Skip to main content

New Potential Axes of HIV Neuropathogenesis with Relevance to Biomarkers and Treatment

  • Chapter
  • First Online:
Neurocognitive Complications of HIV-Infection

Abstract

Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) affect approximately half of people living with HIV despite viral suppression with antiretroviral therapies and represent a major cause of morbidity. HAND affects activities of daily living including driving, using the Internet and, importantly, maintaining drug adherence. Whilst viral suppression with antiretroviral therapies (ART) has reduced the incidence of severe dementia, mild neurocognitive impairments continue to remain prevalent. The neuropathogenesis of HAND in the context of viral suppression remains ill-defined, but underlying neuroinflammation is likely central and driven by a combination of chronic intermittent low-level replication of whole virus or viral components, latent HIV infection, peripheral inflammation possibly from a disturbed gut microbiome or chronic cellular dysfunction in the central nervous system. HAND is optimally diagnosed by clinical assessment with imaging and neuropsychological testing, which can be difficult to perform in resource-limited settings. Thus, the identification of biomarkers of disease is a key focus of the field. In this chapter, recent advances in the pathogenesis of HAND and biomarkers that may aid its diagnosis and treatment will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abassi M, Morawski BM, Nakigozi G, Nakasujja N, Kong X, Meya DB et al (2017) Cerebrospinal fluid biomarkers and HIV-associated neurocognitive disorders in HIV-infected individuals in Rakai, Uganda. J Neurovirol 23(3):369–375

    CAS  PubMed  Google Scholar 

  • Ances BM, Vaida F, Yeh MJ, Liang CL, Buxton RB, Letendre S et al (2010) HIV and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis 201(3):336–340

    PubMed  Google Scholar 

  • Ancuta P, Kamat A, Kunstman KJ, Kim E-Y, Autissier P, Wurcel A et al (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 3(6):e2516

    PubMed  PubMed Central  Google Scholar 

  • Anderson AM, Fennema-Notestine C, Umlauf A, Taylor MJ, Clifford DB, Marra CM et al (2015) CSF biomarkers of monocyte activation and chemotaxis correlate with magnetic resonance spectroscopy metabolites during chronic HIV disease. J Neurovirol 21(5):559–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson AM, Muñoz-Moreno JA, McClernon D, Ellis RJ, Cookson D, Clifford DB et al (2017) Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis 215:105–113

    CAS  PubMed  Google Scholar 

  • Anderson AM, Croteau D, Ellis RJ, Rosario D, Potter M, Guillemin GJ et al (2018) HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau. J Neuroimmunol 319:13–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angelovich TA, Hearps AC, Maisa A, Martin GE, Lichtfuss GF, Cheng W-J et al (2015) Viremic and virologically suppressed HIV infection increases age-related changes to monocyte activation equivalent to 12 and 4 years of aging, respectively. J Acquir Immune Defic Syndr 69(1):11–17

    CAS  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker J, Brew B, Byrd D, Cherner M et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    CAS  PubMed  Google Scholar 

  • Asahchop EL, Akinwumi SM, Branton WG, Fujiwara E, Gill MJ, Power C (2016) Plasma microRNA profiling predicts HIV-associated neurocognitive disorder. AIDS 30(13):2021–2031

    CAS  PubMed  Google Scholar 

  • Asher I, Guri KM, Elbirt D, Bezalel SR, Maldarelli F, Mor O et al (2016) Characteristics and outcome of patients diagnosed with HIV at older age. Medicine 95(1):e2327

    PubMed  PubMed Central  Google Scholar 

  • Bagashev A, Sawaya BE (2013) Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J 10:358

    PubMed  PubMed Central  Google Scholar 

  • Bandaru VVR, Mielke MM, Sacktor N, McArthur JC, Grant I, Letendre S et al (2013) A lipid storage–like disorder contributes to cognitive decline in HIV-infected subjects. Neurology 81(17):1492–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand L, Toborek M (2015) Dysregulation of endoplasmic reticulum stress and autophagic responses by the antiretroviral drug efavirenz. Mol Pharmacol 88(2):304–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskaran K, Mussini C, Antinori A, Walker AS, Dorrucci M, Sabin C et al (2008) Changes in the incidence and predictors of human immunodeficiency virus–associated dementia in the era of highly active antiretroviral therapy. Ann Neurol 63(2):213–221

    PubMed  Google Scholar 

  • Bingham R, Ahmed N, Rangi P, Johnson M, Tyrer M, Green J (2011) HIV encephalitis despite suppressed viraemia: a case of compartmentalized viral escape. Int J STD AIDS 22(10):608–609

    CAS  PubMed  Google Scholar 

  • Boban J, Kozic D, Turkulov V, Ostojic J, Semnic R, Lendak D et al (2017) HIV-associated neurodegeneration and neuroimmunity: multivoxel MR spectroscopy study in drug-naive and treated patients. Eur Radiol 27(10):4218–4236

    PubMed  Google Scholar 

  • Boulware DR, Hullsiek KH, Puronen CE, Rupert A, Baker JV, French MA et al (2011) Higher levels of CRP, D-dimer, IL-6, and hyaluronic acid before initiation of antiretroviral therapy (ART) are associated with increased risk of AIDS or death. J Infect Dis 203(11):1637–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ et al (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200(6):749–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371

    CAS  PubMed  Google Scholar 

  • Brew BJ, Bhalla RB, Paul M, Gallardo H, McArthur JC, Schwartz MK et al (1990) Cerebrospinal fluid neopterin in human immunodeficiency virus type 1 infection. Ann Neurol 28(4):556–560

    CAS  PubMed  Google Scholar 

  • Brew BJ, Rosenblum M, Cronin K, Price RW (1995) AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol 38(4):563–570

    CAS  PubMed  Google Scholar 

  • Brew BJ, Dunbar N, Pemberton L, Kaldor J (1996) Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of β2-microglobulin and neopterin. J Infect Dis 174(2):294–298

    CAS  PubMed  Google Scholar 

  • Brew BJ, Pemberton L, Cunningham P, Law MG (1997) Levels of human immunodeficiency virus type 1 RNA in cerebrospinal fluid correlate with AIDS dementia stage. J Infect Dis 175(4):963–966

    CAS  PubMed  Google Scholar 

  • Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L (2005) CSF amyloid β42 and tau levels correlate with AIDS dementia complex. Neurology 65(9):1490–1492

    CAS  PubMed  Google Scholar 

  • Brown A, Islam T, Adams R, Nerle S, Kamara M, Eger C et al (2011) Osteopontin enhances HIV replication and is increased in the brain and cerebrospinal fluid of HIV-infected individuals. J Neurovirol 17(4):382–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, Capoferri AA et al (2016) Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med 22(9):1043–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunt SJ, Cysique LA, Lee S, Burrows S, Brew BJ, Price P (2016) Short communication: do cytomegalovirus antibody levels associate with age-related syndromes in HIV patients stable on antiretroviral therapy? AIDS Res Hum Retrovir 32(6):567–572

    CAS  PubMed  Google Scholar 

  • Burbelo PD, Price RW, Hagberg L, Hatano H, Spudich S, Deeks SG et al (2018) Anti-human immunodeficiency virus antibodies in the cerebrospinal fluid: evidence of early treatment impact on central nervous system reservoir? J Infect Dis 217(7):1024–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C et al (2010) Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog 6(4):e1000842

    PubMed  PubMed Central  Google Scholar 

  • Burdo TH, Lackner A, Williams KC (2013a) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254(1):102–113

    PubMed  PubMed Central  Google Scholar 

  • Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC (2013b) Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS (London, England) 27(9):1387–1395

    CAS  Google Scholar 

  • Canestri A, Lescure F-X, Jaureguiberry S, Moulignier A, Amiel C, Marcelin A et al (2010) Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis 50(5):773–778

    PubMed  Google Scholar 

  • Cardenas VA, Meyerhoff DJ, Studholme C, Kornak J, Rothlind J, Lampiris H et al (2009) Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy. J Neurovirol 15(4):324–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalhal A, Gill MJ, Letendre SL, Rachlis A, Bekele T, Raboud J et al (2016) Central nervous system penetration effectiveness of antiretroviral drugs and neuropsychological impairment in the Ontario HIV Treatment Network Cohort Study. J Neurovirol 22(3):349–357

    CAS  PubMed  Google Scholar 

  • Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D (2014) Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS 28(11):1579–1591

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2017) HIV Surveillance Report, 2016, vol 28. http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html. Accessed 2 May 2018

  • Chaganti J, Marripundi K, Staub LP, Rae CD, Gates T, Moffat KJ et al (2019) Imaging correlates of the Blood Brain Barrier disruption in HIV associated neurocognitive disorder and therapeutic implications. AIDS 33(12):1843–1852

    Google Scholar 

  • Chiao S, Rosen HJ, Nicolas K, Wendelken LA, Alcantar O, Rankin KP et al (2013) Deficits in self-awareness impact the diagnosis of asymptomatic neurocognitive impairment in HIV. AIDS Res Hum Retrovir 29(6):949–956

    PubMed  PubMed Central  Google Scholar 

  • Cho HJ, Bertrand L, Toborek M (2019) Blood–brain barrier pericytes as a target for HIV-1 infection. Brain 142(3):502–511

    PubMed  PubMed Central  Google Scholar 

  • Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ et al (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66(2):253–258

    PubMed  Google Scholar 

  • Churchill MJ, Deeks SG, Margolis DM, Siliciano RF, Swanstrom R (2015) HIV reservoirs: what, where and how to target them. Nat Rev Microbiol 14:55

    PubMed  Google Scholar 

  • Ciccarelli N, Fabbiani M, Grima P, Falasca K, Tana M, Baldonero E et al (2013) Comparison of cognitive performance in HIV or HCV mono-infected and HIV–HCV co-infected patients. Infection 41(6):1103–1109

    CAS  PubMed  Google Scholar 

  • Clifford DB, Fagan AM, Holtzman DM, Morris JC, Teshome M, Shah AR et al (2009) CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology 73(23):1982–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford KM, Samboju V, Cobigo Y, Milanini B, Marx GA, Hellmuth JM et al (2017) Progressive brain atrophy despite persistent viral suppression in HIV patients older than 60 years. J Acquir Immune Defic Syndr 76(3):289–297

    PubMed  PubMed Central  Google Scholar 

  • Cole JH, Underwood J, Caan MWA, De Francesco D, van Zoest RA, Leech R et al (2017) Increased brain-predicted aging in treated HIV disease. Neurology 88(14):1349–1357

    PubMed  PubMed Central  Google Scholar 

  • Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C et al (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95(6):3117–3121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corley MJ, Dye C, D’Antoni ML, Byron MM, Yo KL-A, Lum-Jones A et al (2016) Comparative DNA methylation profiling reveals an immunoepigenetic signature of HIV-related cognitive impairment. Sci Rep 6:33310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cysique LA, Brew BJ (2011) Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol 17(2):176–183

    PubMed  Google Scholar 

  • Cysique LA, Maruff P, Brew BJ (2004) Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol 10(6):350–357

    PubMed  Google Scholar 

  • Cysique LA, Vaida F, Letendre S, Gibson S, Cherner M, Woods SP et al (2009) Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology 73(5):342–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cysique LA, Hey-Cunningham WJ, Dermody N, Chan P, Brew BJ, Koelsch KK (2015a) Peripheral blood mononuclear cells HIV DNA levels impact intermittently on neurocognition. PLoS One 10(4):e0120488

    PubMed  PubMed Central  Google Scholar 

  • Cysique LA, Hewitt T, Croitoru-Lamoury J, Taddei K, Martins RN, Chew CSN et al (2015b) APOE ε4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals – a cross-sectional observational study. BMC Neurol 15:51

    PubMed  PubMed Central  Google Scholar 

  • Cysique LA, Juge L, Lennon MJ, Gates TM, Jones SP, Lovelace MD et al (2019) HIV brain latency as measured by CSF BcL11b relates to disrupted brain cellular energy in virally suppressed HIV infection. AIDS 33(3):433–441

    CAS  PubMed  Google Scholar 

  • D’Antoni ML, Paul RH, Mitchell BI, Kohorn L, Fischer L, Lefebvre E et al (2018) Improved cognitive performance and reduced monocyte activation in virally suppressed chronic HIV after dual CCR2 and CCR5 antagonism. J Acquir Immune Defic Syndr 79(1):108–116

    PubMed  PubMed Central  Google Scholar 

  • Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW (2014) Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS 28(15):2251–2258

    CAS  PubMed  Google Scholar 

  • de Oliveira MF, Murrell B, Pérez-Santiago J, Vargas M, Ellis RJ, Letendre S et al (2015) Circulating HIV DNA correlates with neurocognitive impairment in older HIV-infected adults on suppressive ART. Sci Rep 5:17094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deeks SG, Kitchen CMR, Liu L, Guo H, Gascon R, Narváez AB et al (2004) Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 104(4):942–947

    CAS  PubMed  Google Scholar 

  • Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S et al (2013) Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology 80(15):1415–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickens AM, Yoo SW, Chin AC, Xu J, Johnson TP, Trout AL et al (2017) Chronic low-level expression of HIV-1 Tat promotes a neurodegenerative phenotype with aging. Sci Rep 7:7748

    PubMed  PubMed Central  Google Scholar 

  • dos Santos-Silva AF, Alves JMF, Ramos I, del Cármen Piñeiro-Calvo M, Sousa C, do Rosário Serrão M et al (2017) Neurocognitive disorders in patients with HIV infection with virologic suppression for more than 10 years. World J AIDS 7(01):59

    Google Scholar 

  • Drewes JL, Meulendyke KA, Liao Z, Witwer KW, Gama L, Ubaida-Mohien C et al (2015) Quinolinic acid/tryptophan ratios predict neurological disease in SIV-infected macaques and remain elevated in the brain under cART. J Neurovirol 21(4):449–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eden A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslen M (2007) Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis 196(12):1779–1783

    CAS  PubMed  Google Scholar 

  • Eden A, Nilsson S, Hagberg L, Fuchs D, Zetterberg H, Svennerholm B et al (2016) Asymptomatic cerebrospinal fluid HIV-1 viral blips and viral escape during antiretroviral therapy: a longitudinal study. J Infect Dis 214(12):1822–1825

    CAS  PubMed  Google Scholar 

  • Eletto D, Russo G, Passiatore G, Valle LD, Giordano A, Khalili K et al (2008) Inhibition of SNAP25 expression by HIV-1 Tat Involves the activity of mir-128a. J Cell Physiol 216(3):764–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellery PJ, Tippett E, Chiu Y-L, Paukovics G, Cameron PU, Solomon A et al (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol 178(10):6581–6589

    CAS  PubMed  Google Scholar 

  • Ellis RJ, Deutsch R, Heaton RK et al (1997) Neurocognitive impairment is an independent risk factor for death in HIV infection. Arch Neurol 54(4):416–424

    CAS  PubMed  Google Scholar 

  • Ellis RJ, Moore DJ, Childers ME et al (2002) Progression to neuropsychological impairment in human immunodeficiency virus infection predicted by elevated cerebrospinal fluid levels of human immunodeficiency virus RNA. Arch Neurol 59(6):923–928

    PubMed  Google Scholar 

  • Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D et al (2011) CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25(14):1747–1751

    CAS  PubMed  Google Scholar 

  • Ellis RJ, Letendre S, Vaida F, Haubrich R, Heaton RK, Sacktor N et al (2014) Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis 58(7):1015–1022

    CAS  PubMed  Google Scholar 

  • Estes JD, Harris LD, Klatt NR, Tabb B, Pittaluga S, Paiardini M et al (2010) Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLoS Pathog 6(8):e1001052

    PubMed  PubMed Central  Google Scholar 

  • Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ et al (2017) Defining total-body AIDS-virus burden with implications for curative strategies. Nat Med 23:1271–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evering TH, Applebaum A, La Mar M, Garmon D, Dorfman D, Markowitz M (2016) Rates of non-confounded HIV associated neurocognitive disorders in men initiating cART during primary infection. AIDS 30(2):203–210

    CAS  PubMed  Google Scholar 

  • Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB et al (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11(6):600–7.e1

    PubMed  Google Scholar 

  • Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Régulier EG et al (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 7(6):528–541

    CAS  PubMed  Google Scholar 

  • Fogel GB, Lamers SL, Levine AJ, Valdes-Sueiras M, McGrath MS, Shapshak P et al (2015) Factors related to HIV-associated neurocognitive impairment differ with age. J Neurovirol 21(1):56–65

    CAS  PubMed  Google Scholar 

  • Funes HA, Apostolova N, Alegre F, Blas-Garcia A, Alvarez A, Marti-Cabrera M et al (2014) Neuronal bioenergetics and acute mitochondrial dysfunction: a clue to understanding the central nervous system side effects of efavirenz. J Infect Dis 210(9):1385–1395

    CAS  PubMed  Google Scholar 

  • Funes HA, Blas-Garcia A, Esplugues JV, Apostolova N (2015) Efavirenz alters mitochondrial respiratory function in cultured neuron and glial cell lines. J Antimicrob Chemother 70(8):2249–2254

    CAS  PubMed  Google Scholar 

  • Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD et al (2014) Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS 28(1):67–72

    CAS  PubMed  Google Scholar 

  • Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ (2016) Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS 30(4):591–600

    CAS  PubMed  Google Scholar 

  • Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12(2):272–279

    PubMed  PubMed Central  Google Scholar 

  • Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, Starkey JM et al (2012) The national NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One 7(9):e46178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsberg SD, Alldred MJ, Gunnam SM, Schiroli C, Lee SH, Morgello S et al (2018) Expression profiling suggests microglial impairment in human immunodeficiency virus neuropathogenesis. Ann Neurol 83(2):406–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gisslén M, Hagberg L, Brew BJ, Cinque P, Price RW, Rosengren L (2007) Elevated cerebrospinal fluid neurofilament light protein concentrations predict the development of AIDS dementia complex. J Infect Dis 195(12):1774–1778

    PubMed  Google Scholar 

  • Gisslén M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L et al (2015) Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3:135–140

    PubMed  PubMed Central  Google Scholar 

  • Glenn JD, Mowry EM (2016) Emerging concepts on the gut microbiome and multiple sclerosis. J Interf Cytokine Res 36(6):347–357

    CAS  Google Scholar 

  • Goodkin K, Miller EN, Cox C, Reynolds S, Becker JT, Martin E et al (2017) Effect of aging on neurocognitive function by stage of HIV infection: evidence from the Multi-Center AIDS Cohort Study. Lancet HIV 4(9):e411–ee22

    PubMed  PubMed Central  Google Scholar 

  • Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ et al (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75(21):10073–10089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorry PR, Zhang C, Wu S, Kunstman K, Trachtenberg E, Phair J et al (2002) Persistence of dual-tropic HIV-1 in an individual homozygous for the CCR5 Delta 32 allele. Lancet 359(9320):1832–1834

    CAS  PubMed  Google Scholar 

  • Gott C, Gates T, Dermody N, Brew BJ, Cysique LA (2017) Cognitive change trajectories in virally suppressed HIV-infected individuals indicate high prevalence of disease activity. PLoS One 12(3):e0171887

    PubMed  PubMed Central  Google Scholar 

  • Gougeon M-L, Poirier-Beaudouin B, Durant J, Lebrun-Frenay C, Saïdi H, Seffer V et al (2017) HMGB1/anti-HMGB1 antibodies define a molecular signature of early stages of HIV-Associated Neurocognitive Isorders (HAND). Heliyon 3:e00245

    PubMed  PubMed Central  Google Scholar 

  • Grant I, Franklin DR, Deutsch R, Woods SP, Vaida F, Ellis RJ et al (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82(23):2055–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray LR, Tachedjian G, Ellett AM, Roche MJ, Cheng WJ, Guillemin GJ et al (2013) The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes. PLoS One 8(4):e62196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray LR, Turville SG, Hitchen TL, Cheng W-J, Ellett AM, Salimi H et al (2014) HIV-1 entry and trans-infection of astrocytes involves CD81 vesicles. PLoS One 9(2):e90620

    PubMed  PubMed Central  Google Scholar 

  • Gray LR, Cowley D, Welsh C, Lu HK, Brew BJ, Lewin SR et al (2016) CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies. Mol Psychiatry 21(4):574–584

    CAS  PubMed  Google Scholar 

  • Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19(4):407–411

    CAS  PubMed  Google Scholar 

  • Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E et al (2011) Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis 53(11):1120–1126

    PubMed  Google Scholar 

  • Guha D, Nagilla P, Redinger C, Srinivasan A, Schatten GP, Ayyavoo V (2012) Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells. J Neuroinflammation 9(1):138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A et al (2010) Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther 7:15

    PubMed  PubMed Central  Google Scholar 

  • Haggerty S, Stevenson M (1991) Predominance of distinct viral genotypes in brain and lymph node compartments of HIV-1-infected individuals. Viral Immunol 4(2):123–131

    CAS  PubMed  Google Scholar 

  • Hao XP, Lucero CM, Turkbey B, Bernardo ML, Morcock DR, Deleage C et al (2015) Experimental colitis in SIV-uninfected rhesus macaques recapitulates important features of pathogenic SIV infection. Nat Commun 6:8020

    CAS  PubMed  Google Scholar 

  • Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar ES et al (2011) Persistence of HIV− associated cognitive impairment, inflammation and neuronal injury in era of highly active antiretroviral treatment. AIDS 25(5):625–633

    CAS  PubMed  Google Scholar 

  • Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein Tat. J Neurochem 73(4):1363–1374

    CAS  PubMed  Google Scholar 

  • Hazenberg MD, Otto SA, van Benthem BH, Roos MT, Coutinho RA, Lange JM et al (2003) Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17(13):1881–1888

    PubMed  Google Scholar 

  • Heaton R, Clifford D, Franklin D, Woods S, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER Study. Neurology 75(23):2087–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, LeBlanc S et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16

    CAS  PubMed  Google Scholar 

  • Heaton RK, Franklin DR Jr, Deutsch R, Letendre S, Ellis RJ, Casaletto K et al (2015) Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis 60(3):473–480

    CAS  PubMed  Google Scholar 

  • Hellmuth J, Fletcher JLK, Valcour V, Kroon E, Ananworanich J, Intasan J et al (2016) Neurologic signs and symptoms frequently manifest in acute HIV infection. Neurology 87(2):148–154

    PubMed  PubMed Central  Google Scholar 

  • Heyes MP, Mefford IN, Quearry BJ, Dedhia M, Lackner A (1990) Increased ratio of quinolinic acid to kynurenic acid in cerebrospinal fluid of D retrovirus-infected rhesus macaques: relationship to clinical and viral status. Ann Neurol 27(6):666–675

    CAS  PubMed  Google Scholar 

  • Hinkin C, Castellon S, Durvasula R, Hardy D, Lam M, Mason K et al (2002) Medication adherence among HIV+ adults effects of cognitive dysfunction and regimen complexity. Neurology 59(12):1944–1950

    CAS  PubMed  Google Scholar 

  • Honeycutt JB, Liao B, Nixon CC, Cleary RA, Thayer WO, Birath SL et al (2018) T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest 128(7):2862–2876

    PubMed  PubMed Central  Google Scholar 

  • Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 3(1):3

    PubMed  PubMed Central  Google Scholar 

  • Hulgan T, Kallianpur AR, Guo Y, Barnholtz-Sloan JS, Gittleman H, Brown TT et al (2018) Peripheral blood mitochondrial DNA copy number obtained from genome-wide genotype data is associated with neurocognitive impairment in persons with chronic HIV infection. J Acquir Immune Defic Syndr 80(4):e95–e102

    Google Scholar 

  • Hunt PW, Landay AL, Sinclair E, Martinson JA, Hatano H, Emu B et al (2011) A low T regulatory cell response may contribute to both viral control and generalized immune activation in HIV controllers. PLoS One 6(1):e15924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaureguiberry-Bravo M, Lopez L, Berman JW (2018) Frontline science: buprenorphine decreases CCL2-mediated migration of CD14+CD16+ monocytes. J Leukoc Biol 104(6):1049–1059

    CAS  PubMed  Google Scholar 

  • Jensen BK, Monnerie H, Mannell MV, Gannon PJ, Espinoza CA, Erickson MA et al (2015) Altered oligodendrocyte maturation and myelin maintenance: the role of antiretrovirals in HIV-associated neurocognitive disorders. J Neuropathol Exp Neurol 74(11):1093–1118

    CAS  PubMed  Google Scholar 

  • Jespersen S, Pedersen KK, Anesten B, Zetterberg H, Fuchs D, Gisslén M et al (2016) Soluble CD14 in cerebrospinal fluid is associated with markers of inflammation and axonal damage in untreated HIV-infected patients: a retrospective cross-sectional study. BMC Infect Dis 16(1):176

    PubMed  PubMed Central  Google Scholar 

  • Jessen Krut J, Mellberg T, Price RW, Hagberg L, Fuchs D, Rosengren L et al (2014) Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS One 9(2):e88591

    PubMed  PubMed Central  Google Scholar 

  • Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R et al (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci U S A 110(33):13588–13593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonathan U, Kevin RR, Alan W (2015) Could antiretroviral neurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease? AIDS 29(3):253

    Google Scholar 

  • Joseph SB, Kincer LP, Bowman NM, Evans C, Vinikoor MJ, Lippincott CK et al (2019) HIV-1 RNA detected in the CNS after years of suppressive antiretroviral therapy can originate from a replicating CNS reservoir or clonally expanded cells. Clin Infect Dis 69:1345–1352

    PubMed  Google Scholar 

  • Kadri F, LaPlante A, De Luca M, Doyle L, Velasco-Gonzalez C, Patterson JR et al (2016) Defining plasma microRNAs associated with cognitive impairment in HIV-infected patients. J Cell Physiol 231(4):829–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kallianpur KJ, Valcour VG, Lerdlum S, Busovaca E, Agsalda M, Sithinamsuwan P et al (2014) HIV DNA in CD14+ reservoirs is associated with regional brain atrophy in patients naive to combination antiretroviral therapy. AIDS (London, England) 28(11):1619–1624

    CAS  Google Scholar 

  • Kamal S, Locatelli I, Wandeler G, Sehhat A, Bugnon O, Metral M et al (2017) The presence of human immunodeficiency virus-associated neurocognitive disorders is associated with a lower adherence to combined antiretroviral treatment. Open Forum Infect Dis 4(2):ofx070

    PubMed  PubMed Central  Google Scholar 

  • Kamat A, Lyons JL, Misra V, Uno H, Morgello S, Singer EJ et al (2012) Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol 60(3):234–243

    CAS  Google Scholar 

  • Kandanearatchi A, Brew BJ (2012) The kynurenine pathway and quinolinic acid: pivotal roles in HIV associated neurocognitive disorders. FEBS J 279(8):1366–1374

    CAS  PubMed  Google Scholar 

  • Kim WK, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J et al (2006) CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol 168(3):822–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B-H, Kelschenbach J, Borjabad A, Hadas E, He H, Potash MJ et al (2019) Intranasal insulin therapy reverses hippocampal dendritic injury and cognitive impairment in a model of HIV-associated neurocognitive disorders in EcoHIV-infected mice. AIDS 33(6):973–984

    CAS  PubMed  Google Scholar 

  • Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q et al (2019) Macrophages but not astrocytes harbor HIV DNA in the brains of HIV-1-infected aviremic individuals on suppressive antiretroviral therapy. J Neuroimmune Pharmacol 14(1):110–119

    PubMed  Google Scholar 

  • Krut JJ, Price RW, Zetterberg H, Fuchs D, Hagberg L, Yilmaz A et al (2017) No support for premature central nervous system aging in HIV-1 when measured by cerebrospinal fluid phosphorylated tau (p-tau). Virulence 8(5):599–604

    CAS  PubMed  Google Scholar 

  • Kuller LH, Tracy R, Belloso W, Wit SD, Drummond F, Lane HC et al (2008) Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 5(10):e203

    PubMed  PubMed Central  Google Scholar 

  • Küper M, Rabe K, Esser S, Gizewski ER, Husstedt IW, Maschke M et al (2011) Structural gray and white matter changes in patients with HIV. J Neurol 258(6):1066–1075

    PubMed  Google Scholar 

  • Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB et al (2016) HIV DNA is frequently present within pathologic tissues evaluated at autopsy from combined antiretroviral therapy-treated patients with undetectable viral loads. J Virol 90:8968–8983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanoy E, Guiguet M, Bentata M, Rouveix E, Dhiver C, Poizot-Martin I et al (2011) Survival after neuroAIDS: association with antiretroviral CNS penetration-effectiveness score. Neurology 76(7):644–651

    CAS  PubMed  Google Scholar 

  • Lawler K, Mosepele M, Ratcliffe S, Seloilwe E, Steele K, Nthobatsang R et al (2010) Neurocognitive impairment among HIV-positive individuals in Botswana: a pilot study. J Int AIDS Soc 13(1):15

    PubMed  PubMed Central  Google Scholar 

  • Letendre SL, Zheng JC, Kaul M, Yiannoutsos CT, Ellis RJ, Taylor MJ et al (2011) Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. J Neurovirol 17(1):63–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letendre S, Bharti A, Perez-Valero I, Hanson B, Franklin D, Woods SP et al (2018) Higher anti-cytomegalovirus immunoglobulin G concentrations are associated with worse neurocognitive performance during suppressive antiretroviral therapy. Clin Infect Dis 67(5):770–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ, Quach A, Moore DJ, Achim CL, Soontornniyomkij V, Masliah E et al (2016) Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders. J Neurovirol 22(3):366–375

    CAS  PubMed  Google Scholar 

  • Levine AJ, Martin E, Sacktor N, Munro C, Becker J, For the multicenter ACS-NWG (2017) Predictors and impact of self-reported suboptimal effort on estimates of prevalence of HIV-associated neurocognitive disorders. J Acquir Immune Defic Syndr 75(2):203–210

    PubMed  PubMed Central  Google Scholar 

  • Lyons JL, Uno H, Ancuta P, Kamat A, Moore DJ, Singer EJ et al (2011) Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. J Acquir Immune Defic Syndr 57(5):371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Vaida F, Wong J, Sanders CA, Kao Y-T, Croteau D et al (2016) Long-term efavirenz use is associated with worse neurocognitive functioning in HIV-infected patients. J Neurovirol 22(2):170–178

    PubMed  Google Scholar 

  • Mamik MK, Asahchop EL, Chan WF, Zhu Y, Branton WG, McKenzie BA et al (2016) Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. J Neurosci 36(41):10683–10695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marquine MJ, Montoya JL, Umlauf A, Fazeli PL, Gouaux B, Heaton RK et al (2016) The Veterans Aging Cohort Study (VACS) Index and neurocognitive change: a longitudinal study. Clin Infect Dis 63(5):694–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah E, Roberts ES, Langford D, Everall I, Crews L, Adame A et al (2004) Patterns of gene dysregulation in the frontal cortex of patients with HIV encephalitis. J Neuroimmunol 157(1):163–175

    CAS  PubMed  Google Scholar 

  • McGuire JL, Gill AJ, Douglas SD, Kolson DL (2015) Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders. J Neurovirol 21(4):439–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mediouni S, Jablonski J, Paris JJ, Clementz MA, Thenin-Houssier S, McLaughlin JP et al (2015) Didehydro-cortistatin A inhibits HIV-1 Tat mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Curr HIV Res 13(1):64–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehla R, Bivalkar-Mehla S, Nagarkatti M, Chauhan A (2012) Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator. J Neuroinflammation 9:239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta SR, Pérez-Santiago J, Hulgan T, Day TRC, Barnholtz-Sloan J, Gittleman H et al (2017) Cerebrospinal fluid cell-free mitochondrial DNA is associated with HIV replication, iron transport, and mild HIV-associated neurocognitive impairment. J Neuroinflammation 14(1):72

    PubMed  PubMed Central  Google Scholar 

  • Meulendyke KA, Queen SE, Engle EL, Shirk EN, Liu J, Steiner JP et al (2014) Combination fluconazole/paroxetine treatment is neuroprotective despite ongoing neuroinflammation and viral replication in an SIV model of HIV neurological disease. J Neurovirol 20(6):591–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mielke MM, Bandaru VVR, McArthur JC, Chu M, Haughey NJ (2010) Disturbance in cerebral spinal fluid sphingolipid content is associated with memory impairment in subjects infected with the human immunodeficiency virus. J Neurovirol 16(6):445–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moulignier A, Gueguen A, Lescure F-X, Ziegler M, Girard P-M, Cardon B et al (2015) Does HIV infection alter Parkinson disease? J Acquir Immune Defic Syndr 70(2):129–136

    CAS  PubMed  Google Scholar 

  • Mukerjee R, Chang JR, Del Valle L, Bagashev A, Gayed MM, Lyde RB et al (2011) Deregulation of microRNAs by HIV-1 Vpr protein leads to the development of neurocognitive disorders. J Biol Chem 286(40):34976–34985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukerji SS, Misra V, Lorenz D, Cervantes-Arslanian AM, Lyons J, Chalkias S et al (2017) Temporal patterns and drug resistance in CSF viral escape among ART-experienced HIV-1 infected adults. J Acquir Immune Defic Syndr 75(2):246–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukerji SS, Misra V, Lorenz DR, Uno H, Morgello S, Franklin D et al (2018) Impact of antiretroviral regimens on cerebrospinal fluid viral escape in a prospective multicohort study of antiretroviral therapy-experienced human immunodeficiency virus-1–infected adults in the United States. Clin Infect Dis 67(8):1182–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C et al (2014) A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog 10(2):e1003829

    PubMed  PubMed Central  Google Scholar 

  • Ndhlovu LC, Umaki T, Chew GM, Chow DC, Agsalda M, Kallianpur KJ et al (2014) Treatment intensification with maraviroc (CCR5 antagonist) leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV-infected subjects and is associated with improvements in neurocognitive test performance: implications for HIV-associated neurocognitive disease (HAND). J Neurovirol 20(6):571–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols MJ, Gates TM, Soares JR, Moffat KJ, Rae CD, Brew BJ et al (2019) Atrophic brain signatures of mild forms of neurocognitive impairment in virally suppressed HIV infection. AIDS 33(1):55–66

    PubMed  Google Scholar 

  • Nightingale S, Winsto A, Letendre S, Michael BD, McArthur JC, Khoo S et al (2014) Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 13(11):1139–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nir TM, Jahanshad N, Ching CRK, Cohen RA, Harezlak J, Schifitto G et al (2019) Progressive brain atrophy in chronically infected and treated HIV+ individuals. J Neurovirol 25(3):342–353

    PubMed  PubMed Central  Google Scholar 

  • O’Halloran J, Cooley SA, Strain JF, Boerwinkle A, Paul R, Presti RM et al (2019) Altered neuropsychological performance and reduced brain volumetrics in people living with HIV on integrase strand transfer inhibitors. AIDS 33(9):1477

    PubMed  Google Scholar 

  • Ogishi M, Yotsuyanagi H (2018) Prediction of HIV-associated neurocognitive disorder (HAND) from three genetic features of envelope gp120 glycoprotein. Retrovirology 15(1):12

    PubMed  PubMed Central  Google Scholar 

  • Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC et al (2017) Early antiretroviral therapy is associated with lower HIV DNA molecular diversity and lower inflammation in cerebrospinal fluid but does not prevent the establishment of compartmentalized HIV DNA populations. PLoS Pathog 13(1):e1006112

    PubMed  PubMed Central  Google Scholar 

  • Pacifici M, Delbue S, Ferrante P, Jeansonne D, Kadri F, Nelson S et al (2013) Cerebrospinal fluid miRNA profile in HIV-encephalitis. J Cell Physiol 228(5):1070–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palesch D, Bosinger SE, Tharp GK, Vanderford TH, Paiardini M, Chahroudi A et al (2018) Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature 553:77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandrea I, Cornell E, Wilson C, Ribeiro RM, Ma D, Kristoff J et al (2012) Coagulation biomarkers predict disease progression in SIV-infected nonhuman primates. Blood 120(7):1357–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of Antiretroviral agents in adults and adolescents living with HIV. Department of Health and Human Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 30 July 2019

  • Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A et al (2012) Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well-controlled plasma viral load. AIDS (London, England) 26(14)

    Google Scholar 

  • Peluso MJ, Meyerhoff DJ, Price RW, Peterson J, Lee E, Young AC et al (2013) Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis 207(11):1703–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pemberton LA, Brew BJ (2001) Cerebrospinal fluid S-100β and its relationship with AIDS dementia complex. J Clin Virol 22(3):249–253

    CAS  PubMed  Google Scholar 

  • Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M et al (1999) Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 155(5):1599–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson J, Gisslen M, Zetterberg H, Fuchs D, Shacklett BL, Hagberg L et al (2014) Cerebrospinal fluid (CSF) neuronal biomarkers across the spectrum of HIV infection: hierarchy of injury and detection. PLoS One 9(12):e116081

    PubMed  PubMed Central  Google Scholar 

  • Pfefferbaum A, Rogosa DA, Rosenbloom MJ, Chu W, Sassoon SA, Kemper CA et al (2014) Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging study. Neurobiol Aging 35(7):1755–1768

    PubMed  PubMed Central  Google Scholar 

  • Pfefferbaum A, Zahr NM, Sassoon SA, Kwon D, Pohl KM, Sullivan EV (2018) Accelerated and premature aging characterizing regional cortical volume loss in human immunodeficiency virus infection: contributions from alcohol, substance use, and hepatitis C coinfection. Biol Psychiatry 3(10):844–859

    Google Scholar 

  • Premeaux TA, D’Antoni ML, Abdel-Mohsen M, Pillai SK, Kallianpur KJ, Nakamoto BK et al (2019) Elevated cerebrospinal fluid Galectin-9 is associated with central nervous system immune activation and poor cognitive performance in older HIV-infected individuals. J Neurovirol 25(2):150–161

    CAS  PubMed  Google Scholar 

  • Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D (2019) Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol 25:702–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quach A, Horvath S, Nemanim N, Vatakis D, Witt MD, Miller EN et al (2018) No reliable gene expression biomarkers of current or impending neurocognitive impairment in peripheral blood monocytes of persons living with HIV. J Neurovirol 24(3):350–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KR, Robertson WT, Ford S, Watson D, Fiscus S, Harp AG et al (2004) Highly active antiretroviral therapy improves neurocognitive functioning. J Acquir Immune Defic Syndr 36(1):562–566

    PubMed  Google Scholar 

  • Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J et al (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21(14):1915–1921

    PubMed  Google Scholar 

  • Robertson K, Liner J, Meeker RB (2012) Antiretroviral neurotoxicity. J Neurovirol 18(5):388–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Royal W III, Cherner M, Burdo TH, Umlauf A, Letendre SL, Jumare J et al (2016) Associations between cognition, gender and monocyte activation among HIV infected individuals in Nigeria. PLoS One 11(2):e0147182

    PubMed  PubMed Central  Google Scholar 

  • Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG et al (2018) Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS (London, England) 32(12):1661–1667

    Google Scholar 

  • Sacktor N, Miyahara S, Deng L, Evans S, Schifitto G, Cohen BA et al (2011) Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology 77(12):1135–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacktor N, Miyahara S, Evans S, Schifitto G, Cohen B, Haughey N et al (2014) Impact of minocycline on cerebrospinal fluid markers of oxidative stress, neuronal injury, and inflammation in HIV seropositive individuals with cognitive impairment. J Neurovirol 20(6):620–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E et al (2016) Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology 86(4):334–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacktor N, Skolasky RL, Moxley R, Wang S, Mielke MM, Munro C et al (2018) Paroxetine and fluconazole therapy for HIV-associated neurocognitive impairment: results from a double-blind, placebo-controlled trial. J Neurovirol 24(1):16–27

    CAS  PubMed  Google Scholar 

  • Sailasuta N, Ananworanich J, Lerdlum S, Sithinamsuwan P, Fletcher JLK, Tipsuk S et al (2016) Neuronal-glia markers by magnetic resonance spectroscopy in HIV before and after combination antiretroviral therapy. J Acquir Immune Defic Syndr 71(1):24–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saiyed ZM, Gandhi N, Agudelo M, Napuri J, Samikkannu T, Reddy PVB et al (2011) HIV-1 Tat upregulates expression of histone deacetylase-2 (HDAC2) in human neurons: implication for HIV-associated neurocognitive disorder (HAND). Neurochem Int 58(6):656–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sami Saribas A, Cicalese S, Ahooyi TM, Khalili K, Amini S, Sariyer IK (2017) HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis 8:e2542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M et al (2016) HIV-associated neurocognitive disorder – pathogenesis and prospects for treatment. Nat Rev Neurol 12(4):234–248

    PubMed  PubMed Central  Google Scholar 

  • Schifitto G, Zhang J, Evans SR, Sacktor N, Simpson D, Millar LL et al (2007) A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology 69(13):1314–1321

    CAS  PubMed  Google Scholar 

  • Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R (2009) Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1–associated dementia. PLoS Pathog 5(4):e1000395

    PubMed  PubMed Central  Google Scholar 

  • Schrier RD, Hong S, Crescini M, Ellis R, Pérez-Santiago J, Spina C et al (2015) Cerebrospinal fluid (CSF) CD8+ T-cells that express interferon-gamma contribute to HIV Associated Neurocognitive Disorders (HAND). PLoS One 10(2):e0116526

    PubMed  PubMed Central  Google Scholar 

  • Serena M, Stefano S, Oriana T (2013) Blocking HIV-1 replication by targeting the Tat-hijacked transcriptional machinery. Curr Pharm Des 19(10):1860–1879

    Google Scholar 

  • Sevigny JJ, Albert SM, McDermott MP et al (2007) An evaluation of neurocognitive status and markers of immune activation as predictors of time to death in advanced HIV infection. Arch Neurol 64(1):97–102

    PubMed  Google Scholar 

  • Shah A, Kumar A (2010) HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-κB pathway and can be silenced by gp120-specific siRNA. J Neuroinflammation 7(1):96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah A, Singh DP, Buch S, Kumar A (2011a) HIV-1 envelope protein gp120 up regulates CCL5 production in astrocytes which can be circumvented by inhibitors of NF-κB pathway. Biochem Biophys Res Commun 414(1):112–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah A, Verma AS, Patel KH, Noel R, Rivera-Amill V, Silverstein PS et al (2011b) HIV-1 gp120 induces expression of IL-6 through a nuclear factor-kappa B-dependent mechanism: suppression by gp120 specific small interfering RNA. PLoS One 6(6):e21261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaunak S, Albright RE, Klotman ME, Henry SC, Bartlett JA, Hamilton JD (1990) Amplification of HIV-1 provirus from cerebrospinal fluid and its correlation with neurologic disease. J Infect Dis 161(6):1068–1072

    CAS  PubMed  Google Scholar 

  • Sheppard DP, Iudicello JE, Morgan EE, Kamat R, Clark LR, Avci G et al (2017) Accelerated and accentuated neurocognitive aging in HIV infection. J Neurovirol 23(3):492–500

    PubMed  PubMed Central  Google Scholar 

  • Simioni S, Cavassini M, Annoni J-M, Abraham AR, Bourquin I, Schiffer V et al (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24(9):1243–1250

    PubMed  Google Scholar 

  • Singh KK, Barroga CF, Hughes MD, Chen J, Raskino C, McKinney RE et al (2003) Genetic influence of CCR5, CCR2 and SDF1 variants on human immunodeficiency virus 1 (HIV-1)–related disease progression and neurological impairment, in children with symptomatic HIV-1 infection. J Infect Dis 188(10):1461–1472

    CAS  PubMed  Google Scholar 

  • Somsouk M, Estes JD, Deleage C, Dunham RM, Albright R, Inadomi JM et al (2015) Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS 29(1):43–51

    CAS  PubMed  Google Scholar 

  • Sonia M, Albert D, Gilbert B, Isabelle R, Catherine D, Herve T-D et al (2012) Antiretroviral therapy does not block the secretion of the human immunodeficiency virus Tat protein. Infect Disord Drug Targets 12(1):81–86

    Google Scholar 

  • Spector SA, Singh KK, Gupta S, Cystique LA, Jin H, Letendre S et al (2010) 195APOE ε4 and MBL-2 O/O genotypes are associated with neurocognitive impairment in HIV-infected plasma donors from Anhui Province, China. AIDS 24(10):1471–1479

    PubMed  Google Scholar 

  • Spudich S, Gisslen M, Hagberg L, Lee E, Liegler T, Brew B et al (2011) Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis 204(5):753–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spudich S, Robertson KR, Bosch RJ, Gandhi RT, Cyktor JC, Mar H et al (2019) Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J Clin Invest 129(8):3339–3346

    PubMed  PubMed Central  Google Scholar 

  • Steinbrink F, Evers S, Buerke B, Young P, Arendt G, Koutsilieri E et al (2013) Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol 20(3):420–428

    CAS  PubMed  Google Scholar 

  • Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR (2011) Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 1399:96–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strickland SL, Rife BD, Lamers SL, Nolan DJ, Veras NMC, Prosperi MCF et al (2014) Spatiotemporal dynamics of simian immunodeficiency virus brain infection in CD8(+) lymphocyte-depleted rhesus macaques with neuroAIDS. J Gen Virol 95(Pt 12):2784–2795

    PubMed  PubMed Central  Google Scholar 

  • Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S (2015) Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 11(3):e1004720

    PubMed  PubMed Central  Google Scholar 

  • Suh H-S, Gelman BB, Lee SC (2014a) Potential roles of microglial cell progranulin in HIV-associated CNS pathologies and neurocognitive impairment. J Neuroimmune Pharmacol 9(2):117–132

    PubMed  PubMed Central  Google Scholar 

  • Suh H-S, Lo Y, Choi N, Letendre S, Lee SC (2014b) Evidence of the innate antiviral and neuroprotective properties of progranulin. PLoS One 9(5):e98184

    PubMed  PubMed Central  Google Scholar 

  • Sun B, Dalvi P, Abadjian L, Tang N, Pulliam L (2017) Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. AIDS 31(14):F9–F17

    CAS  PubMed  Google Scholar 

  • Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996) Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39(6):705–711

    CAS  PubMed  Google Scholar 

  • Tambussi G, Gori A, Capiluppi B, Balotta C, Papagno L, Morandini B et al (2000) Neurological symptoms during primary human immunodeficiency virus (HIV) infection correlate with high levels of HIV RNA in cerebrospinal fluid. Clin Infect Dis 30(6):962–965

    CAS  PubMed  Google Scholar 

  • Tatro ET, Scott ER, Nguyen TB, Salaria S, Banerjee S, Moore DJ et al (2010) Evidence for alteration of gene regulatory networks through microRNAs of the HIV-infected brain: novel analysis of retrospective cases. PLoS One 5(4):e10337

    PubMed  PubMed Central  Google Scholar 

  • Tatro ET, Soontornniyomkij B, Letendre SL, Achim CL (2014) Cytokine secretion from brain macrophages infected with human immunodeficiency virus in vitro and treated with raltegravir. BMC Infect Dis 14:386

    PubMed  PubMed Central  Google Scholar 

  • Tavazzi E, Morrison D, Sullivan P, Morgello S, Fischer T (2014) Brain inflammation is a common feature of HIV-infected patients without HIV encephalitis or productive brain infection. Curr HIV Res 12(2):97–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thames AD, Briones MS, Magpantay LI, Martinez-Maza O, Singer EJ, Hinkin CH et al (2015) The role of chemokine C-C motif ligand 2 genotype and cerebrospinal fluid chemokine C-C motif ligand 2 in neurocognition among HIV-infected patients. AIDS 29(12):1483–1491

    CAS  PubMed  Google Scholar 

  • Thompson KA, Cherry CL, Bell JE, McLean CA (2011) Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol 179(4):1623–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tisch S, Brew B (2009) Parkinsonism in HIV-infected patients on highly active antiretroviral therapy. Neurology 73(5):401–403

    PubMed  Google Scholar 

  • Tisch S, Brew BJ (2010) HIV, HAART, and Parkinson’s disease: co-incidence or pathogenetic link? Mov Disord 25(13):2257–2258

    PubMed  Google Scholar 

  • Torti C, Focà E, Cesana BM, Lescure FX (2011) Asymptomatic neurocognitive disorders in patients infected by HIV: fact or fiction? BMC Med 9(1):138

    PubMed  PubMed Central  Google Scholar 

  • Tozzi V, Balestra P, Serraino D, Bellagamba R, Corpolongo A, Piselli P et al (2005) Neurocognitive impairment and survival in a cohort of HIV-infected patients treated with HAART. AIDS Res Hum Retrovir 21(8):706–713

    PubMed  Google Scholar 

  • Trickey A, May MT, Vehreschild J-J, Obel N, Gill MJ, Crane HM et al (2017) Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. Lancet HIV 4(8):e349–ee56

    Google Scholar 

  • Turner RS, Chadwick M, Horton WA, Simon GL, Jiang X, Esposito G (2016) An individual with human immunodeficiency virus, dementia, and central nervous system amyloid deposition. Alzheimers Dement 4:1–5

    Google Scholar 

  • Valcour V, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes O et al (2004) Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort. Neurology 63(5):822–827

    CAS  PubMed  Google Scholar 

  • Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D et al (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206(2):275–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valcour VG, Ananworanich J, Agsalda M, Sailasuta N, Chalermchai T, Schuetz A et al (2013) HIV DNA reservoir increases risk for cognitive disorders in cART-Naïve patients. PLoS One 8(7):e70164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassallo M, Dunais B, Durant J, Carsenti-Dellamonica H, Harvey-Langton A, Cottalorda J et al (2013) Relevance of lipopolysaccharide levels in HIV-associated neurocognitive impairment: the Neuradapt study. J Neurovirol 19(4):376–382

    CAS  PubMed  Google Scholar 

  • Vassallo M, Durant J, Lebrun-Frenay C, Fabre R, Ticchioni M, Andersen S et al (2015) Virologically suppressed patients with asymptomatic and symptomatic HIV-associated neurocognitive disorders do not display the same pattern of immune activation. HIV Med 16(7):431–440

    CAS  PubMed  Google Scholar 

  • Veenstra M, León-Rivera R, Li M, Gama L, Clements JE, Berman JW (2017) Mechanisms of CNS viral seeding by HIV+ CD14+ CD16+ monocytes: establishment and reseeding of viral reservoirs contributing to HIV-associated neurocognitive disorders. MBio 8(5)

    Google Scholar 

  • Veenstra M, Byrd DA, Inglese M, Buyukturkoglu K, Williams DW, Fleysher L et al (2019) CCR2 on peripheral blood CD14+CD16+ monocytes correlates with neuronal damage, HIV-associated neurocognitive disorders, and peripheral HIV DNA: reseeding of CNS reservoirs? J Neuroimmune Pharmacol 14:120–133

    PubMed  Google Scholar 

  • Venkatachari NJ, Jain S, Walker L, Bivalkar-Mehla S, Chattopadhyay A, Bar-Joseph Z et al (2017) Transcriptome analyses identify key cellular factors associated with HIV-1 associated neuropathogenesis in infected men. AIDS 31(5):623–633

    CAS  PubMed  Google Scholar 

  • Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P et al (2016) Neuroinflammation in treated HIV-positive individuals: a TSPO PET study. Neurology 86(15):1425–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vivithanaporn P, Heo G, Gamble J, Krentz H, Hoke A, Gill M et al (2010) Neurologic disease burden in treated HIV/AIDS predicts survival a population-based study. Neurology 75(13):1150–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vivithanaporn P, Asahchop EL, Acharjee S, Baker GB, Power C (2016) HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance. AIDS (London, England) 30(4):543–552

    CAS  Google Scholar 

  • Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S et al (2009) Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 57(7):734–743

    PubMed  PubMed Central  Google Scholar 

  • Williams DW, Calderon TM, Lopez L, Carvallo-Torres L, Gaskill PJ, Eugenin EA et al (2013) Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLoS One 8(7):e69270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong M, Robertson K, Nakasujja N, Skolasky R, Musisi S, Katabira E et al (2007) Frequency of and risk factors for HIV dementia in an HIV clinic in sub-Saharan Africa. Neurology 68(5):350–355

    CAS  PubMed  Google Scholar 

  • Woods SP, Iudicello JE, Dawson MS, Weber E, Grant I, Letendre SL et al (2010) HIV-associated deficits in action (verb) generation may reflect astrocytosis. J Clin Exp Neuropsychol 32(5):522–527

    PubMed  Google Scholar 

  • Woods SP, Iudicello JE, Morgan EE, Verduzco M, Smith TV, Cushman C et al (2017) Household everyday functioning in the internet age: online shopping and banking skills are affected in HIV-associated neurocognitive disorders. J Int Neuropsychol Soc 23(7):605–615

    PubMed  PubMed Central  Google Scholar 

  • Wright EJ, Grund B, Robertson K, Brew BJ, Roediger M, Bain MP et al (2010) Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology 75(10):864–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright PW, Vaida FF, Fernández RJ, Rutlin J, Price RW, Lee E et al (2015) Cerebral white matter integrity during primary HIV infection. AIDS 29(4):433–442

    CAS  PubMed  Google Scholar 

  • Wright EJ, Grund B, Robertson KR, Cysique L, Brew BJ, Collins GL et al (2018) No neurocognitive advantage for immediate antiretroviral treatment in adults with greater than 500 CD4+ T-cell counts. AIDS 32(8):985–997

    CAS  PubMed  Google Scholar 

  • Yadav A, Betts MR, Collman RG (2016) Statin modulation of monocyte phenotype and function: implications for HIV-1 associated neurocognitive disorders. J Neurovirol 22(5):584–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS (2010) MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis 1(9):e77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz A, Yiannoutsos CT, Fuchs D, Price RW, Crozier K, Hagberg L et al (2013) Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy. J Neuroinflammation 10(1):62

    PubMed  PubMed Central  Google Scholar 

  • Young AC, Yiannoutsos CT, Hegde M, Lee E, Peterson J, Walter R et al (2014) Cerebral metabolite changes prior to and after antiretroviral therapy in primary HIV infection. Neurology 83(18):1592–1600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Seaton M, Letendre S, Heaton R, Al-Harthi L (2017) Plasma dickkopf-related protein 1, an antagonist of the Wnt pathway, is associated with HIV-associated neurocognitive impairment. AIDS 31(10):1379–1385

    CAS  PubMed  Google Scholar 

  • Yuan L, Qiao L, Wei F, Yin J, Liu L, Ji Y et al (2013) Cytokines in CSF correlate with HIV-associated neurocognitive disorders in the post-HAART era in China. J Neurovirol 19(2):144–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen T, Brouillette M-J, Fellows LK, Ellis RJ, Letendre S, Heaton R et al (2017) Personalized risk index for neurocognitive decline among people with well-controlled HIV infection. J Acquir Immune Defic Syndr 76(1):48–54

    PubMed  Google Scholar 

  • Zhang Y, Wang M, Li H, Zhang H, Shi Y, Wei F et al (2012) Accumulation of nuclear and mitochondrial DNA damage in the frontal cortex cells of patients with HIV-associated neurocognitive disorders. Brain Res 1458:1–11

    CAS  PubMed  Google Scholar 

  • Zhou L, Pupo GM, Gupta P, Liu B, Tran SL, Rahme R et al (2012) A parallel genome-wide mRNA and microRNA profiling of the frontal cortex of HIV patients with and without HIV-associated dementia shows the role of axon guidance and downstream pathways in HIV-mediated neurodegeneration. BMC Genomics 13(1):677

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Angelovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angelovich, T.A., Churchill, M.J., Wright, E.J., Brew, B.J. (2020). New Potential Axes of HIV Neuropathogenesis with Relevance to Biomarkers and Treatment. In: Cysique, L.A., Rourke, S.B. (eds) Neurocognitive Complications of HIV-Infection. Current Topics in Behavioral Neurosciences, vol 50. Springer, Cham. https://doi.org/10.1007/7854_2019_126

Download citation

Publish with us

Policies and ethics