Advertisement

MicroRNAs in Post-traumatic Stress Disorder

  • Clara Snijders
  • Laurence de Nijs
  • Dewleen G. Baker
  • Richard L. Hauger
  • Daniel van den Hove
  • Gunter Kenis
  • Caroline M. Nievergelt
  • Marco P. Boks
  • Eric Vermetten
  • Fred H. Gage
  • Bart P. F. Rutten
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 38)

Abstract

Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can develop following exposure to or witnessing of a (potentially) threatening event. A critical issue is to pinpoint the (neuro)biological mechanisms underlying the susceptibility to stress-related disorder such as PTSD, which develops in the minority of ~15% of individuals exposed to trauma. Over the last few years, a first wave of epigenetic studies has been performed in an attempt to identify the molecular underpinnings of the long-lasting behavioral and mental effects of trauma exposure. The potential roles of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) in moderating or mediating the impact of severe stress and trauma are increasingly gaining attention. To date, most studies focusing on the roles of miRNAs in PTSD have, however, been completed in animals, using cross-sectional study designs and focusing almost exclusively on subjects with susceptible phenotypes. Therefore, there is a strong need for new research comprising translational and cross-species approaches that use longitudinal designs for studying trajectories of change contrasting susceptible and resilient subjects. The present review offers a comprehensive overview of available studies of miRNAs in PTSD and discusses the current challenges, pitfalls, and future perspectives of this field.

Keywords

Brain Epigenetics microRNA Post-traumatic stress disorder Review 

References

  1. Absalon S, Kochanek DM, Raghavan V, Krichevsky AM (2013) MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 33(37):14645–14659.  https://doi.org/10.1523/jneurosci.1327-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahanda M-LE, Zerjal T, Dhorne-Pollet S, Rau A, Cooksey A, Giuffra E (2014) Impact of the genetic background on the composition of the chicken plasma MiRNome in response to a stress. PLoS One 9(12):e114598.  https://doi.org/10.1371/journal.pone.0114598 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aksoy-Aksel A, Zampa F, Schratt G (2014) MicroRNAs and synaptic plasticity—a mutual relationship. Philos Trans R Soc Lond B Biol Sci 369(1652):20130515.  https://doi.org/10.1098/rstb.2013.0515 CrossRefPubMedPubMedCentralGoogle Scholar
  4. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington, DCCrossRefGoogle Scholar
  5. Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764.  https://doi.org/10.1126/science.1146484 CrossRefPubMedGoogle Scholar
  6. Bai M, Zhu X, Zhang Y, Zhang S, Zhang L, Xue L, Yi J, Yao S, Zhang X (2012) Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life. PLoS One 7(10):e46921.  https://doi.org/10.1371/journal.pone.0046921 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, Bruce AB, Orth DN, Geracioti TD Jr (1999) Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatry 156(4):585–588.  https://doi.org/10.1176/ajp.156.4.585 CrossRefPubMedGoogle Scholar
  8. Balakathiresan NS, Chandran R, Bhomia M, Jia M, Li H, Maheshwari RK (2014) Serum and amygdala microRNA signatures of posttraumatic stress: fear correlation and biomarker potential. J Psychiatr Res 57:65–73.  https://doi.org/10.1016/j.jpsychires.2014.05.020 CrossRefPubMedGoogle Scholar
  9. Bam M, Yang X, Zhou J, Ginsberg JP, Leyden Q, Nagarkatti PS, Nagarkatti M (2016a) Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients. J Neuroimmune Pharmacol 11(1):168–181.  https://doi.org/10.1007/s11481-015-9643-8 CrossRefPubMedGoogle Scholar
  10. Bam M, Yang X, Zumbrun EE, Zhong Y, Zhou J, Ginsberg JP, Leyden Q, Zhang J, Nagarkatti PS, Nagarkatti M (2016b) Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Sci Rep 6:31209.  https://doi.org/10.1038/srep31209 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bian S, TL X, Sun T (2013) Tuning the cell fate of neurons and glia by microRNAs. Curr Opin Neurobiol 23(6):928–934.  https://doi.org/10.1016/j.conb.2013.08.002 CrossRefPubMedGoogle Scholar
  12. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Kunzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Kohnlein O, Dabitz H, Bruckl T, Muller N, Pfister H, Lieb R, Mueller JC, Lohmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Muller-Myhsok B (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36(12):1319–1325.  https://doi.org/10.1038/ng1479 CrossRefPubMedGoogle Scholar
  13. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, Tang Y, Gillespie CF, Heim CM, Nemeroff CB, Schwartz AC, Cubells JF, Ressler KJ (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299(11):1291–1305.  https://doi.org/10.1001/jama.299.11.1291 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH (2007) Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav Res Ther 45(9):2019–2033.  https://doi.org/10.1016/j.brat.2007.02.012 CrossRefPubMedGoogle Scholar
  15. Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, Giovannini C, Bignotti S, Tardito D, Corrada D, Milanesi L, Gennarelli M (2013) Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol 23(7):602–611.  https://doi.org/10.1016/j.euroneuro.2012.06.013 CrossRefPubMedGoogle Scholar
  16. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101. http://www.nature.com/nsmb/journal/v13/n12/suppinfo/nsmb1167_S1.html CrossRefGoogle Scholar
  17. Camussi G, Deregibus M-C, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1(1):98–110PubMedGoogle Scholar
  18. Chen Y-J, Luo J, Yang G-Y, Yang K, Wen S-Q, Zou S-Q (2012) Mutual regulation between microRNA-373 and methyl-CpG-binding domain protein 2 in hilar cholangiocarcinoma. World J Gastroenterol 18(29):3849–3861.  https://doi.org/10.3748/wjg.v18.i29.3849 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen RJ, Kelly G, Sengupta A, Heydendael W, Nicholas B, Beltrami S, Luz S, Peixoto L, Abel T, Bhatnagar S (2015) MicroRNAs as biomarkers of resilience or vulnerability to stress. Neuroscience 305:36–48.  https://doi.org/10.1016/j.neuroscience.2015.07.045 CrossRefPubMedGoogle Scholar
  20. Cho J-H, Lee I, Hammamieh R, Wang K, Baxter D, Scherler K, Etheridge A, Kulchenko A, Gautam A, Muhie S, Chakraborty N, Galas DJ, Jett M, Hood L (2014) Molecular evidence of stress-induced acute heart injury in a mouse model simulating posttraumatic stress disorder. Proc Natl Acad Sci 111(8):3188–3193CrossRefPubMedGoogle Scholar
  21. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267(9):1244–1252CrossRefPubMedGoogle Scholar
  22. Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N (2012) microRNA-9 regulates axon extension and branching by targeting Map 1b in mouse cortical neurons. Nat Neurosci 15:697.  https://doi.org/10.1038/nn.3082 CrossRefGoogle Scholar
  23. Daskalakis NP, Cohen H, Nievergelt CM, Baker DG, Buxbaum JD, Russo SJ, Yehuda R (2016) New translational perspectives for blood-based biomarkers of PTSD: from glucocorticoid to immune mediators of stress susceptibility. Exp Neurol 284(Pt B):133–140.  https://doi.org/10.1016/j.expneurol.2016.07.024 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Davis-Dusenbery BN, Hata A (2010) Mechanisms of control of microRNA biogenesis. J Biochem 148(4):381–392.  https://doi.org/10.1093/jb/mvq096 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dias BG, Goodman JV, Ahluwalia R, Easton AE, Andero R, Ressler KJ (2014) Amygdala-dependent fear memory consolidation via miR-34a and Notch signaling. Neuron 83(4):906–918.  https://doi.org/10.1016/j.neuron.2014.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285(17):12726–12734.  https://doi.org/10.1074/jbc.M109.086827 CrossRefPubMedPubMedCentralGoogle Scholar
  27. El Khoury-Malhame M, Reynaud E, Soriano A, Michael K, Salgado-Pineda P, Zendjidjian X, Gellato C, Eric F, Lefebvre M-N, Rouby F, Samuelian J-C, Anton J-L, Blin O, Khalfa S (2011) Amygdala activity correlates with attentional bias in PTSD. Neuropsychologia 49(7):1969–1973.  https://doi.org/10.1016/j.neuropsychologia.2011.03.025 CrossRefPubMedGoogle Scholar
  28. Etheridge A, Lee I, Hood L, Galas D, Wang K (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res 717(1–2):85–90.  https://doi.org/10.1016/j.mrfmmm.2011.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164(10):1476–1488.  https://doi.org/10.1176/appi.ajp.2007.07030504 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810.  https://doi.org/10.1073/pnas.0707628104 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–593.  https://doi.org/10.1038/nsmb.2296 CrossRefPubMedGoogle Scholar
  32. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11(6):600–607.e601.  https://doi.org/10.1016/j.jalz.2014.06.008 CrossRefPubMedGoogle Scholar
  33. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105.  https://doi.org/10.1101/gr.082701.108 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JPA, Kirsch-Volders M, Matullo G, Phillips DH, Schoket B, Stromberg U, Vermeulen R, Wild C, Porta M, Vineis P (2011) Strengthening the reporting of observational studies in epidemiology-molecular epidemiology STROBE-ME: an extension of the STROBE statement. J Clin Epidemiol 64(12):1350–1363.  https://doi.org/10.1016/j.jclinepi.2011.07.010 CrossRefPubMedGoogle Scholar
  35. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669.  https://doi.org/10.1038/nn.3695 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Geracioti TD Jr, Baker DG, Kasckow JW, Strawn JR, Jeffrey Mulchahey J, Dashevsky BA, Horn PS, Ekhator NN (2008) Effects of trauma-related audiovisual stimulation on cerebrospinal fluid norepinephrine and corticotropin-releasing hormone concentrations in post-traumatic stress disorder. Psychoneuroendocrinology 33(4):416–424.  https://doi.org/10.1016/j.psyneuen.2007.12.012 CrossRefPubMedGoogle Scholar
  37. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149.  https://doi.org/10.1038/ncb1929 CrossRefPubMedGoogle Scholar
  38. Gill JM, Saligan L, Woods S, Page G (2009) PTSD is associated with an excess of inflammatory immune activities. Perspect Psychiatr Care 45(4):262–277.  https://doi.org/10.1111/j.1744-6163.2009.00229.x CrossRefPubMedGoogle Scholar
  39. Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, Kapogiannis D (2015) Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85(1):40–47.  https://doi.org/10.1212/wnl.0000000000001702 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Griggs EM, Young EJ, Rumbaugh G, Miller CA (2013) MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 33(4):1734CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hanin G, Shenhar-Tsarfaty S, Yayon N, Hoe YY, Bennett ER, Sklan EH, Rao DC, Rankinen T, Bouchard C, Geifman-Shochat S, Shifman S, Greenberg DS, Soreq H (2014) Competing targets of microRNA-608 affect anxiety and hypertension. Hum Mol Genet 23(17):4569–4580CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661.  https://doi.org/10.1016/j.urolonc.2009.01.027 CrossRefPubMedGoogle Scholar
  43. Hu Z, Li Z (2017) miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol 45:24–31.  https://doi.org/10.1016/j.conb.2017.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hu YK, Wang X, Li L, YH D, Ye HT, Li CY (2013) MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 29(6):745–751.  https://doi.org/10.1007/s12264-013-1348-5 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Issler O, Chen A (2015) Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci 16(4):201–212.  https://doi.org/10.1038/nrn3879 CrossRefPubMedGoogle Scholar
  46. Jin Y, Lee CG (2013) Single nucleotide polymorphisms associated with microRNA regulation. Biomol Ther 3(2):287–302.  https://doi.org/10.3390/biom3020287 CrossRefGoogle Scholar
  47. Jovasevic V, Corcoran KA, Leaderbrand K, Yamawaki N, Guedea AL, Chen HJ, Shepherd GM, Radulovic J (2015) GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat Neurosci 18(9):1265–1271.  https://doi.org/10.1038/nn.4084 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kapogiannis D, Boxer A, Schwartz JB, Abner EL, Biragyn A, Masharani U, Frassetto L, Petersen RC, Miller BL, Goetzl EJ (2015) Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease. FASEB J 29(2):589–596.  https://doi.org/10.1096/fj.14-262048 CrossRefPubMedGoogle Scholar
  49. Karl A, Schaefer M, Malta LS, Dörfel D, Rohleder N, Werner A (2006) A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev 30(7):1004–1031.  https://doi.org/10.1016/j.neubiorev.2006.03.004 CrossRefPubMedGoogle Scholar
  50. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, Pace TW, Mercer KB, Mayberg HS, Bradley B, Nemeroff CB, Holsboer F, Heim CM, Ressler KJ, Rein T, Binder EB (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16(1):33–41.  https://doi.org/10.1038/nn.3275 CrossRefPubMedGoogle Scholar
  51. Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M, Kowarsch A, Michaluk P, Dzwonek J, Arnsperger T, Wilczynski G, Merkenschlager M, Theis FJ, Kohr G, Kaczmarek L, Schutz G (2010) MicroRNA loss enhances learning and memory in mice. J Neurosci 30(44):14835–14842.  https://doi.org/10.1523/JNEUROSCI.3030-10.2010 CrossRefPubMedGoogle Scholar
  52. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705.  https://doi.org/10.1016/j.cell.2007.02.005 CrossRefPubMedGoogle Scholar
  53. Lai CY, SL Y, Hsieh MH, Chen CH, Chen HY, Wen CC, Huang YH, Hsiao PC, Hsiao CK, Liu CM, Yang PC, Hwu HG, Chen WJ (2011) MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One 6(6):e21635.  https://doi.org/10.1371/journal.pone.0021635 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419.  https://doi.org/10.1038/nature01957 CrossRefPubMedGoogle Scholar
  55. Lemieux AM, Coe CL (1995) Abuse-related posttraumatic stress disorder: evidence for chronic neuroendocrine activation in women. Psychosom Med 57(2):105–115CrossRefPubMedGoogle Scholar
  56. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20.  https://doi.org/10.1016/j.cell.2004.12.035 CrossRefPubMedGoogle Scholar
  57. Li C, Liu Y, Liu D, Jiang H, Pan F (2016) Dynamic alterations of miR-34c expression in the hypothalamus of male rats after early adolescent traumatic stress. Neural Plast 2016:5249893.  https://doi.org/10.1155/2016/5249893 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, Ratnu VS, Boskovic Z, Kobor MS, Sun YE, Bredy TW (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 14(9):1115–1117.  https://doi.org/10.1038/nn.2891 CrossRefPubMedGoogle Scholar
  59. Liu C, Teng Z-Q, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6(5):433–444.  https://doi.org/10.1016/j.stem.2010.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Liu W-M, Pang RTK, Chiu PCN, Wong BPC, Lao K, Lee K-F, Yeung WSB (2012) Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A 109(2):490–494.  https://doi.org/10.1073/pnas.1110368109 CrossRefPubMedGoogle Scholar
  61. Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 107(47):20382–20387.  https://doi.org/10.1073/pnas.1015691107 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Martin CG, Kim H, Yun S, Livingston W, Fetta J, Mysliwiec V, Baxter T, Gill JM (2017) Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans. Psychiatry Res 251:261–265.  https://doi.org/10.1016/j.psychres.2017.01.081 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Meewisse ML, Reitsma JB, de Vries GJ, Gersons BP, Olff M (2007) Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis. Br J Psychiatry 191:387–392.  https://doi.org/10.1192/bjp.bp.106.024877 CrossRefPubMedGoogle Scholar
  64. Mehta D, Gonik M, Klengel T, Rex-Haffner M, Menke A, Rubel J, Mercer KB, Putz B, Bradley B, Holsboer F, Ressler KJ, Muller-Myhsok B, Binder EB (2011) Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Arch Gen Psychiatry 68(9):901–910.  https://doi.org/10.1001/archgenpsychiatry.2011.50 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. http://www.nature.com/nature/journal/v495/n7441/abs/nature11928.html#supplementary-information CrossRefPubMedGoogle Scholar
  66. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T (2017) Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 42(1):254–270.  https://doi.org/10.1038/npp.2016.146 CrossRefPubMedGoogle Scholar
  67. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518.  https://doi.org/10.1073/pnas.0804549105 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Nair VS, Pritchard CC, Tewari M, Ioannidis JP (2014) Design and analysis for studying microRNAs in human disease: a primer on -Omic technologies. Am J Epidemiol 180(2):140–152.  https://doi.org/10.1093/aje/kwu135 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Neigh GN, Ali FF (2016) Co-morbidity of PTSD and immune system dysfunction: opportunities for treatment. Curr Opin Pharmacol 29:104–110.  https://doi.org/10.1016/j.coph.2016.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Norberg MM, Krystal JH, Tolin DF (2008) A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy. Biol Psychiatry 63(12):1118–1126.  https://doi.org/10.1016/j.biopsych.2008.01.012 CrossRefPubMedGoogle Scholar
  71. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15(17):5473–5477.  https://doi.org/10.1158/1078-0432.CCR-09-0736 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD (2008) Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Canc Inst 100(20):1432–1438.  https://doi.org/10.1093/jnci/djn326 CrossRefGoogle Scholar
  73. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1):3–12.  https://doi.org/10.4161/epi.27473 CrossRefPubMedGoogle Scholar
  74. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369.  https://doi.org/10.1038/nrg3198 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Raabe FJ, Spengler D (2013) Epigenetic risk factors in PTSD and depression. Front Psych 4:80.  https://doi.org/10.3389/fpsyt.2013.00080 CrossRefGoogle Scholar
  76. Ramalingam P, Palanichamy JK, Singh A, Das P, Bhagat M, Kassab MA, Sinha S, Chattopadhyay P (2014) Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA 20(1):76–87.  https://doi.org/10.1261/rna.041814.113 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441(7092):469–474.  https://doi.org/10.1038/nature04674 CrossRefPubMedGoogle Scholar
  78. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33(21):9003–9012.  https://doi.org/10.1523/JNEUROSCI.0914-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rong H, Liu TB, Yang KJ, Yang HC, Wu DH, Liao CP, Hong F, Yang HZ, Wan F, Ye XY, Xu D, Zhang X, Chao CA, Shen QJ (n.d.) MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res 45(1):92–95.  https://doi.org/10.1016/jjpsychires201004.028
  80. Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839(12):1362–1372.  https://doi.org/10.1016/j.bbagrm.2014.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sabbagh JJ, O’Leary JC, Blair LJ, Klengel T, Nordhues BA, Fontaine SN, Binder EB, Dickey CA (2014) Age-associated epigenetic Upregulation of the FKBP5 gene selectively impairs stress resiliency. PLoS One 9(9):e107241.  https://doi.org/10.1371/journal.pone.0107241 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278(10):1598–1609.  https://doi.org/10.1111/j.1742-4658.2011.08089.x CrossRefPubMedGoogle Scholar
  83. Satrom P, Snove O, Rossi JJ (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Part 2):17R–23RCrossRefGoogle Scholar
  84. Schmidt U, Holsboer F, Rein T (2011) Epigenetic aspects of posttraumatic stress disorder. Dis Markers 30(2–3):77–87.  https://doi.org/10.3233/DMA-2011-0749 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schmidt MV, Paez-Pereda M, Holsboer F, Hausch F (2012) The prospect of FKBP51 as a drug target. ChemMedChem 7(8):1351–1359.  https://doi.org/10.1002/cmdc.201200137 CrossRefPubMedGoogle Scholar
  86. Schmidt U, Herrmann L, Hagl K, Novak B, Huber C, Holsboer F, Wotjak CT, Buell DR (2013) Therapeutic action of fluoxetine is associated with a reduction in prefrontal cortical miR-1971 expression levels in a mouse model of posttraumatic stress disorder. Front Psych 4:66.  https://doi.org/10.3389/fpsyt.2013.00066 CrossRefGoogle Scholar
  87. Schouten M, Aschrafi A, Bielefeld P, Doxakis E, Fitzsimons CP (2013) MicroRNAs and the regulation of neuronal plasticity under stress conditions. Neuroscience 241:188–205.  https://doi.org/10.1016/j.neuroscience.2013.02.065 CrossRefPubMedGoogle Scholar
  88. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281.  https://doi.org/10.1158/0008-5472.can-05-3632 CrossRefPubMedGoogle Scholar
  89. Sherin JEN, Charles B (2011) Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci 13(3):263PubMedPubMedCentralGoogle Scholar
  90. Sherin JE, Nemeroff CB (2011) Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci 13(3):263–278PubMedPubMedCentralGoogle Scholar
  91. Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79.  https://doi.org/10.1196/annals.1364.007 CrossRefPubMedGoogle Scholar
  92. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267. http://www.nature.com/nsmb/journal/v15/n3/suppinfo/nsmb.1391_S1.html CrossRefPubMedGoogle Scholar
  93. Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y (2012) MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One 7(3):e33201.  https://doi.org/10.1371/journal.pone.0033201 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Smith ME (2005) Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus 15(6):798–807.  https://doi.org/10.1002/hipo.20102 CrossRefPubMedGoogle Scholar
  95. Smith B, Treadwell J, Zhang D, Ly D, McKinnell I, Walker PR, Sikorska M (2010) Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment. PLoS One 5(6):e11109.  https://doi.org/10.1371/journal.pone.0011109 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Taylor D, Gercel-Taylor C (2013) The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Front Genet 4(142).  https://doi.org/10.3389/fgene.2013.00142
  97. Turchinovich A, Samatov T, Tonevitsky A, Burwinkel B (2013) Circulating miRNAs: cell-cell communication function? Front Genet 4(119).  https://doi.org/10.3389/fgene.2013.00119
  98. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. http://www.nature.com/ncb/journal/v9/n6/suppinfo/ncb1596_S1.html CrossRefGoogle Scholar
  99. Van den Hove DL, Kompotis K, Lardenoije R, Kenis G, Mill J, Steinbusch HW, Lesch KP, Fitzsimons CP, De Strooper B, Rutten BP (2014) Epigenetically regulated microRNAs in Alzheimer’s disease. Neurobiol Aging 35(4):731–745.  https://doi.org/10.1016/j.neurobiolaging.2013.10.082 CrossRefPubMedGoogle Scholar
  100. Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16(3):178–189.  https://doi.org/10.1038/nrm3941 CrossRefPubMedGoogle Scholar
  101. Vetere G, Barbato C, Pezzola S, Frisone P, Aceti M, Ciotti M, Cogoni C, Ammassari-Teule M, Ruberti F (2014) Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory. Hippocampus 24(12):1458–1465.  https://doi.org/10.1002/hipo.22326 CrossRefPubMedGoogle Scholar
  102. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433.  https://doi.org/10.1038/ncb2210 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Volk N, Paul ED, Haramati S, Eitan C, Fields BK, Zwang R, Gil S, Lowry CA, Chen A (2014) MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1. J Neurosci 34(45):15070–15082.  https://doi.org/10.1523/JNEUROSCI.0855-14.2014 CrossRefPubMedGoogle Scholar
  104. Volk N, Pape JC, Engel M, Zannas AS, Cattane N, Cattaneo A, Binder EB, Chen A (2016) Amygdalar MicroRNA-15a is essential for coping with chronic stress. Cell Rep 17(7):1882–1891.  https://doi.org/10.1016/j.celrep.2016.10.038 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Roxe T, Zeiher AM, Landmesser U, Dimmeler S (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 33(6):1392–1400.  https://doi.org/10.1161/ATVBAHA.112.300741 CrossRefPubMedGoogle Scholar
  106. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82(2):283–289.  https://doi.org/10.1016/j.ajhg.2007.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wang K, Zhang S, Weber J, Baxter D, Galas DJ (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248.  https://doi.org/10.1093/nar/gkq601 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Wang RY, Phang RZ, Hsu PH, Wang WH, Huang HT, Liu IY (2013) In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning. Hippocampus 23(7):625–633.  https://doi.org/10.1002/hipo.22123 CrossRefPubMedGoogle Scholar
  109. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741.  https://doi.org/10.1373/clinchem.2010.147405 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wingo AP, Almli LM, Stevens JS, Klengel T, Uddin M, Li Y, Bustamante AC, Lori A, Koen N, Stein DJ, Smith AK, Aiello AE, Koenen KC, Wildman DE, Galea S, Bradley B, Binder EB, Jin P, Gibson G, Ressler KJ (2015) DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression. Nat Commun 6:10106.  https://doi.org/10.1038/ncomms10106 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Winston CN, Goetzl EJ, Akers JC, Carter BS, Rockenstein EM, Galasko D, Masliah E, Rissman RA (2016) Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimers Dement (Amst) 3:63–72.  https://doi.org/10.1016/j.dadm.2016.04.001 CrossRefGoogle Scholar
  112. Yang X, WW D, Li H, Liu F, Khorshidi A, Rutnam ZJ, Yang BB (2013) Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res 41(21):9688–9704.  https://doi.org/10.1093/nar/gkt680 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Yehuda R (2001) Biology of posttraumatic stress disorder. J Clin Psychiatry 62(Suppl 17):41–46PubMedGoogle Scholar
  114. Yehuda R (2006) Advances in understanding neuroendocrine alterations in PTSD and their therapeutic implications. Ann N Y Acad Sci 1071:137–166.  https://doi.org/10.1196/annals.1364.012 CrossRefPubMedGoogle Scholar
  115. Yehuda R, Bierer LM, Schmeidler J, Aferiat DH, Breslau I, Dolan S (2000) Low cortisol and risk for PTSD in adult offspring of holocaust survivors. Am J Psychiatry 157(8):1252–1259.  https://doi.org/10.1176/appi.ajp.157.8.1252 CrossRefPubMedGoogle Scholar
  116. Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F, Binder EB (2016) Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry 80(5):372–380.  https://doi.org/10.1016/j.biopsych.2015.08.005 CrossRefPubMedGoogle Scholar
  117. Young EA, Breslau N (2004) Cortisol and catecholamines in posttraumatic stress disorder: an epidemiologic community study. Arch Gen Psychiatry 61(4):394–401CrossRefPubMedGoogle Scholar
  118. Zamore PD (2002) Ancient pathways programmed by small RNAs. Science 296(5571):1265–1269.  https://doi.org/10.1126/science.1072457 CrossRefPubMedGoogle Scholar
  119. Zannas AS, Provencal N, Binder EB (2015) Epigenetics of posttraumatic stress disorder: current evidence, challenges, and future directions. Biol Psychiatry 78(5):327–335.  https://doi.org/10.1016/j.biopsych.2015.04.003 CrossRefPubMedGoogle Scholar
  120. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5(10):e13735.  https://doi.org/10.1371/journal.pone.0013735 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Zhao H, Yao R, Cao X, Wu G (2011) Neuroimmune modulation following traumatic stress in rats: evidence for an immunoregulatory cascade mediated by c-Src, miRNA222 and PAK1. J Neuroinflammation 8(1):159.  https://doi.org/10.1186/1742-2094-8-159 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Zheng D, Sabbagh JJ, Blair LJ, Darling AL, Wen X, Dickey CA (2016) MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation. J Biol Chem 291(34):17897–17906.  https://doi.org/10.1074/jbc.M116.727941 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Zhou J, Nagarkatti P, Zhong Y, Ginsberg JP, Singh NP, Zhang J, Nagarkatti M (2014) Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder. PLoS One 9(4):e94075.  https://doi.org/10.1371/journal.pone.0094075 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Zimmermann P, Bruckl T, Nocon A, Pfister H, Binder EB, Uhr M, Lieb R, Moffitt TE, Caspi A, Holsboer F, Ising M (2011) Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: results from a 10-year prospective community study. Am J Psychiatry 168(10):1107–1116.  https://doi.org/10.1176/appi.ajp.2011.10111577 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Clara Snijders
    • 1
  • Laurence de Nijs
    • 1
  • Dewleen G. Baker
    • 2
    • 3
    • 4
  • Richard L. Hauger
    • 2
    • 3
    • 4
  • Daniel van den Hove
    • 1
    • 5
  • Gunter Kenis
    • 1
  • Caroline M. Nievergelt
    • 2
    • 3
  • Marco P. Boks
    • 6
  • Eric Vermetten
    • 7
    • 8
    • 9
  • Fred H. Gage
    • 10
  • Bart P. F. Rutten
    • 1
  1. 1.Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life SciencesMaastricht University, European Graduate School of Neuroscience, (EURON)MaastrichtThe Netherlands
  2. 2.Department of PsychiatryUniversity of California, San DiegoLa JollaUSA
  3. 3.VA Center of Excellence for Stress and Mental Health, San DiegoLa JollaUSA
  4. 4.VA San Diego Healthcare System, San DiegoLa JollaUSA
  5. 5.Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and PsychotherapyUniversity of WürzburgWürzburgGermany
  6. 6.Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
  7. 7.Military Mental Health Research CenterMinistry of DefenseUtrechtThe Netherlands
  8. 8.Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands
  9. 9.Arq Psychotrauma Research GroupDiemenThe Netherlands
  10. 10.Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaUSA

Personalised recommendations