZL, Dosher BA (2000) Spatial attention: different mechanisms for central and peripheral temporal precues? J Exp Psychol Hum Percept Perform 26(5):1534–1548

    Article  CAS  PubMed  Google Scholar 

  • MacInnes WJ, Krüger HM, Hunt AR (2015) Just passing through: IOR in preplanned saccade sequences. Q J Exp Psychol 68:402–416

    Article  Google Scholar 

  • MacLean GH, Klein RM, Hilchey MD (2015) Does oculomotor readiness mediate exogenous capture of visual attention? J Exp Psychol Hum Percept Perform 41(5):1260–1270

    Article  PubMed  Google Scholar 

  • Marrocco RT, Li RH (1977) Monkey superior colliculus: properties of single cells and their afferent inputs. J Neurophysiol 40(4):844–860

    Article  CAS  PubMed  Google Scholar 

  • Matin L, Pearce DG (1965) Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148(3676):1485–1488

    Article  CAS  PubMed  Google Scholar 

  • McCoy B, Theeuwes J (2018) Overt and covert attention to location-based reward. Vis Res 142:27–39

    Article  PubMed  Google Scholar 

  • Moore T, Fallah M (2001) Control of eye movements and spatial attention. Proc Natl Acad Sci 98(3):1273–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore T, Fallah M (2004) Microstimulation of the frontal eye fields and its effect on covert spatial attention. J Neurophysiol 91(1):152–162

    Article  PubMed  Google Scholar 

  • Moore C, Dunham PJ, Dunham P (2014) Joint attention: its origins and role in development. Psychology Press, New York

    Book  Google Scholar 

  • Morvan C, Maloney LT (2012) Human visual search does not maximize the post-saccadic probability of identifying targets. PLoS Comput Biol 8(2):e1002342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller JR, Philiastides MG, Newsome WT (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc Natl Acad Sci 102(3):524–529

    Article  PubMed  CAS  Google Scholar 

  • Murthy A, Thompson KG, Schall JD (2001) Dynamic dissociation of visual selection from saccade programming in frontal eye field. J Neurophysiol 86(5):2634–2637

    Article  CAS  PubMed  Google Scholar 

  • Najemnik J, Geisler WS (2005) Optimal eye movement strategies in visual search. Nature 434(7031):387–390

    Article  CAS  PubMed  Google Scholar 

  • Nowakowska A, Clarke AD, Hunt AR (2017) Human visual search behaviour is far from ideal. Proc R Soc B Biol Sci 284(1849):1–6

    Google Scholar 

  • Peterson MS, Kramer AF, Irwin DE (2004) Covert shifts of attention precede involuntary eye movements. Percept Psychophys 66(3):398–405

    Article  PubMed  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Cohen Y (1984) Component of visual orienting. In: Bouma H, Bonwhuis D (eds) Attention and performance X. Erlbaum, Hillsdale, pp 551–556

    Google Scholar 

  • Rafal RD, Calabresi PA, Brennan CW, Sciolto TK (1989) Saccade preparation inhibits reorienting to recently attended locations. J Exp Psychol Hum Percept Perform 15(4):673–685

    Article  CAS  PubMed  Google Scholar 

  • Rafal RD, Henik A, Smith J (1991) Extrageniculate contributions to reflex orienting in normal humans: a temporal hemifield advantage. J Cogn Neurosci 3(4):322–328

    Article  CAS  PubMed  Google Scholar 

  • Remington RW (1980) Attention and saccadic eye movements. J Exp Psychol Hum Percept Perform 6(4):726–744

    Article  CAS  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Fendrich R (1992) Oculomotor readiness and covert orienting: differences between central and peripheral cues. Percept Psychophys 52(3):336–344

    Article  CAS  PubMed  Google Scholar 

  • Rizzolati G, Riggio L, Dascola I, Umilta C (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25(1):31–40

    Article  Google Scholar 

  • Robertson L (2003) Binding, perceptual attention and spatial awareness. Nat Rev Neurosci 4(2):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapir A, Rafal RD, Henik A (2002) Attending to the thalamus: inhibition of return and nasal-temporal asymmetry in the pulvinar. Neuroreport 13(5):693–697

    Article  PubMed  Google Scholar 

  • Saslow MG (1967) Effects of components of displacement-step stimuli upon latency for saccadic eye movement. J Opt Soc Am 57(8):1024–1029

    Article  CAS  PubMed  Google Scholar 

  • Schiller PH (2013) Neural control of visually guided eye movements. In: Fafrowisc M, Marek T, Karwowski W, Schmorrow D (eds) Neuroadaptive systems: theory and applications. CRC Press, Boca Raton

    Google Scholar 

  • Schiller PH, True SD, Conway JL (1980) Deficits in eye movements following superior colliculus and frontal eye field ablations. J Neurophysiol 44(6):1175–1189

    Article  CAS  PubMed  Google Scholar 

  • Schiller PH, Sandell JH, Maunsell JHR (1987) The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol 57(4):1033–1049

    Article  CAS  PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (1995) Illusory localization of stimuli flashed in the dark before saccades. Vis Res 35(16):2347–2357

    Article  CAS  PubMed  Google Scholar 

  • Schneider WX (1995) VAM: a neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action. Vis Cogn 2(2–3):331–376

    Article  Google Scholar 

  • Sheliga BM, Riggio L, Rizzolatti G (1994) Orienting of attention and eye movements. Exp Brain Res 98(3):507–522

    Article  CAS  PubMed  Google Scholar 

  • Sheperd M, Findlay JM, Hockey RJ (1986) The relationship between eye movements and spatial attention. Q J Exp Psychol 38(3):475–491

    Article  Google Scholar 

  • Shulman GL (1984) An asymmetry in the control of eye movements and shifts of attention. Acta Psychol 55(1):53–69

    Article  CAS  Google Scholar 

  • Simion F, Valenza E, Umilta C, Barbra BD (1998) Inhibition of return in newborns is temporo-nasal asymmetrical. Infant Behav Dev 18(2):189–194

    Article  Google Scholar 

  • Smith DT, Schenk T (2012) The premotor theory of attention: time to move on? Neuropsychologia 50(6):1104–1114

    Article  PubMed  Google Scholar 

  • Smith DT, Rorden C, Jackson SR (2004) Exogenous orienting of attention depends upon the ability to execute eye movements. Curr Biol 14(9):792–795

    Article  CAS  PubMed  Google Scholar 

  • Smith DT, Ball K, Ellison A, Schenk T (2010) Deficits of reflexive attention induced by abduction of the eye. Neuropsychologia 48(5):1269–1276

    Article  PubMed  Google Scholar 

  • Smith DT, Schenk T, Rorden C (2012) Saccade preparation is required for exogenous attention but not endogenous attention or IOR. J Exp Psychol Hum Percept Perform 38(6):1438–1447

    Article  PubMed  Google Scholar 

  • Smith DT, Ball K, Ellison A (2014) Covert visual search within and beyond the effective oculomotor range. Vis Res 95:11–17

    Article  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2008) Brain circuits for the internal monitoring of movements. Annu Rev Neurosci 31:317–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelmach LB, Campsall JM, Herdman CM (1997) Attentional and ocular movements. J Exp Psychol Hum Percept Perform 23(3):823–844

    Article  Google Scholar 

  • Sterling D (1973) Quantitative mapping with electron microscope: retinal terminals in the superior colliculus. Brain Res 54:347–354

    Article  CAS  PubMed  Google Scholar 

  • Sumner P, Adamjee T, Mollon JD (2002) Signals invisible to the collicular and magnocellular pathways can capture visual attention. Curr Biol 12(15):1312–1316

    Article  CAS  PubMed  Google Scholar 

  • Tatler BW (2007) The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J Vis 7(14):1–17

    Article  PubMed  Google Scholar 

  • Tatler BW, Hayhoe MM, Land MF, Ballard DH (2011) Eye guidance in natural vision: reinterpreting salience. J Vis 11(5):1–23

    Article  Google Scholar 

  • Taylor TL, Klein RM (1998) On the causes and effects of inhibition of return. Psychon Bull Rev 5(4):625–643

    Article  Google Scholar 

  • Taylor T, Kingstone AF, Klein RM (1998) The disappearance of foveal and non-foveal stimuli: decomposing the gap effect. Can J Exp Psychol 52(4):192–200

    Article  Google Scholar 

  • Theeuwes J, Kramer AF, Hahn S, Irwin DE (1998) Our eyes do not always go where we want them to go: capture of the eyes by new objects. Psychol Sci 9:379–385

    Article  Google Scholar 

  • Thompson KG, Biscoe KL, Sato TR (2005) Neuronal basis of covert spatial attention in the frontal eye fields. J Neurosci 25(41):9479–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trappenberg TP, Dorris MD, Munoz DP, Klein RM (2001) A model of saccade initiation based on competitive integration of endogenous and exogenous signals within the superior colliculus. J Cogn Neurosci 13(2):256–271

    Article  CAS  PubMed  Google Scholar 

  • Treisman A, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  CAS  PubMed  Google Scholar 

  • Umeno MM, Goldberg ME (1997) Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J Neurophysiol 78(3):1373–1383

    Article  CAS  PubMed  Google Scholar 

  • Van der Stigchel S, De Vries JP (2015) There is no attentional global effect: attentional shifts are independent of the saccade endpoint. J Vis 15(15):1–12

    Article  Google Scholar 

  • Võ MLH, Aizenman AM, Wolfe JM (2016) You think you know where you looked? You better look again. J Exp Psychol Hum Percept Perform 42(10):1477–1481

    Article  PubMed  PubMed Central  Google Scholar 

  • von Helmholtz H (1866/1962) Treatise on physiological optics, vol 2 (trans: Southall JPL). Dover, New York

    Google Scholar 

  • Walker MF, Fitzgibbon EJ, Goldberg ME (1995) Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J Neurophysiol 73(5):1988–2003

    Article  CAS  PubMed  Google Scholar 

  • White BJ, Munoz DP (2017) Neural mechanisms of saliency, attention, and orienting. In: Computational and cognitive neuroscience of vision. Springer, Singapore, pp 1–23

    Google Scholar 

  • Williams C, Azzopardi P, Cowey A (1995) Nasal and temporal retinal ganglion cells projecting to the midbrain: implications for “blindsight”. Neuroscience 65(2):577–586

    Article  CAS  PubMed  Google Scholar 

  • Wischnewski M, Belardinelli A, Schneider WX, Steil JJ (2010) Where to look next? Combining static and dynamic proto-objects in a TVA-based model of visual attention. Cogn Comput 2(4):326–343

    Article  Google Scholar 

  • Zackon DH, Casson EJ, Stelmach L, Faubert J, Racette L (1997) Distinguishing subcortical and cortical influences in visual attention: subcortical attentional processing. Invest Opthamol Vis Sci 38(2):364–371

    CAS  Google Scholar 

  • Zackon DH, Casson EJ, Zafar A, Stelmach L, Racette L (1999) The temporal order judgment paradigm: subcortical attentional contributions under exogenous and endogenous cueing conditions. Neuropsychologia 37(5):511–520

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelia R. Hunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hunt, A.R., Reuther, J., Hilchey, M.D., Klein, R.M. (2019). The Relationship Between Spatial Attention and Eye Movements. In: Hodgson, T. (eds) Processes of Visuospatial Attention and Working Memory. Current Topics in Behavioral Neurosciences, vol 41. Springer, Cham. https://doi.org/10.1007/7854_2019_95

Download citation

Publish with us

Policies and ethics